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Retrieval by Local Motion
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Motion feature plays an important role in video retrieval. The current literature mostly addresses motion retrieval only by camera
motion and global motion of individual video objects in a video scene. In this paper, we propose two new motion descriptors that
capture the local motion of the video object within its bounding box. The proposed descriptors are rotation and scale invariant and
based on the angular and circular area variances of the video object and the variances of the angular radial transform coefficients.
Experiments show that ranking obtained by querying with our proposed descriptors closely match with the human ranking.
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1. INTRODUCTION

As the advancements in digital video compression resulted
in the availability of large video databases, indexing and re-
trieval of video became a very active research area. Unlike
still images, video has a temporal dimension that we can as-
sociate with motion features. We use this information as one
of the key components to describe video sequences; for ex-
ample, “this is the part where we were salsa dancing” or “this
video shows my daughter skating for the first time.” Conse-
quently, motion features play an important role in content-
based video retrieval.

It is possible to classify the types of video motion features
into three groups.

(i) Global motion of the video or camera motion (e.g.,
camera zoom, pan, tilt, roll).

(ii) Global motion of the video objects within a frame
(e.g., an object is moving from the left to the right of
the scene).

(iii) Local motion of the video object (e.g., a person is rais-
ing his/her arms).

Camera operation analysis is generally performed by an-
alyzing the directions of motion vectors that are present in
compressed video bit stream [1, 2, 3] or optical flow analysis
in the spatial domain [4]. For example, panning and tilting
motions are likely to be present if most of the motion vec-
tors inside a frame are in the same direction. Similarly, zoom-
ing motion can be identified by determining whether or not

the motion vectors at the top/left of the frame have opposite
directions than the motion vectors at the bottom/right of the
frame [5, 6].

Global motion of video objects is represented with their
motion trajectories, which are formed by tracking the loca-
tion of video objects (object’s mass center or some selected
points on the object) over a sequence of frames. Forming
motion trajectories generally requires segmentation of video
objects in a video scene. In MPEG-4, the location informa-
tion of the video object bounding box (the upper-left cor-
ner) is already available in the bit stream making the for-
mation of the trajectory a simple task [7]. The classification
and matching of object motion trajectories is a challenging
issue as the trajectories contain both the path and the veloc-
ity information of the objects. In [8], Little and Gu proposed
to extract separate curves for the object path and speed and
match these two components separately. Rangarajan et al. [9]
demonstrated a two-dimensional motion trajectory match-
ing through scale-space and Chen and Chang [10] proposed
to match the motion trajectories via a wavelet decomposi-
tion.

Most available content-based video retrieval systems in
the literature employ camera motion features and/or global
object motion for retrieval bymotion. For example, the Jacob
system [11] supports queries using common camera motion
changes such as pan, zoom, and tilt. Another retrieval sys-
tem, VideoQ, employs a spatio-temporal segmentation algo-
rithm in order to retrieve individual objects with their global
motion inside a scene [12]. It allows the user to specify an
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arbitrary polygonal trajectory for the query object and re-
trieves the video sequences that contain video objects with
similar trajectories. Similar to VideoQ, NeTra-V supports
spatio-temporal queries and utilizes motion histograms for
global camera and video object motion retrieval [13]. More-
over, the content-based description standard MPEG-7 [14,
15] supports motion descriptors, in particular, camera mo-
tion which characterizes the 3D camera operations, mo-
tion trajectory which captures 2D transitional motion of ob-
jects, parametric motion which describes the global defor-
mations, and motion activity which specifies the intensity of
action.

