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The amount of digital video being shot, captured, and stored is growing at a rate faster than ever before. The large amount
of stored video is not penetrable without efficient video indexing, retrieval, and browsing technology. Most prior work in the
field can be roughly categorized into two classes. One class is based on image processing techniques, often called content-based
image and video retrieval, in which video frames are indexed and searched for visual content. The other class is based on spoken
document retrieval, which relies on automatic speech recognition and text queries. Both approaches have major limitations. In
the first approach, semantic queries pose a great challenge, while the second, speech-based approach, does not support efficient
video browsing. This paper describes a system where speech is used for efficient searching and visual data for efficient browsing,
a combination that takes advantage of both approaches. A fully automatic indexing and retrieval system has been developed and
tested. Automated speech recognition and phonetic speech indexing support text-to-speech queries. New browsable views are
generated from the original video. A special synchronized browser allows instantaneous, context-preserving switching from one
view to another. The system was successfully used to produce searchable-browsable video proceedings for three local conferences.
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1. INTRODUCTION

Inspite of the wide access to information offered by the web,
multimedia is not ubiquitous today due to the complicated
task of searching and browsing the audio and video content.
The proliferation of powerful search engines that efficiently
search large text collections on the web has resulted in the
casual user feeling comfortable with the current search-and-
browse methods. However, when it comes to video and au-
dio, there is no universal consensus on how users should pose
a query, what kind of information should be presented in the
list of matches, and how to browse through numerous re-
trieved videos quickly and efficiently.

Information retrieval of unstructured data, such as text
documents (in contrast to structured data such as relational
databases), has been studied for more than three decades.
As a result, there is a broad consensus on document in-
dexing, query presentation, as well as the ranking meth-

ods of retrieved results. Appropriate extensions for hyper-
text and web pages exist and exploit the extra information
in anchor text, in the graph structure of the links, and so
on. The main reason that this has been so successful is that
text documents are built of words. Words are the basic ele-
ments used to construct a text document and are the most
natural way for a user to make a query. Hence it is logi-
cal to carry out all the steps of the document-indexing pro-
cess using word representation. Methods like tokenization,
stop-word removal, stemming, part-of-sentence tagging, and
term weighting have become standard techniques in infor-
mation retrieval (e.g., see [1]). In contrast, multimedia con-
tent, such as digital audio and video, is represented by tem-
poral signals, composed of pixels and audio samples. Seman-
tic information that could be expressed in few words is im-
plicitly expressed by millions of color values. Yet, in most
cases, the user would still like to make a query in words,
seeking for highly semantic information. This is known
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as the semantic gap of multimedia information retrieval
[2].

Extracting semantic information from image, audio, and
video is a very complicated task. Even manual cataloging and
annotation of multimedia is difficult as it is important. It
requires considerable human labor but is limited to what is
considered relevant by the annotator at indexing time, rather
than the specific user needs at query time [3, 4]. Manual
annotation of a single image, to be useful, must be done
at three different levels: pre-iconography, iconography, and
iconology, using special lexicons [5]. Still, this provides only
a partial solution of the real needs of image and video re-
trieval. Despite limitations and cost, manual annotation is
still considered one of the best available ways to index videos
and images. It is used in commercial image and video collec-
tions (e.g., the Virage video logger [6]). This is significantly
in contrast to text retrieval, where each of the four infor-
mation retrieval phases: feature extraction, indexing, similar-
ity matching, and ranking, are well defined and successfully
automated. Invariably, each component of the multimedia
data, image, text, video, and audio supports a different fea-
ture space and retrieval method specific to the media type.
Therefore, information fusion is a critical aspect of effective
multimedia retrieval.

Search in multimedia data requires content-based re-
trieval, where the data content is examined for the presence
or absence of an object, event, related spoken words, and
so on. Multimedia retrieval has been classified into content-
based and semantic approaches [7]. Content-based tech-
niques rely on an example or a physical low-level descrip-
tion of the information sought. For example, “a red object
moving from the upper left to the lower right corner over
a white background,” would be expressed through sample
images/videos or by using a special graphical user interface
that include basic art tools [8, 9, 10, 11, 12]. Semantic ap-
proaches rely on the actual semantic content of the media
[13, 14], “downhill skiing,” for instance. The latter is more
desirable from the user’s point of view, but it is still un-
certain how a machine could translate the query between
these two very different forms or retrieve them in a similar
manner.

2. THE COMBINED APPROACH: SEARCH THE SPEECH,
BROWSE THE VIDEO

Understanding the similarities and differences between text
search and video search would help design a multimedia
search strategy that would satisfy the user’s informational
needs. With text search, a user typically poses a short text
query (2–3 words) and expects to quickly retrieve one, or at
most, a few pages of relevant results. Then the user briefly
looks at the result set and either browses a few of the docu-
ments to find the one of interest or refines the query and re-
peats this process. There are three major tasks that take place
during this process: query formulation, browsing the result
set, and browsing individual documents within the result set.
Each of these tasks is distinctly more complex for multime-
dia in comparison with text. Query formulation might in-

clude text and/or images, audio, video, and graphical inputs
[14, 15]. While ranked results of text searches are presented
by pragmatic short lists, there is a considerable variation in
the information presented in a multimedia result list. Finally,
after selecting an individual video to browse, the process of
browsing that video is significantly more complex than visu-
ally scanning a text document.

The design approach for each major task was chosen in
order to minimize the time required to satisfy the user’s in-
formational needs. Keyword search was selected for query
formulation at a semantic level. Ranked results are presented
using textual metadata that includes the video title, time off-
set, the matching spoken keywords, and the relevance score.
A new media browser was designed to allow rapid browsing
of relevant video segments.

