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Accessing information in multimedia databases encompasses a wide range of applications in which spoken document retrieval
(SDR) plays an important role. In SDR, a set of automatically transcribed speech documents constitutes the files for retrieval,
to which a user may address a request in natural language. This paper deals with two probabilistic aspects in SDR. The first
part investigates the effect of recognition errors on retrieval performance and inquires the question of why recognition errors
have only a little effect on the retrieval performance. In the second part, we present a new probabilistic approach to SDR that is
based on interpolations between document representations. Experiments performed on the TREC-7 and TREC-8 SDR task show
comparable or even better results for the new proposed method than other advanced heuristic and probabilistic retrieval metrics.
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1. INTRODUCTION

Retrieving information in large, unstructured databases is
one of the most important tasks computers use for today.
While in the past, information retrieval focused on search-
ing written texts only, the field of applications has since then
extended to multimedia data such as audio and video docu-
ments which are growing every day in broadcast and media.
Nowadays, radio and TV stations hold huge archives contain-
ing numberless documents that were produced and collected
over the years. However, since these documents are usually
neither indexed nor catalogued, the respective document col-
lections are effectively not usable and thus the data stocks
are idle. Therefore, the need of efficient methods enabling
content-based access to little or even unstructured multime-
dia archives is of eminent importance.

1.1. Spoken document retrieval

A particular application in the domain of information re-
trieval is the content-based access to audio data in which spo-
ken document retrieval (SDR) plays an important role. SDR
extends the techniques developed in text retrieval to audio
documents containing speech. To this purpose, the audio

documents are automatically segmented and transcribed by
a speech recognizer in advance. The resulting transcriptions
are indexed and subsequently stored in large databases, thus
constituting the files for retrieval, to which a user may ad-
dress a request in natural language.

Over the past years, research shifted from pure text re-
trieval to SDR. However, since also state-of-the-art speech
recognizers are still error-prone and thus far from perfect
recognition, automatically generated transcriptions are often
flawed, and not seldom they achieve word accuracies of less
than 80% as, for example, on broadcast news transcription
tasks [1].

Speech recognizers may insert new words into the origi-
nal sequence of spoken words and may substitute or delete
others that might be essential in order to filter out the
relevant portion of a document collection. Unlike text re-
trieval, SDR thus requires retrieval metrics that are robust to-
wards recognition errors. In the recent past, several research
groups investigated retrieval metrics that are suitable for SDR
tasks [2, 3]. Surprisingly, the development of robust met-
rics turned out to be less difficult than expected at the be-
ginning of the research in this field, for recognition errors
seem to hardly affect retrieval performance, and this result
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also holds for tasks, where automatically generated transcrip-
tions achieve word error rates of up to 40% (see the experi-
mental results in Section 3.1). Although this was the unan-
imous result of past TREC evaluations [2, 3], the reasons
are only insufficiently examined. In this paper, we conduct
a probabilistic analysis of errors in SDR. To this purpose,
we propose two new error criteria that are more suitable in
order to quantify the appropriateness of automatically gen-
erated transcriptions for retrieval applications. The second
part of this paper attends to probabilistic retrieval metrics for
SDR. Although probabilistic retrieval metrics are usually bet-
ter motivated in terms of a mathematically well-founded the-
ory than their heuristic counterparts, they often suffer from
lower performances. In order to compensate for this short-
coming, we propose a new statistical approach to informa-
tion retrieval based on a measure for document similarities.
Experimental results for both the error analysis and the new
statistical approach are presented on the TREC-7 and TREC-
8 SDR task.

The structure of this paper is as follows. In Section 2, we
start with a brief introduction to heuristic retrieval metrics.
In order to improve the baseline performance, we propose
a new method for query expansion. Section 3 is about the
effect of recognition errors on retrieval performance. It in-
cludes a detailed error analysis and presents the datasets used
for the experiments. In Section 4, we propose the new sta-
tistical approach to information retrieval and give detailed
results of the experiments conducted. We conclude the paper
with a summary in Section 5.

2. HEURISTIC RETRIEVAL METRICS IN SDR

Among the proposed heuristic approaches to information
retrieval, the term-frequency/inverse-document-frequency (tf-
idf) metric belongs to the best investigated retrieval met-
rics. Due to its simple structure in combination with a fairly
well initial performance, tf-idf forms the basis for several ad-
vanced retrieval metrics. In the following section, we give a
brief introduction to tf-idf in order to introduce the termi-
nology used in this paper and to form the basis for all further
considerations.

2.1. Baseline methods

Let % := {d;,...,dg} be a set of K documents and let w =
Wi, ..., ws denote a request given as a sequence of s words.
A retrieval system transforms w into a set of query terms
q1>--->qm (m < s) which are used to retrieve those doc-
uments that preferably should meet the user’s information
need. To this purpose, all words that are of “low semantic
worth” for the actual retrieval process are eliminated (stop-
ping) while the residual words are reduced to their morpho-
logical stem (sternming) using, for example, Porter’s stem-
ming algorithm [4]. Documents are preprocessed in the same
manner as the queries are. The remaining words, also re-
ferred to as index terms, constitute the features that describe
a document or query. In the following, index terms are de-
noted by d or q if they are associated with a certain docu-
ment d or query q; otherwise, we use the symbol . Let T :=

{t1,..., tr} be a set of index terms and let 9 := {qy,...,qz}
denote a set of queries. Then both documents and queries are
given as sequences of index terms

di = di1,..
qQ =4q1-.

i<Iy),

j=<).
(D)