On the other hand, local motion, the motion video ob-
jects within their bounding box, could give valuable in-
formation about its articulated parts, elasticity, occlusion,
and so forth. Classifying and identifying video objects us-
ing their local motion is potentially useful in many applica-
tions. For example, it could be useful to identify some sus-
picious human actions in surveillance video sequences. It
could also be useful for efficient video compression, where
the encoder can allocate more coding bits or a better com-
munication channel for the video objects that demonstrates
important actions, for example, a person running out of a
store (there is a chance that the person might be a crim-
inal) or a player scoring. Moreover, processing database
queries such as “find a video sequence where people are
dancing” would be possible only by enabling the retrieval
of video objects with their local motion. The current re-
search in detecting the local motion of video objects has
been restricted mostly to specific domains. Stalidis et al.
employed a wavelet-based model using boundary points
of magnetic resonance images (MRI) to describe the car-
diac motion in [16]. Miyamori and Iisaku [17] proposed to
classify the actions of tennis players using 2D appearance-
based matching. Hoey and Little suggested a method for
the classification of motion, which is based on the repre-
sentation of flow fields with Zernike polynomials in [18].
Their method is applied to the classification of facial ex-
pressions. In [19], Fujiyoshi and Lipton presented a pro-
cess to analyze human motion by first obtaining the skele-
ton of the objects and then determining the body pos-
ture and motion of skeleton segments to determine hu-
man activities. Human motion classification was also stud-
ied by other researchers including Little and Boyd in [20],
where they proposed to recognize individuals by periodic
variation in the shape of their motion, and Heisele and
Woehler in [21], where they suggested discriminating pedes-
trians by characterizing the motion of the legs. Moreover,
Cutler and Davis [22] proposed to characterize the local
motion by detecting periodicity of the motion by Fourier
analysis on the gray scale video. Most of the work in this
area focuses on “recognizing” the motion of specific ob-
jects and they assume prior knowledge about the video
content.

As the video object content becomes more widely avail-
able, mostly due to the emergence of 3D video capture de-
vices [23, 24], object-based MPEG-4 [25] video encoding

standard, and the availability of the state of the art segmen-
tation algorithms [26, 27], there is a need for more generic
motion features that describe the local motion of video ob-
jects. In this paper, we propose two content-independent lo-
cal motion descriptors. Motivated by the fact that any sig-
nificant motion of video objects within their bounding box
would very likely result in changes in their shape, our mo-
tion descriptors are based on the shape deformations of video
objects. The first descriptor, angular circular local motion
(ACLM), is computed by dividing the video object area into a
number of angular and circular segments and computing the
variance of each segment over a period of time. The other
proposed descriptor is based on the variances of the angular
radial transform (ART) coefficients. We assume that the seg-
mented objects are obtained prior. The proposed descriptors
are extracted using video objects’ binary shape masks. The
rest of the paper is organized as follows. Sections 2 and 3 de-
scribe the proposed local motion descriptors as well as their
extraction and matching. Experimental results that illustrate
the retrieval performance of our methods and the associated
trade-offs are presented in Section 4. Conclusions are given
in Section 5.

2. ANGULAR CIRCULAR LOCALMOTION (ACLM)
DESCRIPTOR

Unlike the shape of visual objects in still images, the shape
of a video object is not fixed and is very likely to change
with time. Given that the camera effects, such as zooming,
are compensated for, the shape deformations in an object’s
lifespan could offer some valuable information about the ob-
ject’s local motion, occlusion, articulated parts, and elasticity.
The variance of the object area is a good measure for such
shape deformations. Nevertheless, it may not be sufficient to
capture the motion of the video objects in some cases, es-
pecially if the object motion does not have an effect on the
area of the object. For example, if an object has an articu-
lated part that is rigid in shape, then the object’s area may
not change even if there is local motion. Here, we propose to
divide the binary shape mask of a video object intoM angu-
lar andN circular segments and use the variance of the pixels
that fall into each segment to describe the local motion. Vari-
ances are computed for each angular circular segment in the
temporal direction using the temporal instances of the video
objects. Then, the local motion feature matrix is formed for
each video object as follows:

R =




σ20,0 · · · σ20,m · · · σ20,M−1
...

...
...

σ2n,0 · · · σ2n,m · · · σ2n,M−1
...

...
...