Searching the speech transcripts using free text queries
proves almost as efficient as searching text [16]. How-
ever, browsing through video is more time consuming than
browsing of text, as the user has to play and listen to each of
the retrieved videos one by one. With text, a quick glance
at the results page is often sufficient to filter the informa-
tion. With video, it is more efficient to browse the visual
part. For example, consider a video collection of talks and
presentations. A few storyboard pages, where each comprises
ten or more key frames, can cover one hour of presentation,
mainly showing the slides presented during the talk. To ad-
dress the problem of browsing an individual video, a synchro-
nized viewer is introduced. It begins playback at the time off-
set corresponding to the match and supports synchronous
switching back and forth between various browsing modes,
referred to as views.

The guiding theme of this work is “search the speech,
browse the video.” Video and audio are two parallel media
streams that are tightly coupled by a common time line. We
take advantage of the two parallel streams in a complimen-
tary manner: we use the audio stream for searching and the
video stream for quick visual browsing. Such functionality
fulfills the user’s informational needs expediently. This pa-
per describes the system architecture, search algorithms, and
synchronized viewer interface that supports the “Search the
speech, browse the video” principle. The rest of this paper
is organized as follows: Section 3 summarizes related work
on multimedia information retrieval. Section 4 describes the
overall system architecture. Sections 5 and 6 provide detailed
description of the synchronized browsing and of the speech
retrieval parts of the system, respectively. Section 7 presents
a summary and discussion of this work in a broader context
of multimedia retrieval.

3. RELATEDWORK

Many researchers have been working on video indexing and
retrieval techniques, using both audio and visual content.
This has evolved as a multidisciplinary effort, which includes
a wide range of research topics from computer vision, pat-
tern recognition, video analysis and summarization, speech
recognition, natural language understanding, and informa-
tion retrieval (see, e.g., [7, 17, 18, 19, 20, 21, 22, 23]).
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The early approach to video retrieval was to apply exist-
ing image retrieval techniques to key frames extracted from
the video. The basic approach posted an image as a query,
and retrieved similar images. This approach has two signifi-
cant limitations. First, in most situations, the user does not
have the image handy to formulate the query. Hence, it is
more appropriate for browsing than for searching. Second,
the approach does not take advantage of the temporal infor-
mation in a video. Most of the work in content-based image
retrieval (CBIR) has been done in the so-called feature space,
composed of color histograms, color layout, color blobs, tex-
ture, and edge-based descriptors [15, 17, 18, 24, 25, 26].
While most of these methods use only global features, repre-
senting the entire frame, a few methods support also the seg-
mentation and search of objects and faces within the frame
[7, 10, 11, 26]. Even then, these methods still lack the abil-
ity to identify segments as objects and to associate them with
any higher semantic meaning, such as object type, position
in the scene, action, events, and so on.

Semantic-level indexing was first demonstrated in spe-
cific video domains. Examples include statistical methods
trained for domain-specific detection and classification of
events. See [27] on classifying tennis strokes to six categories,
[28] on event detection in soccer, [22, 29] on human motion
classification, like walk and hand gestures, and [12] on mo-
tion trajectories. Other works use object recognition for in-
dexing, such as Qian et al. [30] who uses multiple modalities
for indexing and retrieval.

Naphade et al. [31] introduced multijects as a generic
representation that binds high-level concepts with low-level
features using a Gaussian mixture model. Different mul-
tijects are used in a probabilistic framework that captures
correlations between them. In the reported work, no object
segmentation was used. Lacking segmentation, the low-level
features are obtained over the entire image. The features rep-
resent the whole visual scene and make it difficult to distin-
guish between different objects or between objects and the
background.

In [32], the authors review spatial segmentation of video
objects. These regions can be used for object indexing. Hav-
ing a user in the loop can also be used for labeling these
objects. For example, such semantic information can be in-
ferred from the user’s feedback while searching and browsing
images for a specific topic [33]. Semantic information is also
extracted in [9] using motion analysis and object segmen-
tation. However, nearly any mapping from low-level feature
space into words and concepts is based on an implicit con-
tinuity assumption: that each concept forms nice clusters of
images in, say, a color-texture space. This generic approach
has been successfully demonstrated on a few classes of image
and video, such as airplanes, red roses, tigers, and explosions.
Yet, this approach has to be proven in themuch wider context
of semantic concepts.

Searching the audio transcript of the video using the fa-
miliarmetaphor of free text search has been studied in several
projects [19, 23, 34, 35]. In this case, automatic speech recog-
nition (ASR) is applied to the audio track, and a time-aligned

transcript is generated.1 The indexed transcript provides di-
rect access to semantic information in the video. Phonetic
speech retrieval is also used for speech retrieval, usually in
addition to the ASR. A phoneme is defined as any of the ab-
stract units of the phonetic system of a language that corre-
spond to a set of similar speech sounds which are perceived
to be a single, distinctive sound in the language. Whereas
phonemes are defined by human perception of sounds, the
subword units used by the ASR systems are generally data
derived and are commonly referred to as phones.

The Informedia research project [23, 34, 36] has cre-
ated a terabyte digital library where automatically derived
descriptors for video are used to index, segment, and access
the library contents. Informedia combines speech recogni-
tion, image processing, and natural language-understanding
techniques. Combined word and phonetic retrieval was also
explored, where an inverted index for a phonetic transcript
comprised of phonetic substrings of three to six phones in
length was used. During retrieval, the word document index
and phonetic transcription index were searched in parallel
and the results merged.