. dk,Ik)

di € Dwithdy; € T (l
S qLns eTJ

(1

=<
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q € 2 with g

Each query q € 9 partitions the document set % into a sub-
set 9'l(q) containing all documents that are relevant with
respect to q, and the complementary set 9"(q) containing
the residual, that is, all irrelevant documents. The number of
occurrences of an index term ¢ in a document dx and a query
qi, respectively, is denoted by

Ik Ti
n(t de) := > O(t, di), n(tq):=> 8(tq,) (2)
i1

j=1

with (-, -) as the Kronecker function. The counts n(t, di)
in (2) are also referred to as term frequencies of document
dy. Using n(t,di) from (2), we define the document fre-
quency n(t) as the number of documents containing the in-
dex term ¢,

M=

n(t) := 1. (3)

k
n(t,

(=9

1
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With the definition of the inverse document frequency

1+K
1+n(t)

a document specific weight w(t,d) and a query specific
weight w(t, q) is assigned to each index term t. These weights
are defined as the product over the term frequencies n(¢, d)
and n(t, q), respectively, and the inverse document frequen-
cies

idf(t) := log (4)

w(t,d) := n(t,d) - idf(t),

. (5)
w(t,q) := n(t, q) - idf(¢).

Given a query q, a retrieval system rates each document in
the database whether or not it may meet the request. The
result is a ranking list including all documents that are sup-
posed to be relevant with respect to q. To this purpose, we de-
fine a retrieval function f that in case of using the tf-idf met-
ric is defined as the product over all weights of index terms
occurring in q as well as in d, normalized by the length of the
query q and the document d,

2egw(t q) - w(t, d) .
VZrean2(t Q) [ Sican(t d)

The value of f(q, d) is called retrieval status value (RSV). The
evaluation of f(q,d) for all documents d € % induces a
ranking according to which the documents are compiled to a
list that is sorted in descending order. The higher the RSV of

f(q.d):= (6)
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a document, the better it may meet the query and the more
important it may be for the user.

2.2. Advanced retrieval metrics

Based on the tf-idf metric, several modifications were pro-
posed in literature leading, for example, to the Okapi metrics
[5] as well as the SMART-1 and the SMART-2 metric [6]. The
baseline results conducted for this paper use the following
version of the SMART-2 metric. Here, the inverse document
frequencies are given by

idf(t) = log [%J ™)

Note that due to the floor operation in (7), a term weight
will be zero if it occurs in more than half of the documents.
According to [7], each index term ¢ in a document d is asso-
ciated with a weight g(t, d) that depends on the ratio of the
logarithm of the term frequency n(t, d) to the logarithm of
the average term frequency 7(d),

[1+]logn(t,d)] .
[ +lognd)] @ f€d 8)
0, ifred

¢(td) =

with log0 := 0 and

2regn(t, d)

n(d) = .
DteTn(td)>ol

(9)

The logarithms in (8) prevent documents with high term fre-
quencies from dominating those with low term frequencies.
In order to obtain the final term weights, g(¢,d) is divided
by a linear combination between a pivot element ¢ and the
number of singletons 7, (d) in document d,

gt d)

w(t,d) = (1_A)C+Anl(d) (10)
with A = 0.2 and
|k
c= E z }’ll(dk))
k=1 (11)
ni(d) := !
teT:n(t,d)=1

Unlike tf-idf, only query terms are weighted with the inverse
document frequency idf(¢)

w(t,q) = [1 +logn(t,q)] - idf(¢). (12)

Now, we can define the SMART-2 retrieval function as the
product over the document and query specific index term
weights

flad) =Y wtq) - wltd). (13)

teg

Dyl Diyy

FiGure 1: Principle of query expansion: using the difference vec-
tor p, the original query vector eq is shifted towards the subset of
relevant documents.

2.3. Improving retrieval performance

Often, the retrieval effectiveness can be improved using inter-
active search techniques such as relevance feedback methods.
Retrieval systems providing relevance feedback conduct a
preliminary search and present the top-ranked documents to
the user who has to rate each document whether it meets his
information need or not. Based on this relevance judgment,
the original query vector is modified in the following way. Let
QNDrel(q) be the subset of top-ranked documents rated as rele-
vant, and let @i“(q) denote the subset of irrelevant retrieved
documents. Further, let eq denote the document d embedded
into a T-dimensional vector eq = (n(ty,d),...,n(tr,d))7,
and let eq = (n(t1,q),...,n(tr,q))" denote the vector em-
bedding of the query q. Then, the difference vector p_ defined
by

! > ed ! > eq (14)

pq = — " j— N— .
| @rel(q) | de@rel(q) | @Hr(q) | de@'irr(q)
connects the centroids of both document subsets. Therefore,
it can be used in order to shift the original query vector eq
towards the cluster of relevant documents, resulting in a new
query vector &q (see Figure 1)

&=(1-y) ety -p, (0=A=1) (15)

This method is also known as query expansion, and the Roc-
chio algorithm [8] counts among the best known implemen-
tations of this idea although there are many others as well
[9, 10, 11]. Assuming that the r top-ranked documents of
the preliminary search are (most likely) relevant, interactive
search techniques can be automated by setting ENDrel(q) to the
first r retrieved documents, whereas QNDi"(q) is set to &. How-
ever, since the effectiveness of a preliminary retrieval process
may decrease due to recognition errors, query expansion is
often performed on secondary document collections, for ex-
ample, news paper articles that are kept apart from the ac-
tual retrieval corpus. This technique is very effective, but at
the same time, it requires significantly more resources due
to the additional indexing and storage costs of the supple-
mentary database. Therefore, we focus on a new method for
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TasLe 1: Corpus statistics for the TREC-7 and the TREC-8 spoken document retrieval task.