σ2N−1,0 · · · σ2N−1,m · · · σ2N−1,M−1



, (1)

where M and N are the number of angular and circular sec-
tions, respectively, and σ2n,m is the variance of the pixels that
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fall into the segment (n,m) and computed as follows:

σ2n,m =
1

A(n,m)K

K−1∑
k=0

θm+1∑
θ=θm

ρn+1∑
ρ=ρn

(
VOPk(ρ, θ)− µn,m

)2
,

µn,m = 1
A(n,m)K

K−1∑
k=0

θm+1∑
θ=θm

ρn+1∑
ρ=ρn

VOPk(ρ, θ),

(2)

where K is the number of the temporal instances of the video
object, VOPk is the binary shape mask of the video object
plane (VOP) at kth instant, VOPk(ρ, θ) is the value of the
binary shape mask in VOPk at the (θ, ρ) position in the po-
lar coordinate system centered at the mass center of VOPk,
A(n,m) is the area, θm is the start angle, and ρm is the start
radius of the angular circular segment (n,m), and they are
defined as

A(n,m) = π
(
ρ2n+1 − ρ2n

)
M

,

θm = m× 2π
M

, ρn = n× ρmax

N
,

(3)

where M and N are the number of angular and circular sec-
tions, respectively and ρmax is found by

ρmax = max
VOPk∈VO

{
ρVOPk

}
, (4)

where VOPk is the kth instant of the video object and ρVOPk
is the radius of the tightest circle around the VOPk that is
centered at the mass center of VOPk.

The proposed descriptor is scale invariant since the num-
ber of angular and circular segments is the same for all video
objects, and the size of each segment is scaled with ρmax.
We attain an approximate rotation invariance of the descrip-
tor by employing an appropriate query matching method
similar to the one used for matching the contour-based
shape descriptor in MPEG-7 [14]. That is, we provide the
rotation invariance by reordering the feature matrix R so
that the angular segment with the largest variance is in the
first column of R. This is achieved by first summing the
columns of the feature matrix R to obtain the 1 × M pro-

jection vector �A and then finding the maximum element of
�A, which corresponds to the angular segment mL that has
the largest variance. Finally, we circularly shift to the left the
columns of R by mL to obtain a rotation invariant feature
vector.

The trade-offs associated with using different numbers
of angular and circular segments for this descriptor are pre-
sented in Section 4.

3. ART-BASED LOCALMOTION DESCRIPTOR

Employing angular radial transform (ART)-based shape de-
scriptors is an efficient way to retrieve shape information
as they are easy to extract and match. Consequently, an
ART-based descriptor was recently adopted byMPEG-7 [14].
Here, we propose to use the variance of the ART coefficients,

computed for each object plane of a video object, as a local
motion descriptor. As the ART descriptors describe the re-
gion of a shape, different than their contour-based counter-
parts such as curvature scale-space and Fourier descriptors,
they are capable of representing holes and unconnected re-
gions in the shape. Therefore, our proposed ART-based de-
scriptor captures a large variety of shape region deformations
caused by the local motion. The ART transform is defined
as [14]

Fnm =
∫ 2π

0

∫ 1

0
Vnm(ρ, θ) f (ρ, θ)ρ dρ dθ, (5)

where Fnm is an ART coefficient of order n and m, f (ρ, θ) is
the binary shape map in polar coordinates, and Vnm(ρ, θ) is
the ART basis function, which is separable along the angular
and radial directions as follows:

Vnm(ρ, θ) = Am(θ)Rn(ρ). (6)

The angular and radial basis functions are given by

Am(θ) = 1
2π

e jmθ, Rn(ρ) =


1, n = 0,

2 cos(πnρ), n �= 0.
(7)

The discrete ART coefficients of a binary shape map are
found as follows. First, the size of the binary shape data is
normalized by a linear interpolation to a predefined widthW
and height H , to obtain the size invariant shape map I(x, y).
The mass center of the binary shape map is aligned with the
center of I(x, y), that is, I(W/2, H/2). Then, the discrete ART
coefficients of the shape map of the object plane k (VOPk)
are computed by

Fnm
(
VOPk

) =
W/2∑

x=−W/2

H/2∑
y=−H/2

Vnm

(√
x2 + y2, arctan

y

x

)

× IVOPk

(
x +

W

2
, y +

H

2

)
.