Cambridge University, in collaboration with Olivetti Re-
search Laboratory (ORL), has developed the Medusa net-
worked multimedia system. It is in use on a high-speed ATM
network for a video mail application based on word-spotting
using a 35-word indexing vocabulary chosen a priori for the
specific domain. They developed retrieval methods based on
spotting keywords in the audio soundtrack by integrating
speech recognition methods and information retrieval tech-
nology to yield a practical audio and video retrieval system
[37].

The National Institute of Standards and Technology
(NIST) conducts and sponsors the annual Text REtrieval
Conference (TREC). This framework promotes information
retrieval research for realistic applications by providing large
training and test collections, uniform scoring procedures,
and thorough evaluation of submitted results [38]. The spo-
ken document retrieval (SDR) track, which was active from
1997 until 2000, explored content-based retrieval of excerpts
from archives of speech recordings using a combination of
ASR and information retrieval technologies [16]. The SDR
track was followed by the current video track, started in 2001,
with emphasis on CBIR [14]. In 2002, the second video track
promoted a new approach to video search. Ten specific con-
cept detectors were applied to the videos, including detection
of faces, people, indoor/outdoor, text within image, and so
on. Their results were combined to retrieve high-level seman-
tic topics. Each of those detectors was the result of dedicated
efforts in the domain of computer vision research.

Video browsing seems to have received less attention than
video retrieval. However, the browsing efficiency problem
arises whenever a system is built over a large collection of
videos. The Informedia project offers three ways to view
search results on video: poster frames, filmstrips, and skims

1In cases where closed captions are available, they are often being used
instead of or in addition to the ASR.



212 EURASIP Journal on Applied Signal Processing

Combined
speech index

Moving
storyboard
(slide show +

audio)

Fast video
playback

Storyboard

Shot
boundary
detection

Audio TSM

ASR
word

indexing

ASR
phonetic
indexing

Audio

Vi
de
o

Video
access

MPEG-1

Quicktime

AVI

H.263, . . .

Figure 1: CueVideo indexing architecture.

(video summaries). The poster frame view presents search
results in a poster frame format with each frame represent-
ing a video paragraph. The filmstrip view reduces the need
to view each video paragraph in its entirety by providing sto-
ryboard for quick viewing [34]. The most relevant subsec-
tions of the video paragraph are displayed as key scenes, and
key words are clearly marked. The Collaborative and Multi-
media Group at Microsoft Research made considerable work
in multimedia browsing, studying both the technical aspects
and the user behavior [39, 40, 41]. This includes video sum-
marization, audio speedup, collaborative annotation, and the
usage patterns of such technologies.

Chang et al. [9] developed the WebClip system for the
search and browse of video for education and tested it in sev-
eral K-12 schools. Their main focus was visual indexing and
retrieval. The system includes most of the various compo-
nents described above and includes content-based, seman-
tic image retrieval, object segmentation, motion trajectories,
textual annotation, and advanced browsing capabilities such
as a client video editor. Indeed, they report on the difficulties
of automatically extracting semantic knowledge from im-
ages, and state, with regard to content-based indexing, that
videos have an advantage over images. The reported client-
server implementation requires high communication band-
width over a local network.

4. SYSTEMARCHITECTURE

A prototype system to support the “search the speech, browse
the video” paradigm was developed over five years in the
CueVideo project at the IBM Almaden Research Center. The
architecture consists of two parts: an off-line indexing phase,
and an on-line retrieval system that supports real-time search
and browse. The indexing phase, shown in Figure 1, begins
with demultiplexing the original video into video and audio
streams. The video component is directed to a shot boundary

detection module [42], which detects scene changes, and for
each shot generates a representative key-frame image. The
audio component is directed to three modules. The first
speeds up the audio and generates multiple audio tracks at
preselected speeds [40, 43]. The audio time scale modifi-
cation (TSM) algorithm [44] preserves the original speech
pitch and intonation. The second module processes speech
and generates a word index. It is based on ASR, followed by
word tagging, stemming, and indexing. The third module
generates an ASR-based phonetic index. As a result, several
searchable speech indexes are created, including an inverted
word index, a phonetic index, and a phrase glossary index.
In parallel, several browsable views are generated, including
a storyboard, slideshows with audio at different speedup ra-
tios, animation, and a nonlinear fast playback [42].

The CueVideo architecture for real-time client-server re-
trieval system is shown in Figure 2. The backend is composed
of three servers: web, media streaming, and speech retrieval.
In the scheme of Figure 2, the speech retrieval server is a part
of the application server. Implementation of the speech re-
trieval server provides a TCP interface and an API interface,
allowing two-tier or three-tier web applications to be im-
plemented [45]. A prototype system was built and deployed
on the corporate intranet, using three-tier configuration in
which the speech retrieval server runs on one computer and
can simultaneously serve multiple web servers that run on
different machines. The speech retrieval server can be dis-
tributed over a cluster of computers to support a high volume
of video data and a large number of simultaneous queries.
The media streaming server is independent of the web server
and can be hosted on the same computer or on a separate
one.

The client user interface runs on a standard web browser
and can work with different media streaming plug-ins. It
supports free text queries. The queries may contain any key-
words, in-vocabulary (IV) and out-of-vocabulary (OOV)
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Figure 2: CueVideo media retrieval and browsing architecture, im-
plemented in a standard Internet server-client environment.

words, phrases, pronouns, and acronyms to search the speech
index of the video collection. The query is submitted as an
HTTP request to the web server. A CGI program is invoked
and the request is processed, resulting in a speech query be-
ing submitted to the speech retrieval server, which performs
the speech search and returns a ranked list of results. The re-
sults are rendered in two forms. The first is a text table of the
matches. Eachmatch is listed with the video name, the begin-
and end-times of the matched segment and corresponding
words found in the speech. The second rendering form is the
video browser with multiple synchronized views.