TREC-7 TREC-8
All Rel. Irr. All Rel. Irr.
# Documents 2866 348 2518 21745 1679 20066
# Queries 23 — — 50 — —
Avg. doc. length 267.4 580.1 265.5 169.6 283.9 169.4

query expansion that solely uses the actual retrieval corpus
while preserving robustness towards recognition errors. The
approach comprises the following three steps:

(1) perform a preliminary retrieval using SMART-2 with
m:1{l,...,K} = {1,..., K} induced by the ranking list
so that f(q,dn1)) = - - - = f(q, dn(x)) holds;

(2) determine the query expansion vector eq defined as
the sum over the expansion vectors vq(d) of the r top-

ranked documents d(1), ..., ds() (r < K),
~ vq(d)
€q = > ——— (16)
d€D:f(qd)= f(q.d)= f(ads) \|[Vg(d)]]

with the ith component (1 < i < T) of vq(d) given by

) = {g(ti,d) Cidf (&) - logn(t, d), ift; ¢ q, -

0, if ti € q;

(3) the new query vector €4 is defined by
~ 2 /e\q
&g =eqty-/llegl]” - —=. (18)
Vel

3. ANALYSIS OF RECOGNITION ERRORS
AND RETRIEVAL PERFORMANCE

Switching from manual to recognized transcriptions raises
the question of robustness of retrieval metrics towards recog-
nition errors. Automatic speech recognition (ASR) systems
may insert new words into the original sequence of spoken
words while substituting or deleting others that might be es-
sential in order to filter out the relevant portion of a doc-
ument collection. In ASR, the performance is usually mea-
sured in terms of word error rate (WER). The WER is de-
fined as the Levenshtein or edit distance, which is the minimal
number of insertions (ins), deletions (del), and substitutions
(sub) of words necessary to transform the spoken sentence
into the recognized sentence. The relative WER is defined by

K
WER := >
k=1

suby + ins + del

Sk Tk Tk (19)
N
Here, N is the total number of words in the reference tran-
scriptions of the document collection %. The computation of
the WER requires an alignment of the spoken sentence with

the recognized sentence. Thus, the order of words is explicitly
taken into account.

3.1. Tasks and experimental results

Experiments for the investigation on the effect of recogni-
tion errors on retrieval performance were carried out on
the TREC-7 and the TREC-8 SDR task using manually seg-
mented stories [3]. The TREC-7 task comprises 2866 docu-
ments and 23 test queries. The TREC-8 task comprises 21745
spoken documents and 50 test queries. Table 1 summarizes
some corpus statistics.

Recognition results on the TREC-7 SDR tasks were
produced using the RWTH large vocabulary continuous-
speech recognizer (LVCSR) [12]. The recognizer uses a time-
synchronous beam search algorithm based on the concept
of word-dependent tree copies and integrates the trigram
language-model constraints in a single pass. Besides acous-
tic and histogram pruning, a look-ahead technique of the
language-model probabilities is utilized [13]. Recognition re-
sults were produced using gender-independent models. Nei-
ther speaker-adaptive nor any normalization methods were
applied. Every nine consecutive feature vectors, each consist-
ing of 16 cepstral coefficients, are spliced and mapped onto
a 45-dimensional feature vector using a linear discriminant
analysis (LDA). The segmentation of the audio stream into
speech and nonspeech segments is based on a Gaussian mix-
ture distribution model.

Table 2 shows the effect of recognition errors on retrieval
performance, measured in terms of mean average precision
(MAP) [14] for different retrieval metrics on the TREC-7
SDR task. Even though the WER of the recognized transcrip-
tions is 32.5%, the retrieval performance decreases by only
9.9% relative using the SMART-2 metric in comparison with
the original, that is, the manually generated transcriptions.
The relative loss is even smaller (approx. 5% relative) if the
new query expansion method is used.

Similar results could be observed on the TREC-8 corpus.
Unlike the experiments conducted on the TREC-7 SDR task,
we made use of the recognition outputs of the Byblos “Rough
N Ready” LVCSR system [15] and the Dragon LVCSR sys-
tem [16]. Here, the retrieval performance decreases by only
13.1% relative using the SMART-2 metric in combination
with the recognition outputs of the Byblos speech recog-
nizer and by 15.1% relative using the Dragon speech recog-
nition outputs. Note that in both cases, the WER is approx-
imately 40%, that is, almost every second word was misrec-
ognized. Using the new query expansion method, the relative
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TABLE 2: Retrieval effectiveness measured in terms of MAP on the TREC-7 and the TREC-8 SDR task. All WERs were determined without
NIST rescoring. The numbers in parentheses indicate the relative change between text and speech-based results.

MAP[%]

Metric TREC-7 TREC-8

tf-idf 42.1 47.6
Text SMART-2 46.6 49.6

g-expansion 53.4 57.5

tf-idf 35.3 (—16.2%) 41.3 (~13.2%) 42.0 (—11.8%)

SMART-2 42.0 (—9.9%) 43.1 (~13.1%) 42.1 (~15.1%)
Speech g-expansion 50.7 (=5.1%) 50.0 (—13.0%) 49.8 (—13.4%)

WER[%] 32.5 38.4 40.3

(RWTH) (Byblos) (Dragon)

performance loss is nearly constant, that is, the transcriptions
as produced by the Byblos speech recognizer cause a perfor-
mance loss of 13.0% relative, whereas the transcriptions gen-
erated by the Dragon system cause a degradation of 13.4%
relative.