(8)

The ART coefficients of the individual object planes are
rotation variant. When ART coefficients are employed for
still shape retrieval, themagnitude of the ART coefficients are
employed for rotation invariance. Since we would like to cap-
ture any rotational changes that may be present in the shape
of the video object when computing the variances in the ART
coefficients, we employ the complex ART coefficients. The fi-
nal ART-based local motion descriptor is defined as the mag-
nitude of the complex variance computed over time, which is
rotation invariant.

Because the area of the object shape is normalized for
size prior to computing the ART coefficients, the local mo-
tion descriptor captures the real deformations of the shape,
and it is robust to changes in the area of the video objects
due to the events such as camera zooming, partial occlu-
sion, and so on. If it is desired by the application that the
motion descriptor capture such events, the size normaliza-
tion of the descriptor should be done with respect to the
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largest object plane of the video object. The retrieval per-
formance results of this descriptor, obtained by using a vari-
ous number of angular and radial functions, are presented in
Section 4.

4. EXPERIMENTAL RESULTS

4.1. Performance evaluation

We present our retrieval results by utilizing the normal-
ized modified retrieval rank (NMRR) measure used in the
MPEG-7 standardization activity [28]. NMRR not only in-
dicates how much of the correct items are retrieved, but
also how highly they are ranked among the retrieved items.
NMRR is given by

NMRR(n) =
(∑NG(n)

k=1 Rank(k)/NG(n)
)
− 0.5−NG(n)/2

K + 0.5− 0.5∗NG(n)
,

(9)

where NG is the number of ground truth items marked as
similar to the query item and Rank(k) is the ranking of the
ground truth items by the retrieval algorithm, where K is
equal to min(4∗NG(q), 2∗GTM) where GTM is the maxi-
mum of NG(q) for all the queries. The NMRR is in the range
of [0 1] and the smaller values represent a better retrieval
performance. ANMRR is defined as the average NMRR over
a range of queries.

4.2. Retrieval performance

Here, we demonstrate the performance of each of our pro-
posed local motion descriptors. Our database contains over
20 arbitrarily shaped video objects, coded in 2 to 3 differ-
ent spatial resolutions, each resulting in an MPEG-4 ob-
ject database of over 50 bit streams. The ANMRR values
presented in this section are obtained by averaging the re-
trieval results of 12 query video objects that have a large
variety of local motions. The ground truth objects are de-
cided by having three human subjects rank the video ob-
jects for their local motion similarity to the query video ob-
jects. The similarity distance between two shapes is measured
by computing the Euclidean distance on their local motion
descriptors.

Retrieval performance results using the ACLM descrip-
tor with various numbers of angular and circular segments
is presented in Figure 1. Note that smaller ANMRR values
represent a better retrieval performance. Employing a large
number of angular and circular bins generally results in a
better retrieval performance but with the cost of more bits re-
quired to represent the descriptor. The highest retrieval rates
(i.e., lowest ANMRR) here are obtained by using 6 angular
and 3 circular segments (ANMRR = 0.090) and 8 angular and
2 circular segments (ANMRR = 0.089).

Some query examples using 6 angular and 3 circular seg-
ments are presented in Tables 1 and 2. Note that the di-
mensions given in the parentheses are not the dimensions
of the video objects, but the resolutions of the video se-
quences from which they are extracted. The dimensions of
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Figure 1: Retrieval results of the ACLM descriptor obtained by us-
ing various numbers of angular and circular (CIR) segments.

Coastguard 2 VO

News 1 VO News 2 VO Akiyo VO

Figure 2: The video objects classified as being similar in terms of
their local motion to the query video object News 1.

the video objects are different for each plane of the video
object. One important point to note is that, because of the
simple upsampling/downsampling methods used to obtain
various resolutions of the same video objects, the different
resolutions of the same objects are not likely to have ex-
actly the same shapes. Thus, even though our descriptor
is scale invariant, the query distances corresponding to the
different resolutions of the same object may not be identi-
cal.