5. VIDEO BROWSING USINGMULTIPLE
SYNCHRONIZED VIEWS

Browsing video documents, unlike browsing text documents,
requires an additional level of point and browse within the
document. Loading the entire video document to the client
is impractical and will not help the user find relevant points
within the video. However, most standard streaming video
players can start video playback at any given time offset.
When browsing search results, the video starts to play at the
offset that corresponds to the first match. The user might
want to view this segment, browse other parts of the same
video, or skip to the next match, either within the same video
or in a different video.

Streaming media players provide a time bar, which can
be used to seek any point in the video. However, this bar
does not provide any information about the video content.
Thus browsing becomes a tedious and inefficient sampling of
different points in the video. A browser that supports multi-
ple, synchronized views was designed to address this prob-
lem. The content of the video can be presented in different
visual forms, such as

(i) storyboard: a table of thumbnails of key frames pre-
sented in chronological order and labeled with the
SMPTE shot times;

(ii) moving storyboard (MSB): a slide show composed
of representative key frames, fully synchronized with
the original audio track. Each key frame is shown
for the entire duration of the associated shot. It
is extremely useful for browsing videos of pre-
sentations and talks over low bit-rate connections,
where static key frames capture the speaker’s slides
at a much higher quality than that of a streaming
video;

(iii) fast/slow moving storyboard (fast MSB): a slide show
with fast audio. The audio is sped up using pitch-
preserving audio speedup algorithm [44]. Similarly, a
slow MSB is also generated;

(iv) animation: a very quick slide show without audio,
where each of the key frames is shown for a fixed short
period (e.g., 0.6 seconds). This is a very fast, nonlinear
time compression of the video, giving the same dura-
tion to long and short shots;

(v) accelerated fast playback: very fast video playback with-
out audio. The speedup ratio depends on the video
content. At the beginning of a shot, the speedup ratio
is 2.0, and after 0.5 seconds, it starts to gradually accel-
erate to twenty times faster or more. It resets back to
2.0 at the beginning of the next shot. This ensures that
short shots are not missed. The ramp-up period gives
the user enough time to fixate on some of the shot con-
tent, after which the user is able to follow the very fast
playback of the rest of the shot, which is perceived in
very fast motion.

These different representations are called views. Some
views, such as storyboard and animation, do not have au-
dio. Visual-only views are generally much faster to browse.
However, in some cases, the information is mainly found in
speech and audio. In such cases, a view with audio must be
used, or text from speech can be added to visual views. Views
with audio speedup allow viewing relevant video and audio
segments in a shorter time. A user study on comprehension
of sped-up audio [43] found that (untrained) users prefer to
listen to an audio 10–20% faster than at the original speed.
On average, users feel comfortable capturing content at 50%
faster playback and start to miss content when played back
is faster than 70%. These rates depend on the video con-
tent, vary between individuals, and can be dramatically in-
creased by practice. It is interesting to note that in a com-
parison between the comprehension of full video, slide show,
and audio only, some users show a significant advantage to
full video while others show a significant advantage to au-
dio only. That is, the visual component does not always help
in understanding the speech. This is another reason to of-
fer the end-user flexibility in selecting the view best suited
for the type of video content. Verbal feedback received from
the users of this system [46] indicates that the most popular
views are storyboard for rapid browsing and fast MSB with
audio speedup. Other user studies by Omoigui et al. and Li et
al. [40, 41] report quantitative evaluation of video browsing
and usage patterns of audio speedup and compare alternative
implementations.
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Figure 3: Video browser with multiple synchronized views, controlled by the extra buttons below the player. The text query and the result-
matching words, video name, offset and score are displayed at the top.

The user is able to choose which view is most relevant
to the task. Moreover, the user is able to switch from any
view to any other view at any point in time while brows-
ing. The new view starts to play from the point that cor-
responds to where the user left the previous view. This
provides context continuity in browsing, regardless of the
switch between views. This concept is referred to as brows-
ing with multiple synchronized views, or synchronized mul-
tiview playback. This becomes extremely important for com-
plex information-seeking tasks in long video clips where a
combination of different browse modes may be used to filter
and find the desired information rapidly. It allows, for exam-
ple, quick switching from visual browsing, like animation, to
a slide show with fast audio or to full video.

Figure 3 shows an example of a query result as it
is browsed in the synchronized multiviews browser. The
browser page consists of an embedded RealMedia player, and
additional buttons to playback each of the browser views: sto-
ryboard, animation, different MSBs and full video. In addi-
tion, the browser page contains “Next Result” and “Previous
Result” buttons to allow quick navigation thru search results
to the next relevant match whether it be within the same
video clip or in a different one. The user can easily switch
back and forth between the different browse modes, start-
ing the playback in a new browse mode from the point in
time where a previous browse mode was left off. The “Mail
Current” button invokes a mailer window with a new note

containing a link to the currently playing video at the current
time offset. This is immense, for example, in video applica-
tions for remote education. A student can refer in his new
mail to a certain point in a lecture and ask questions about it.