3.2. Alternative error measures

Since most retrieval metrics usually disregard word orders,
the WER is certainly not suitable in order to quantify the
quality of recognized transcriptions for retrieval applica-
tions. A more reasonable error measure is given by the term
error rate (TER) as proposed in [17]

TER :=

K ~
1 . Z Zteg | T’l(t, dk) - I’l(t, dk) | ) (20)
k=1

K I

As before, I denotes the number of index terms in the
reference document di, n(t,dy) is the original term fre-
quency, and n(t, ak) denotes the term frequency of the term ¢
in the recognized transcription &k. Note that a substitution
error according to the WER produces two errors in terms
of the TER since it not only misses a correct word but also
introduces a spurious one. Consequently, we have to count
substitutions twice in order to compare both error measures.
Nevertheless, the alignment on which the WER computation
is based must still be determined using uniform costs, that is,
substitutions are counted once. Using the definitions

del(d, d) = {n(t, d) - n(t,d), n(td) <n(td),

0, otherwise,
(21)
. t,d) —n(t,d), n(td t,d),
(@ d) o | D, n(d) > d)
0, otherwise,
the TER can be rewritten as
K 4 . 3
TER = 1 Sy del; (d, di) + ins; (dy, dk)' (22)

I

k=1teT

Since the contributions of term frequencies to term weights
are often diminished by the application of logarithms (see
(8)), the number of occurrences of an index term within a
document d is of less importance than the fact whether a
term does occur in d or not. Therefore, we propose the in-
dicator error rate (IER) that is defined by

K ar a7 a ar
1 | Ta \Tg |+ 1T\ T
IER := — - = - 23
K2 7al =
with
T4, = {dk1, --~:dk,lk} (1<k<K). (24)

The IER discards term frequencies and measures the number
of index terms that were missed or wrongly added during
recognition. If we transfer the concepts recall and precision to
pairs of documents, we will obtain a motivation for the IER.
To this purpose, we define

~ |gd N ga
recall (d,d) := )
@d) | Tal
| Tan T (25)
prec(d, d) := 12d 1 Ddl
| T4l

Note that a high recall means that the recognized transcrip-
tion d contains many index terms of the reference transcrip-
tion d. A low precision means that the recognized transcrip-
tion contains many index terms that do not occur in the ref-
erence transcription. Both the recall and precision errors are
given by

T\ T
1 - recall(d, d) = | fg\ |“|,
EXEA 2
1 — prec(d, &) = do_ d
EF

If we assume both the reference and the recognized docu-
ments to be of the same size, that is, 74| ~ |J| which can
be justified by the fact that language model scaling factors are
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TaBLE 3: WER, TER, and IER measured with the RWTH speech recognizer on the TREC-7 corpus for varying preprocessing stages. Note
that the substitutions are counted twice for the accumulated error rates of the WER criterion.

TREC-7 TREC-7 + Stop + Stem + Stop + Stem, Queries only
Documents All  Relevant  Irrelevant All  Relevant  Irrelevant All  Relevant Irrelevant
deletions 4.8 3.9 4.9 8.5 6.3 8.8 11.1 8.2 11.5
WER|%] insert.ioné 4.7 4.1 4.8 2.6 2.4 2.6 8.7 6.7 9.0
substitutions 21.6 18.4 22.1 17.0 14.2 17.3 5.3 4.7 5.4
error rate* 52.8 44.7 53.9 45.0 37.2 46.0 30.3 24.4 31.2
deletions 21.8 17.4 22.4 24.0 19.2 24.6 12.0 10.8 12.2
TER[%]  insertions 22.8 17.9 23.5 18.9 15.5 19.3 17.5 10.8 18.4
error rate 44.6 35.3 45.9 42.8 34.7 43.9 29.5 21.5 30.6
deletions 16.3 13.9 16.6 17.4 14.2 17.9 8.8 7.0 9.0
IER[%] insertions 16.3 14.2 16.5 15.1 13.6 15.3 10.7 8.4 11.0
error rate 32.5 28.1 33.1 32.5 27.8 33.2 19.5 15.5 20.0

usually set to values ensuring balanced numbers of deletions
and insertions, we obtain the following interpretation of the
IER:

IER:i-i IJdk\%J;I%\OJde
K k=1 |Jdk|
K ar a7 ar
\ T4 Ts\J
:lzlil_| di dk|+1_| dkaw dk|]
K & |Tq,| EFR

I
x| =
M=

(27)

Table 3 shows the error rates obtained on the TREC-7 SDR
task for the three error measures: WER, TER, and IER. Note
that substitution errors are counted twice in order to be
comparable with the TER. The initial WER thus obtained is
52.8% on the whole document collection, whereas TER leads
to an initial error rate of 44.6%. So far, we have not yet taken
into account the effect of document preprocessing steps, that
is, stopping and stemming. If we consider index terms only,
TER decreases to 42.8%. Moreover, we can restrict the index
terms to query terms only. Thus, TER decreases to 29.5%.
Note that this magnitude will correspond to a WER of 17.4%
if we convert TER into WER using the initial ratio of dele-
tions, insertions, and substitutions of 4.8 : 4.7 : 21.6. Fi-
nally, we can apply the indicator error measure which leads
to an IER of 19.5%, thus corresponding to WER of 17.4%.
Similar results were observed on the TREC-8 SDR task using
the recognition outputs of the Byblos and the Dragon speech
recognition system, respectively (see Tables 8 and 9). Table 4
summarizes the most important error rates of Tables 3, 8,
and 9.

For each error measure, we can determine the accuracy
rate which is given by max(1 — ER, 0), where ER is the WER,
the TER, or the IER, respectively. Assuming a linear de-
pendency of the retrieval effectiveness on the accuracy rate,
we can compute the squared empirical correlation between
the MAP obtained on the recognized documents and the

TaBLE 4: Summary of different error measures on the TREC-7 and
TREC-8 SDR task. Substitution errors (sub) are counted once (sub
1) or twice (sub 2X), respectively.