The first query, shown in Figure 2,1 is a very low-motion
anchorperson video object, News 1, which is coded in two
different resolutions in our database. As presented in Table 1,

1The query and database items presented in this section are video ob-
jects, and the illustration given in the figures are some representative VOPs
of these objects.
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Table 1: Local motion retrieval results for the News 1 video object
query.

Rank Video object Query distance

1 News 1 (360× 240) 0.00

2 News 1 (180× 120) 6.68

3 Akiyo (360× 240) 11.07

4 News 2 (360× 240) 12.55

5 Akiyo (180× 120) 14.06

6 News 2 (180× 120) 19.52

7 Coastguard 2 (352× 288) 27.12

8 Coastguard 2 (176× 144) 27.63

9 Coastguard 2 (528× 432) 27.68

Hall Monitor 1 VO

Hall Monitor 2 VO

Stefan VO

Fish VO

Figure 3: The video objects classified as being similar in terms of
their local motion to the query video object Hall Monitor 1.

using the ACLM descriptor, the two different resolutions
of the News 1 video object are retrieved as the first two
items. The other highly ranked two anchorperson video ob-
jects, illustrated in Figure 2, are also very low in motion. The
Coastguard video object, ranked 7th, 8th, and 9th, is also an
object without any articulated parts (a boat object and its
waves) and with moderate local motion. Our second query,
Hall Monitor 1, is the video object of a walkingman captured
by a surveillance camera as shown in Figure 3. The query re-
sults for this object are presented in Table 2. The three differ-
ent resolutions of the video object are ranked the highest, and
another walking man video object from the same sequence,

Table 2: Local motion retrieval results for the Hall Monitor 1 video
object query.

Rank Video object Query distance

1 Hall Monitor 1 (360× 240) 0.00

2 Hall Monitor 1 (540× 360) 2.89

3 Hall Monitor 1 (180× 120) 10.23

4 Hall Monitor 2 (180× 120) 46.85

5 Hall Monitor 2 (360× 240) 50.25

6 Hall Monitor 2 (540× 360) 50.31

7 Fish 1 (352× 240) 84.59

8 Stefan (176× 144) 90.31

9 Stefan (352× 244) 90.80
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Figure 4: Retrieval results of the ART-based local motion descrip-
tor obtained by employing different number of angular and radial
(RAD) basis functions.

Hall Monitor 2, is ranked immediately after. The fish object,
which has large moving fins and a tail as depicted in Figure 3,
is ranked 6th. The different resolutions of a video object
that contain a person playing tennis are ranked 8th and 9th.
As can be seen from these query examples, the ACLM de-
scriptor successfully classifies the local motion of the video
objects.

The number of angular and radial functions of the ART
descriptor determines how accurately the shape is repre-
sented. Considering that the video object shapes, different
than trademark shapes for example, generally do not con-
tain much detail, using a small number of basis functions
to represent the shape maps would be sufficient and result
in a more compact descriptor. Representation with a small
number of basis functions also makes the descriptor more
robust to the potential segmentation errors. The retrieval
performance achieved by using different number of angular
and radial functions is presented in Figure 4. As can be ob-
served from the table, employing 4 angular and 2 radial basis
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functions offers a good trade-off between the retrieval per-
formance (ANMRR = 0.181141) and the compactness of the
descriptor.

5. CONCLUSIONS

In this paper, we proposed two local motion descriptors
for the retrieval of video objects. As presented in Section 4,
the ranking obtained by employing our descriptors closely
matches with the human ranking. According to the AN-
MRR scores obtained, the ACLM descriptor offers a better
retrieval rate than the ART-based descriptor. Given that each
descriptor value is quantized to [0 255] range, ACLM de-
scriptor requires 16 bytes and the ART-based descriptor re-
quires 8 bytes to represent. ACLM descriptor is less compu-
tationally complex to extract. Nevertheless, if the ART coef-
ficients of the video object is already computed and attached
to the video objects as metadata for shape retrieval, then
the extra computations required to extract the local motion
descriptors based on the ART coefficients are minimal. De-
pending on the application, either of the proposed descrip-
tors could be used for efficient video object retrieval by local
motion.
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