There are several engineering challenges in implementing
a synchronized browser [45]. The main difficulty is caused
by the fact that the application server has no direct com-
munication with the streaming media server. All commu-
nications must be performed through the client (Figure 2).
A standard multimedia streaming player plug-in establishes
two connections via communication ports with its media
streaming server. The first is a two-way TCP connection to
send commands from the player to the server such as Play,
Pause, Stop, and so on. This channel also supports authenti-
cation and logging functionality on the server. The second
connection is a one-way downstream data channel estab-
lished from the streaming media server to the player plug-
in to stream the media. In order to switch from one view to
another in a synchronizedmanner, the browser must first de-
termine the current point in the current view and compute
the corresponding point in the new view. Then it switches
to the new view, seeks the new point, and begins to play.
This computation of the corresponding point requires video-
specific information about the current view and the new
view. In order to prevent extra delays in switching between
views and matches, all relevant information and switching
logic is coded in JavaScript and embedded into the DHTML
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browser page. This includes the query results and the timing
information that is required to allow synchronized switching
between views. Hence switching between views is performed
between the client and the streaming media server without
issuing any additional HTTP requests to the web server.More
details can be found in [45].

6. SPEECH INDEXING AND RETRIEVAL

The speech retrieval system includes a word-based index, a
phrase index, and a phonetic index. A search is performed
in all indexes relevant to the query and results are merged.
For example, an OOV word is only searched in the phonetic
index, while an IV word can be searched in all three indexes.

6.1. Word-based indexing of an ASR text

The indexing is performed in several steps. First, a speech
recognition system is used to transcribe the audio and to
generate a continuous stream of timed words. The IBM real-
time engine is used with the broadcast news vocabulary of
60,000 words [47]. The word error rate for a large vocabu-
lary speech-recognition task on prepared speech (as opposed
to spontaneous speech) from anchors in a studio is reported
to be around 19%. In general, for a wide variety of real-
world speech data that includes combinations of speech with
background noise, degraded acoustics, and nonnative speak-
ers in a real-time speech-recognition system, error rates can
vary between 35% and 65% [34, 48, 49, 50]. The rest of the
ASR-based speech indexing process includes stemming, stop-
words removal, morphing, and POS tagging (Formore infor-
mation about these standard techniques, see, e.g., [1]).

The retrieval system first loads the inverted index and the
precomputed weights of each of the nonstop words. Given
a query q, a single-pass approach [51] is used to compute
the relevancy score for each document. The relevancy score
S(d, q) is the score of document d with respect to query q and
is given by the Okapi formula

S(d, q) =
∑ (

Cq
(
qk
)∗ Cd

(
qk
)∗ idf

(
qk
))

a1 +
(
a2 ∗

(
ld/lbar

))
+ Cd

(
qk
) , (1)

where k is the summation index over the query terms, qk
is the kth term in the query, and Cq(qk) and Cd(qk) are the
counts of the kth term in the query (usually one) and in the
document, respectively. The document length and the aver-
age document length are denoted by ld and lbar, respectively.
The Okapi constants are set to a1 = 0.5 and a2 = 1.5. The
inverse document frequency idf(qk) for the query term qk is
computed by

idf
(
qk
) = log

((
N − n

(
qk
)
+ 0.5

)(
n
(
qk
)
+ 0.5

) )
, (2)

where N is the total number of documents and n(qk) is the
number of documents that contain the term qk.

Each word in the query string is tokenized, tagged, mor-
phed, and then scored using the Okapi formula above. The
scoring function takes into account the number of times each

query term occurs in the document Cd(qk), normalized with
respect to the length of the document ld. This normalization
removes bias that generally favors longer documents since
longer documents are more likely to have a larger number of
instances of a particular word. The idf(qk) term favors rare
words over common words. Those rare words are more dis-
criminative during the search.

We refer to this retrieval method as the baseline system.
The baseline system can be extended in several ways, one of
which uses query expansion and the other uses phonetic re-
trieval.

6.1.1 Query expansion

Query expansion is the process of adding words and terms
to a query in order to extend the scope of the search to ob-
tain a better match between the query and document repre-
sentations. Speech recognition transcripts include insertion,
deletion, and substitution errors. We evaluated three differ-
ent query expansion methods intended to offset the dom-
inant deletion error [50]. In the first method, we cluster
fixed-size unit segments from a given speech transcript. Then
segment cluster labels are generated to extract potentially
important multiword concepts and names that may con-
vey the underlying topic structure in the transcript. Where
single-word labels are not meaningful out of context (e.g.,
large, system, index, finger, etc.), multiword noun phrases
often convey the underlying information (e.g., system archi-
tecture, index finger, etc.). We use these multiword cluster
labels to expand the original query [52, 53]. For the second
method, we use the multiple recognition hypothesis gener-
ated by the speech recognizer to enhance the query with ad-
ditional query terms. The third method uses a thesaurus.
This technique is well known and has yieldedmixed results in
the past. Table 1 shows an example of an expanded query us-
ing each of the methods described above for the query audio
selector panel. We evaluate retrieval using our query expan-
sion methods against the baseline retrieval system. The test
data used was a twelve-hour corpus of corporate communi-
cations/distance learning data consisting of ∼300 segments.
Approximately fifty test queries were used to calculate pre-
cision and recall. The relevant segments per each query (or
ground truth) were manually computed by observing all the
videos.

Table 2 lists the average recall within a single video, the
average precision for each method across the video collec-
tion, and the average precision within a single video. To sum-
marize, the cluster-labels query expansion resulted in mod-
est improvements of 3% in recall and 5% in precision for
search within a single video. However, none of the methods
we experimented yielded any significant improvement for re-
trieval across the video collection.