TREC-7 TREC-8
Doc. Error measure
RWTH  Byblos Dragon
WER[%] (sub 1x) 32.5 38.4 40.3
(sub 2x) 52.8 60.3 61.3
All 44.6 52.2 53.2
TER[%]  + stop + stem 42.8 48.8 49.2
q-terms only 29.5 34.8 36.7
1IER[%] q-terms only 19.5 22.3 23.4
Rel. IER[%] q-terms only 15.5 18.0 18.7

TaBLE 5: Squared empirical correlation between the MAP obtained
on the recognized documents and the MAP obtained on the refer-
ence documents multiplied with the word accuracy (WA) rate, the
term accuracy (TA) rate, and the indicator accuracy (IA) rate, re-
spectively.

Accuracy rate tf-idf SMART-2 q-expansion
WA 0.741 0.323 0.010
TA 0.475 0.007 0.567
IA 0.937 0.845 0.688

product over the accuracy rate and the MAP obtained on the
reference documents. Table 5 shows the correlation coeffi-
cients thus computed. The computation of the accuracy rates
refer to the ninth column of Tables 3, 8, and 9, that is, all doc-
uments were stopped and stemmed beforehand and reduced
to query terms. Substitutions were counted only once in or-
der to determine the word accuracies. Among the proposed
error measures, the IER seems to best correlate with the re-
trieval effectiveness. However, the amount of data is still too
small and further experiments will be necessary to prove this
proposition.



Probabilistic Aspects in Spoken Document Retrieval

121

3.3. Further discussion

In this section, we investigate the magnitude of the perfor-
mance loss from a theoretical point of view. To this purpose,
we consider the retrieval process in detail. When a user ad-
dresses a query to a retrieval system, each document in the
database is rated according to its RSV. The induced ranking
list determines a permutation 7 of the documents that can
be mapped onto a vector indicating whether or not the doc-
ument d; at position (i) is relevant with respect to q. Let f
be a retrieval function. Then, the application of f to a docu-
ment collection & given a query q leads to the permutation
fo(D) = (dr1), dr2), - - -> dr(x)) with 7 induced by the fol-
lowing order:

f(@da) = f(qdr@) = --- = f(qdax)).  (28)

With the definition of the indicator function

1, ifdis relevant with respect to q,
Pq(d) := (29)
0, otherwise,

the ranking list can be mapped onto a binary vector

dn(l) 1

d:(2)

d.;) 0
ol | —17] (30)
B dn(n) 1

d(n+1) 0

dﬂ(K) 0

Even though the deterioration of transcriptions as caused by
recognition errors may change the indicator vector, a per-
formance loss will only occur if the RSVs of relevant doc-
uments fall below the RSVs of irrelevant documents. Note
that among the four possible cases of local exchange opera-
tions between documents, that is, $4(dx(;)) € {0, 1} changes
its position with $4(dx(j) € {0,1} (i # j), only one case can
cause a performance loss. Interestingly, it is possible to spec-
ify an upper bound for the probability that two documents
d; and d; with f(q,d;) > f(q,d;) will change their relative
order if they are deteriorated by recognition errors, that is,
f(q (Ai,v) < f(q &j) will hold for the recognized documents ?1,-

and d - According to [18], this upper bound is given by

~

P(f(q.di) > f(q.d)) | f(q.di) < f(q.d)))

[o(n(t,d;))/Ti + o (n(t,d;))/1;]
A%j(‘l)

2 )
-y n*(t,q)
ted

(31)

with

Ayj(@) = E[f(q.d})] - E[f(q.d))]

. 0 I o]t d
EU@®L=2”“®[PQMfm]mt)

+ pe(t)

teq

O'[I’Z(t, a)] = [Pc(t) . [1 - Pc(t)] - Pe(t) ) [1 - pe(t)”
sn(t,d) +1(d) - pe(t).
(32)

Here, p.(t) denotes the probability that ¢ is correctly rec-
ognized, p.(t) is the probability that t is recognized even
though 7 (7 # t) was spoken, and I(d) is a document spe-
cific length normalization that depends on the used retrieval
metric. Thus, the upper bound for the probability of chang-
ing the order of two documents is vanishing for increasing
document lengths [14, page 135]. In particular, this means
that the relevant documents of the TREC-7 and the TREC-8
corpus are less affected by recognition errors than irrelevant
documents since the average length of relevant documents is
substantially larger than the average length of irrelevant doc-
uments (see Table 1).

Now, let 7y : {1,...,K} — {1,...,K} denote a per-
mutation of the documents so that f(q,ds1)) > -+ >
f(q, dyy(x)) holds for a query q. Then, we can define a matrix
A € REXK with elements

aij:=P(f (@ dny) < f (@ dmy(j)) | £(@ dryii)) > £ (@ dr))-
(33)

At the beginning, A is an upper triangular matrix whose di-
agonal elements are zero. Since exchanges between relevant
documents and exchanges between irrelevant documents do
not affect the retrieval performance, each matrix element a; g
Wm be set to 0 if {dy, (), dm,(j)} c @rel(q) or {dy i) dﬂo(j)} c
9'"(q). Then, the expectation of the ranking, that is, the per-
mutation 77 maximizing the MAP of the recognized docu-
ments, can be determined according to Algorithm 1 using a
greedy policy.