6.2. Phonetic speech retrieval

Phonetic speech retrieval addresses retrieval of OOV words,
acronyms, phrases, and expressions, as well as overcoming
some of the speech recognition errors for IV words. Sev-
eral other researchers have explored the use of subword
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Table 1: Sample expanded queries for query “audio selector panel.”

Thesaurus Cluster labels N-Best

audio, sound selector, audio selector panel, audio adios,

switch, panel audience elector panel, panel tamils pavel paddle petals,

audio accessory unit, kennel kemp

pilots call panel

Table 2: Query results using four query expansion methods compared to baseline system.

Spoken document retrieval Recall Avg. precision Avg. precision

system—query expansion method across video within single

collection video

Baseline System (no query expansion) 0.74 0.93 0.7

Thesaurus 0.72 0.93 0.7

Cluster Labels 0.77 0.93 0.75

N-Best 0.65 0.93 0.63

Cluster Labeling and N-best 0.71 0.8 0.66

representations based on phonemes as index terms with
varying degrees of success [19, 54, 55, 56]. The accuracy of
phone recognition is limited, particularly in the case of short
words [54, 55]. However, for the purpose of retrieval of OOV
words and in instances where the confidence level associated
with the recognized words is low, there is considerable ben-
efit in combining phonetic information with word-level in-
formation. The use of phonetic retrieval also makes “sound-
like” retrieval applications possible.

During indexing, a phonetic transcription of the input
audio is generated based on the ASR timed speech transcript
[35]. The equivalent phonetic sequences are automatically
generated using the US English phone set. We refer to this as
phonetic transcript since it is convenient to be considered as
a string of phonetic characters, taken from an alphabet of 51
phones, namely, the standard American English phonetic al-
phabet. The phonetic transcript is a compact representation
of the sounds of spoken words.

During retrieval, the text query is first converted to a
string of phones (see, e.g., Lawrence’s metaphones algorithm
[57], not to be confused with our notion of metaphones).
Then sound-like matches are retrieved in the phonetic space.
Hence retrieval is based on string-matching techniques for
partial string matching in the presence of high phonetic er-
ror rate. This introduces a known trade-off between accuracy
and efficiency. Two main components were developed to ad-
dress this trade-off: an efficient indexing of erroneous strings
and a sound-like phonetic string-matching algorithm.

6.2.1 Modeling sound-like similarity of phones:
the confusionmatrix

For a given phonetic alphabet, we define the phone confu-
sion matrix to model the probability of a phone to be mistak-
enly recognized by a phone recognition system as a different
phone. For the US English phone set of 51 phones, we de-
fine the confusion matrix C. Each element in the matrix Cij

represents the probability of missrecognizing phone qj as
phone qi, that is, Cij = P(qi|qj). Additional rows and
columns are used to model insertion, deletion, and pauses
errors. Higher-order statistics of confusion can be also used
such as triphone confusion probabilities.

6.2.2 Usingmetaphones for indexing

The phonetic transcript is indexed by using phone triplets
as keys (denoted as three phones). Note that without spe-
cial care, a single-confused phone in the phonetic transcript
would prevent the system from finding any of the three keys
that contain it. Due to the high phonetic error rate, system
recall would be affected severely. Based on the content of the
confusion matrix, seven groups of phones were identified,
denoted as metaphone groups. A metaphone group consists
of phones that are more likely to be confused with each other.
Each group contains between two and ten similar phones, as
shown in Table 3. For example, the phones B, BD, DD, and
GD form one metaphone group. At indexing time, each key
that contains one or more phones frommetaphone groups is
indexed using its metaphone representation, where the orig-
inal phones are replaced with their metaphones. All records
located by a given key are stored in a linked list, pointed from
a table where each entry of the table corresponds to a three-
phone key. This indexing method is rather efficient.

6.2.3 Measuring sound-like similarity: the Bayesian
phonetic edit distance

Given a query term q = q1 · · · qn and an observed phone
sequence in the transcript o = o1 · · · om, the edit distance is
used to define themetric of sound-like similarity between the
two phonetic strings. First, Bayes rule is used to compute the
probability of an observed phone oi origin from a (possibly
confused) phone qi,

P
(
qi|oj

) = P
(
qi
)
P
(
oj|qi

)
/P
(
oj
)
, (3)
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Table 3: Metaphone groups.

Metaphone Metaphone group

Atl AA, AE, AH, AO, AW, AX, AXR, AY, EH, ER

Ctl CH, JH, SH

Etl EI, IH, IX, IY

Gtl B, BD, DD, GD

Th TH, F

N N, NG

G G, D

where P(oj|qi) = Coj ,qi , P(oj) is derived from statistics over
a large corpus of data and P(q) drops once we normalize the
score. When comparing two sequences, a one-to-one pho-
netic correspondence between two phonetic strings is un-
likely to be found. Deletions and insertions are common er-
rors in phonetic transcripts. Therefore, the string similarity is
modeled using edit distance, more specifically the end-space
free, weighted edit distance (for string matching overview,
see [58]). An edit is a sequence of phone operations that
consist of substitution, insertion, and deletion. The cost of
editing o and converting it to q is the sum of the costs, or
weights, of the required phone operations. Those are defined
by the log probabilities as modeled by the confusion matrix.
Hence, this cost resembles the likelihood of the editing se-
quence. It is the joint likelihood of its editing steps, assuming
those are independent random variables.2 The edit distance
is the maximum likelihood among all possible edit sequences
that convert o to q. It can be efficiently computed using dy-
namic programming [58]. Let E[i][ j] denote the cost of edit-
ing the prefix q1 · · · qi to the prefix of the observed sequence
o1 · · · oj . The values of E[i][ j] can be computed using dy-
namic programming with the updating formula

E[i][ j] = min
{
E[i− 1, j − 1] + log

(
Cojqi

)
,

E[i, j − 1] + log
(
del
(
oj
))
,

E[i− 1, j] + log
(
ins
(
qi
))}

.