= o5
fori:=1to K do begin
m;(i) := argmax{a;;};

j
fork:=1to K do beginif(k # i)m(k) := k; end;

Aim(i) := 05
=T 0T,
end;

ALGORITHM 1

The sequence of permutations g © - - - o 711 o 71y defines
a sequence of reorderings that corresponds with the expec-
tation of the new ranking. The expectation will maximize
the likelihood if the documents in the database are pairwise
stochastically independent.
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4. PROBABILISTIC APPROACHES TO IR

Besides heuristically motivated retrieval metrics, several
probabilistic approaches to information retrieval were pro-
posed and investigated over the past years. The methods
range from binary independence retrieval models [19] over
language model-based approaches [20] up to methods based
on statistical machine translation [21]. The starting point of
most probabilistic approaches to IR is the a posteriori prob-
ability p(d|q) of a document d given a query q. The pos-
terior probability can be directly interpreted as RSV. In con-
trast to many heuristic retrieval models, RSVs of probabilistic
approaches are thus always normalized and even compara-
ble between different queries. Often, the posterior probabil-
ity p(dlq) is denoted by p(d, b € {rel, irr}|q), with the ran-
dom variable b indicating the relevance of d with respect to q.
However, since we consider noninteractive retrieval methods
only, b is not observable and therefore obsolete since it can-
not affect the retrieval process. The a posteriori probability
can be rewritten as

p(d) 'NP(qld) .
2eq p(d) - p(qld)

A document maximizing (34) is determined using Bayes’ de-
cision rule

p(diq) = (34)

q—r(q) = argfinax{p(qld) -p(d)}. (35)

This decision rule is known to be optimal with respect to the
expected number of decision errors if the required distribu-
tions are known [22]. However, as neither p(q|d) nor p(d)
are known in practical situations, it is necessary to choose
models for the respective distributions and estimate their pa-
rameters using suitable training data. Note that (35) can be
easily extended to a ranking by determining not only the doc-
ument maximizing p(d|q), but also by compiling a list that
contains all documents sorted in descending order with re-
spect to their posterior probability.

In the recent past, several probabilistic approaches to in-
formation retrieval were proposed and evaluated. In [21]
the authors describe a method based on statistical machine
translation. A query is considered as a sequence of keywords
extracted from an imaginary document that best meets the
user’s information need. Pairs of queries and documents are
considered as bilingual annotated texts, where the objective
of finding relevant documents is ascribed to a translation of a
query (source language) into a document (target language).
Experiments were carried out on various TREC tasks. Using
the IBM-1 translation model [23] as well as a simplified ver-
sion called IBM-0, the obtained retrieval effectiveness out-
performed the tf-idf metric.

The approach presented in [24] makes use of multistate
hidden Markov models (HMM) to interpolate document-
specific language models with a background language model.
The background language model that is estimated on the
whole document collection is used in order to smooth the
probabilities of unseen index terms in the document-specific

language models. Experiments performed on the TREC-7 ad
hoc retrieval task showed better results than tf-idf.

In [25], the authors investigate an advanced version of
the Markovian approach as proposed by [24]. Experiments
conducted on the TREC-7 and TREC-8 SDR tasks achieve a
retrieval effectiveness that is comparable with the Okapi met-
ric, but does not outperform the SMART-2 results.

Even though many probabilistic retrieval metrics are able
to outperform basic retrieval metrics as, for example, tf-idf,
they usually do not achieve the effectiveness of advanced
heuristic retrieval metrics such as SMART-2 or Okapi. In
particular, for SDR tasks, probabilistic metrics often turned
out to be less robust towards recognition errors than their
heuristic counterparts. To compensate for this, we propose a
new statistical approach to information retrieval that is based
on document similarities [26].

4.1. Probabilistic retrieval using document
representations

A fundamental difficulty in statistical approaches to infor-
mation retrieval is the fact that typically a rare index term
is well suited to filter out a document. On the other hand,
a reliable estimation of distribution parameters requires that
the underlying events, that is, index terms, are observed as
frequently as possible. Therefore, it is necessary to prop-
erly smooth the distributions. In our case, document-specific
term probabilities p(t|d) are smoothed with term probabil-
ities of documents that are similar to d. The similarity mea-
sure is based on document representations which in the sim-
plest case can be document-specific histograms of the index
terms.

The starting point of our approach is the joint probability
p(q,d) of a query q and a document d,

Iql )
pled) =T]p(q,dlgl™") (36)
i=1
]\q\
=[1r(q;d). (37)
j=1

Here, |q| denotes the number Qf index terms in q. The con-
ditional probabilities p(q;, dlq{_l) in (36) are assumed to be
independent of the predecessor terms q{fl. Document rep-

resentations are now introduced via a hidden variable r that
runs over a finite set R of document representations,

lql
p(gd) =[] > plg;dr) (38)

j=1reR
lql

=T1> pgjlr) - p(dir) - p(x) (39)
ji=1reR
]\ql |d| ‘

=[1X pgjlr) - [Tp(dilr,di?) - p(r)  (40)
j=1reR i=1
Iql |d|

=112 r(gjlr)

j=1reR

J1p(dlr) - px). (41)
i=1
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Here, two model assumptions have been made: first, the con-
ditional probabilities p(g|d, r) are assumed to be indepen-
dent of d (see (39)) and secondly, p(d;|r,di™") will not de-
pend on the predecessor terms di ™! (see (41)).