(4)

Special attention must be paid to end-space free and partial
substring-matching criteria. Note that at this point the re-
sult is not a metric anymore, because even the substitution
of a phone with itself is scored with a nonzero log likelihood.
To derive the final score of the match, the result is normal-
ized by q’s self edit distance. Hence the part of the equation
that depends on the query P(q) is eliminated from the score.
This represents the log-likelihood ratio between the best edit
found and the hypothetical optimal match of the query to
itself. Hence the normalized score of an exact match is 1.0,
and any other match would score between 0.0 and 1.0, with
a higher score for a better match.

2In the current work, we study other models, like triphones and MRF,
which also capture the dependencies between phones.

6.2.4 Phonetic retrieval of a text query

The phonetic word spotting consists of two stages. Given a
query word, the phonetic representation of which is gener-
ated. Multiple triphone keys, each composed of three con-
secutive query phones, are extracted. The lists of (document,
offset) candidate records found in the phonetic index for
each of the keys are merged into a single list of candidates.
Then, each candidate is compared with the phonetic query
and is ranked, based on its Bayesian phonetic edit distance.

The final step is to combine the text retrieval candi-
dates with the phonetic candidates. We could suggest dif-
ferent ways of combing these two ranked lists using various
information fusion techniques. A very simple method was
implemented, which gives higher preference to word-based
matches over phonetic matches. This eliminates the possi-
bility of phonetic retrieval to add a lot of false positives to
the combined list, which would affect the retrieval perfor-
mance. This conservative approach guarantees that speech-
recognition word-based retrieval performance for IV words
would not be hurt, a concern often mentioned in this con-
text. As found in the experiments, the approach helps im-
prove overall IV results. For OOV words, the phonetic can-
didates are the only candidates. As such, they are naturally
listed by their phonetic scores.

The ranked list of candidates is truncated at a certain
score threshold. While this is not required for a word-based
index, it is inevitable for phonetic retrieval. The list of candi-
dates includemany false positives which happen to have three
or more consecutive phones in common with the query.
An adaptive threshold is computed from a histogram of the
scores trying to maximize recall without adding too many
false positives. This mainly depends on the top scores which
indicates whether an exact match or nearly exact match was
found. A fixedminimal threshold is applied to all other cases.

6.3. Experimental evaluation of speech retrieval

Experimental results for SDR (i.e., not word spotting) were
reported in detail over the last several years in the SDR track
of the TREC series of conferences [16, 48, 59, 60, 61]. A com-
mon theme from all previous SDR experimental work is that
multiword queries were used in the test query set, whole-story
segments were retrieved, and relevance judgments were made
by humans in order to identify the relevant documents for
each query. The task and evaluation criteria of this work
are different from those mentioned above. The query set
consists of single-word queries and the retrieved set should
contain all occurrences of a query word in all video docu-
ments. The evaluation measure is based on the word’s time-
of-occurrence, using an objective ground truth which con-
sists of a complete manual, time-aligned, accurate transcrip-
tion of the speech. A match is considered correct if and only
if the exact word was said within a two-second window of
the retrieved time-of-occurrence. This time window toler-
ates imprecise word-times in the ground truth, which only
provides times at sentence-level granularity. An inexact word
match or a larger time difference results in a false positive
and/or a miss.
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The test collection is based on 100 hours (1.04 million
spoken words) of HUB4 data [62] where ASR word error rate
is about 35%, of which 3% is due to OOV words. This data,
accompanied with ground truth timed manual transcript, is
traditionally used to assess speech recognition quality. It was
found most suitable for the WS task, more than standard
SDR data. The speech contains 24,018 different words, of
which 17,955 are IV words and 6,063 are OOV words (after
stop-words removal). Although 25% of the different words
are OOV, they only occur about 3% of the time. Still, these
words are of special significance for speech retrieval tasks as
they are very distinctive and include many names of peo-
ple, places, products, companies, and so on. The exhaustive
queries test set consists of all the words that are listed in the
ground truth transcription, namely, 24,018 different queries.
These queries are divided into IV/OOV groups and are fur-
ther subdivided by the number of phones they contain. The
number of phones is an important factor (see, e.g., [63]). In
general, the longer the phonetic query is, the more accurate
is the result. This is evident in Figure 5.

Each of the queries was processed independently. The
results were combined using the average precision at recall
points method. The graphs in Figure 4 present the preci-
sion as function of recall for IV words, nine and twelve
phones long. The recall is normalized with the number of
ground truth word occurrences, such that a recall of 0.6
means the recall of 60% of all occurrences of the query words.
This figure shows an improvement of 5–12% in the preci-
sion of combined phonetic retrieval (solid line) compared to
speech recognition alone (dashed line). The largest improve-
ment, between 10–15%, is achieved for word lengths in the
midrange, about nine phones long. The precision of both
baseline and phonetic systems increase for longer words as
expected from the error model in [63].