4.2. Variants of interpolation

It remains to specify models for the document representa-
tions r € R as well as the distributions p(glr), p(d|r), and
p(r). Since we want to distinguish between the event that
a query term ¢ is predicted by a representation r and the
event that the term to be predicted is part of a document,
p(qlr) and p(d|r) are modeled differently. In our approach,
we identify the set of document representations R with the
histograms over the index terms of the document collection

@,

ne(t) = n(t, d), ne(+) = [dl,
nt =S atd), n()= > d. (42
dey de%

Thus, we can define the interpolations p,(¢|r) and p4(t|r) as
models for p(qlr) and p(d|r),

n.(t) n(t)

Pt = =al 5 ey W
patlr) := (1 =) - E; B- % (44)

Since we do not make any assumptions about the a priori
relevance of a document representation, we set up a uniform
distribution for p(r). Note that (44) is an interpolation be-
tween the relative counts n.(t)/n.(-) and n(t)/n(-). Instead
of interpolating between the relative frequencies as in (44),
we can also interpolate between the absolute frequencies

1= B) - ne(t) + B n(1)
1=B) () +f-n()

Both interpolation variants will be discussed in the following
section.

muuw=g (45)

4.3. Experimental results

Experiments were performed on the TREC-7 and the TREC-
8 SDR task using both the manually generated transcriptions
and the automatically generated transcriptions. As before, all
speech recognition outputs were produced using the RWTH
LVCSR system for the TREC-7 corpus or taken from the Byb-
los “Rough "N Ready” and the Dragon LVCSR system for the
TREC-8 corpus.

Due to the small number of test queries for both retrieval
tasks, we made use of a leaving-one-out (L-1-O) approach
[27, page 220] in order to estimate the interpolation param-
eters « and f3. Additionally, we added results under unsuper-
vised conditions, that is, we optimized the smoothing coef-
ficients & and 8 on TREC-8 queries and corpus and tested
on the TREC-7 sets and vice versa. Finally, we carried out
a cheating experiment by adjusting the parameters « and f
to maximize the MAP on the complete set of test queries.

FIGURE 2: MAP as a function of the interpolation parameter « with
fixed B = 0.300 on the reference transcriptions of the TREC-7 SDR
task.

This yields an optimistically upper bound of the possible
retrieval effectiveness. All experiments conducted are based
on the document representations according to (42), that is,
each document is smoothed with all other documents in the
database.

In a first experiment, the interpolation parameter o was
estimated. Figure 2 shows the MAP as a function of the in-
terpolation parameter « with fixed 8 on the reference tran-
scriptions of the TREC-7 corpus. Using the L-1-0 estimation
scheme, the best value for a was found to be 0.742, which has
to be compared with a globally optimal value of 0.875, that
is, the cheating experiment without L-1-O. The interpolation
parameter 3 was adjusted in a similar way. Using the interpo-
lation scheme according to (44), the retrieval effectiveness on
both tasks is maximum for values of 3 that are very close to 1.
This effect is caused by singletons, that is, index terms that
occur once only in the whole document collection. Since the
magnitude of the ratio of both denominators in (44) is ap-
proximately

= = (46)

the optimal value for f should be found in the range of
1 — 1/D, assuming that singletons are the most important
features in order to filter out a relevant document. In fact,
using 8 = 1 —1/D exactly meets the optimal value of 0.99965
on the TREC-7 corpus and 0.99995 on the TREC-8 retrieval
task.

However, since the interpolation, according to (44), runs
the risk of becoming numerically unstable (especially for
very large document collections), we investigated an alter-
native smoothing scheme that interpolates between absolute
counts instead of relative counts (see (45)). Figure 3 depicts
the MAP as a function of the interpolation parameter f for
both interpolation methods on the reference transcriptions
of the TREC-7 SDR task. Since the interpolation scheme, ac-
cording to (45), proved to be numerically stable and achieved
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FIGURE 3: MAP as a function of the interpolation parameter f3 according to (44) (left plot) and (45) (right plot) with fixed « = 0.875 on the

reference transcriptions of the TREC-7 SDR task.

TABLE 6: Comparison of retrieval effectiveness measured in terms
of MAP on the TREC-7 SDR task for the SMART-2 metric and the
new probabilistic approach Prob. Interpolation was performed ac-
cording to (45).

TaBLE 7: Comparison of retrieval effectiveness measured in terms
of MAP on the TREC-8 SDR task for the SMART-2 metric and the
new probabilistic approach Prob. Interpolation was performed ac-
cording to (45).

TREC-7 Metric o B MAP[%] TREC-8 Metric o B MAP[%]
SMART-2 — — 46.6 SMART-2 — — 49.6
Text “cheating” 0.875 0.300 47.3 Text “cheating” 0.950 0.650 52.7
Prob L-1-O0 0.742  0.270 45.8 Prob L-1-O 0.947 0.646 51.3
unsupervised 0.950 0.650 42.2 unsupervised 0.875 0.300 49.9
SMART-2 — — 42.0 SMART-2 — — 43.1
Speech “cheating” 0.825 0.300 42.0 Speech “cheating” 0.875 0.300 47.3
(RWTH)  prob L-1-0 0.697 0.257 40.4 (Byblos)  prob L-1-0 0.801 0.287 444
unsupervised 0.875 0.300 41.6 unsupervised 0.825 0.300 47.2
SMART-2 — — 42.1
Speech “cheating” 0.875 0.300 45.6
slightly better results, it was used for all further experiments. (Dragon) prob L-1-0 0.875 0307 4.1
Table 6 shows the obtained retrieval effectiveness for the new unsupervised 0.825 0.300 45.2

probabilistic approach on the TREC-7 SDR task. Using L-1-
O, the retrieval performance of the new proposed method
lies within the magnitude of the SMART-2 metric, that is,
we obtained a MAP of 45.8% on manually transcribed data
which must be compared with 46.6% using the SMART-
2 retrieval metric. Using automatically generated transcrip-
tions, we achieved a MAP of 40.4% which is close to the
performance of the SMART-2 metric. A further performance
gain could be obtained under unsupervised conditions. Us-
ing the optimal parameter setting of the TREC-8 corpus for
the TREC-7 task achieved a MAP of 41.6%. Figure 4 shows
the recall-precision graphs for both SMART-2 and the new
probabilistic approach.