The results for OOV words were not as good. Average
precision is 20–25% at 50% recall. Note that most of the
OOV words in this particular data set are mentioned only
once. Thus the task of finding this single occurrence within
100 hours of audio is not an easy one. A large part of the
retrieval error is due to the high rate of phonetic recognition
errors. Another part corresponds to indexing misses. The last
part is due to the limited ability of the score function to accu-
rately model sound similarity. The number of false positives
increases linearly with the site of data and has a larger impact
on the precision of rare words.

The overall performance is summarized in Figure 6. The
graph presents the average precision recall for all 24,000
queries over the entire data. A significant 15% improvement
in precision is gained at 70% recall.

There is a trade-off between the number of indexing er-
rors and the amount of time spent on query processing. The
larger the number of candidates considered, the higher the
recall. However, this requires longer query processing time.
The results reported above are obtained at an average pro-
cessing time of 0.5 seconds per query for retrieval in 100
hours of video. Performance tests on data sets of 10, 100,
and 500 hours are reported in Table 4. Special attention was
paid to developing appropriate data structures. Minimizing
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(a) Average precision-at-recall points for nine-phone-long IV
words (1981 words, 18739 occurrences). Combined phonetic
retrieval (solid line) improves up to 12% over ASR retrieval alone
(dashed line).
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(b) Average precision-at-recall points for twelve-phone-long IV
words (482 words, 2706 occurrences). Combined phonetic
retrieval (solid line) improves up to 5% over ASR retrieval alone
(dashed line).

Figure 4

the number of page faults while reading from the disk was
required to achieve these fast-processing times. More infor-
mation can be found in [64].

7. SUMMARY AND CONCLUSIONS

Video retrieval and browsing is a complicated task. What
makes it so much more complicated than text retrieval is the
implicit, hard-to-penetrate information represented in audio
and video signals. Further, audio browsing is much less effi-
cient than visual browsing of text, images, and other visual
media. Special attention must be given to efficient brows-
ing of search results and efficient intradocument browsing of
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Figure 5: Average precision-at-recall points of the combined ASR
and phonetic speech retrieval for IV words, 3, 5, 7, 9, 11, 13, and 15
phones long. Shorter words have lower precision.
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Figure 6: Average precision-at-recall points for all 24,000 words.
Combined phonetic retrieval (solid line) improves up to 15% over
ASR retrieval alone (dashed line).

retrieved video matches. Most content-based video retrieval
methods are appropriate for browse purposes but lack the
ability, as yet, to search for any kind of semantic information.
On the other hand, most of the SDR methods are appropri-
ate for semantic searches through automatically transcribed
speech but provide no efficient means for browsing.

This paper proposes a combined approach: Search the
speech, browse the video. This approach takes advantage of
search capabilities from SDR and combines them with effi-
cient visual browsing. Combined phonetic and ASR-based
speech retrieval allows searching of words, phrases, key-
words, acronyms, and OOV words. Extensive experimenta-
tion results with 24,000 queries on 100 hours of video show

Table 4: Average query-processing times for different corpus sizes.
(600MHz P-III, 1 GB RAM)

Data set size Average query-processing time

10 hours 0.18 sec/query

100 hours 0.41 sec/query

500 hours 1.94 sec/query

5–15% improvement in precision compared to retrieval us-
ing ASR alone.

A synchronizedmultiview browser was developed to sup-
port efficient video browsing. It allows the user to efficiently
browse retrieved videos by quickly playing relevant video
segments and switching between different views such as sto-
ryboards, slide shows, animation, and fast speech playback.
The different views are synchronized and maintain the con-
text and relative point in the video at the time of switching.

The system was used to capture three local conferences in
video, index them, and create on-line video proceedings of
the conferences. This collection contains 34 hours of video
and was made available on the IBM Intranet. Verbal feed-
back from users of the system indicates that the most useful
browsing features of the system were the offset playback from
the storyboard for rapid browsing and the fast MSB with fast
speech for listening. The speech search was found more use-
ful for people who were familiar with the collection. Other-
wise, users did not know what they could search for. How-
ever, after glancing at the conference program, they came up
with appropriate search terms. A much larger and heteroge-
neous video collection, along with minimal user experience,
could overcome this initial user reaction.

Although work in content-based image and video re-
trieval has made major progress in recent years, we remind
ourselves of the broader context in which future systems
might be exploited by their users—very much like text search
is being used today. Examples of challenging topics and
queries can be found in the search task of the NIST TREC
first video track, held in 2001. A search topic such as “a lunar
vehicle traveling on the moon” [14] provides a compelling
example. Moreover, the broad range of semantic events and
topics detection, as studied by Enser [3, 4] and others, is
still in its early stages. One of many examples for such top-
ics, posed by companies to commercial media agencies, was
to find “a nice picture of a man and a woman, exercising,
smiling, and not sweating.” There is more work to be done
before such queries can be handled by any automated index-
ing and retrieval system.

In 1999, at the Fourth Search-Engines meeting, Boston,
there was still a debate between the manual cataloging and
browsing fans and the searching advocates. In a sense, both
won. Users do need both search and browse capabilities, and
a combination of the two is the most powerful. Users are
accustomed to browsing search results and taxonomies and
then narrowing their search to “search only within this cat-
egory.” Sometimes a user searches for a company homepage
and then browses its directory. Search and browse are two
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seamlessly coupled operations for text. Yet, they become very
distinct when we try to apply them to video and multime-
dia. Good annotation tools, extraction of semantic visual
features, a common description scheme (like MPEG-7), and
multimodal search tools are essential building blocks. How-
ever, we must pay close attention to user expectations, to the
ways users adapt and systems change through the years, espe-
cially as history reveals in the text retrieval domain. Making
multimedia search and browse work together is an important
aspect in this area.
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