The same applies to the results obtained on the TREC-
8 SDR task (see Table 7). Here, the new probabilistic ap-
proach even outperformed the SMART-2 retrieval metric.
Thus, we obtained a MAP of 51.3% on the manually tran-

scribed data in comparison with 49.6% for the SMART-2
metric. This improvement over SMART-2 is also obtained
on recognized transcriptions even though the improvement
is smaller. Thus, we achieved a MAP of 44.4% on the auto-
matically generated transcriptions produced with the Byb-
los speech recognizer, which is an improvement of 3% rel-
ative compared to the SMART-2 metric, and 44.1% MAP
using the Dragon speech recognition outputs, which is an
improvement of 5% relative. Similar to the results obtained
on the TREC-7 corpus, the unsupervised experiments con-
ducted on the automatically generated transcriptions of the
TREC-8 task showed a further performance gain between 1%
and 2% absolute. Figure 5 shows the recall-precision graphs
for SMART-2 and the probabilistic approach.
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TaBLE 8: WER, TER, and IER measured with the Byblos speech recognizer on the TREC-8 corpus for varying preprocessing stages. As before,
the substitutions are counted twice for the accumulated error rates of the WER criterion.

TREC-8 TREC-8 + Stop + Stem + Stop + Stem, Queries only
Documents All  Relevant  Irrelevant All  Relevant  Irrelevant All  Relevant Irrelevant
Deletions 5.2 6.1 5.1 8.2 7.6 8.2 14.5 11.5 14.7
WER|%] Insert.ion.s 11.3 10.0 11.4 7.6 7.1 7.6 8.6 7.7 8.7
Substitutions 21.9 19.8 22.1 18.2 16.2 18.3 6.2 5.7 6.3
Error rate* 60.3 55.6 60.7 52.1 47.1 52.5 35.6 30.7 36.0
Deletions 22.3 19.4 22.6 24.2 21.3 24.4 14.2 13.3 14.3
TER[%] Insertions 29.8 27.2 30.1 24.7 22.5 24.8 20.6 14.5 21.1
Error rate 52.2 46.6 52.6 48.8 43.8 49.2 34.8 27.7 354
Deletions 16.2 14.9 16.3 17.3 15.4 17.5 10.5 8.8 10.6
IER[%] Insertions 18.9 17.0 19.1 17.4 15.9 17.5 11.8 9.2 12.0
Error rate 35.1 31.9 354 34.7 31.4 35.0 22.3 18.0 22.7

TaBLE 9: WER, TER, and IER measured with the Dragon speech recognizer on the TREC-8 corpus for varying preprocessing stages. As
before, the substitutions are counted twice for the accumulated error rates of the WER criterion.

TREC-8 TREC-8 + Stop + Stem + Stop + Stem, Queries only
Documents All  Relevant  Irrelevant All  Relevant  Irrelevant All  Relevant Irrelevant
Deletions 6.5 6.9 6.5 8.9 7.4 9.1 15.6 11.5 15.9
WER|[%] Insert.10n§ 12.7 11.2 12.9 8.0 7.5 8.0 9.4 8.3 9.5
Substitutions 21.0 18.5 21.2 17.7 15.6 17.9 6.2 5.3 6.2
Error rate* 61.3 55.0 61.8 52.3 46.2 52.8 37.3 30.3 37.9
Deletions 22.8 19.2 23.1 24.5 20.7 24.8 14.6 13.2 14.8
TER[%] Insertions 24.7 22.4 24.9 22.0 14.6 22.7 29.8 27.2 30.1
Error rate 53.2 46.6 53.8 49.2 43.0 49.7 36.7 27.8 37.4
Deletions 17.0 15.0 17.1 17.9 15.2 18.1 11.0 9.3 11.2
IER[%] Insertions 19.7 17.8 19.9 17.6 16.3 17.7 12.4 9.4 12.6
Error rate 36.7 32.7 37.0 35.5 31.5 35.8 23.4 18.7 23.8
1 1
0.9 0.9
0.8 0.8
5 g
.g 0.7 Z 0.7
g g
E 0.6 £ 0.6
2 0.5 T 05
= <
é 0.4 ;T 0.4
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FiGure 4: Interpolated recall-precision graphs for the SMART-2  Figure 5: Interpolated recall-precision graphs for the SMART-2
metric and the new probabilistic approach determined on both the metric and the new probabilistic approach determined on both the
manually transcribed documents (text) and the automatically gen- manually transcribed documents (text) and the automatically gen-
erated transcriptions (speech) of the TREC-7 SDR task. erated transcriptions (speech) of the TREC-8 SDR task.
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5. CONCLUSION

In this paper, we presented a detailed analysis on the ef-
fect of recognition errors on retrieval performance. Since
retrieval performance is only little affected by recognition er-
rors, we investigated two alternative error measures, namely,
the TER and the IER that turned out to be more suitable in
order to describe the quality of automatically generated tran-
scriptions for retrieval applications. Experiments carried out
on the TREC-7 and TREC-8 SDR task revealed a better cor-
relation between the obtained retrieval effectiveness and the
proposed error measures. Baseline results were produced us-
ing a new query expansion method.

In the second part of this paper, we presented a new prob-
abilistic approach to SDR based on interpolations between
document-specific term histograms and a global term his-
togram that is pooled over all documents. To this purpose,
the set of documents was mapped onto a set of document
representations. These document representations were iden-
tified with document-specific histograms and can be inter-
preted as a kind of nearest neighbor concept. Two smoothing
schemes were discussed and investigated. Experiments per-
formed on the TREC-7 and the TREC-8 SDR task showed
comparable or even better results for the new probabilistic
approach than an enhanced version of the SMART-2 retrieval
metric. In addition, the new probabilistic approach turned
out to be robust towards recognition errors.
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