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The use of contrast medium in cardiac MRI allows joining the high-resolution anatomical information provided by standard
magnetic resonance with functional information obtained by means of the perfusion of contrast agent in myocardial tissues.
The current approach to perfusion MRI characterization is the qualitative one, based on visual inspection of images. Moving to
quantitative analysis requires extraction of numerical indices of myocardium perfusion by analysis of time/intensity curves related
to the area of interest. The main problem in quantitative image sequence analysis is the heart movement, mainly due to patient
respiration. We propose an automatic procedure based on image registration, segmentation of the myocardium, and extraction
and analysis of time/intensity curves. The procedure requires a minimal user interaction, is robust with respect to the user input,
and allows effective characterization of myocardial perfusion. The algorithm was tested on cardiac MR images acquired from
voluntaries and in clinical routine.

Keywords and phrases: magnetic resonance imaging, image registration, contrast-enhanced MRI, myocardial perfusion, mutual
information.

1. INTRODUCTION

The use of contrast medium (CM) to enhance the informa-
tion provided by magnetic resonance is a growing technique.
In fact, the use of contrast-enhanced images allows join-
ing the high-resolution anatomical information provided
by standard MR with functional information obtained by
means of the diffusion of CM in tissues. An important ex-
ample of the use of perfusion analysis in MRI is myocar-
dial perfusion imaging with Gadolinium as a contrast agent
that allows assessing the extent and type of coronary artery
disease (CAD). In particular, cardiac MR images are going
to be used in many studies to assess myocardial perfusion
at rest and during pharmacological stress, showing poten-
tial for producing perfusion images at higher resolution than
nuclear medicine techniques as positron emission tomogra-
phy (PET) or single photon emission computer tomography
(SPECT). Moreover, the use of MR technique allows 2D or
3D imaging without orientation constraint and avoids pa-
tient exposition to radiation.

In order to follow the perfusion of the CM in myocardial
tissues, several images of the heart are acquired during time,
starting from the injection of CM. Usually, several slices in
short axis view are acquired in order to cover the entire left
ventricle. The quality of the myocardial perfusion can be vi-
sually assessed by qualitative evaluation of the signal intensity
in myocardium after the CM injection. The main limitations
of the visual analysis are the lack of quantitative perfusion
indexes and the presence of artifact due to intensity inhomo-
geneities in magnetic field and in the signal reception using a
dedicated coil.

In order to perform a quantitative analysis of the my-
ocardial perfusion, the signal intensity changes in the ac-
quired images must be evaluated. Therefore, time/intensity
(T/I) curves are extracted, measuring the intensity value of
each image pixel in the myocardium during time. The in-
dices extracted from the T/I curves (i.e., the slope value)
were demonstrated to be a useful diagnostic tool in the di-
agnosis of CAD [1, 2, 3]. Quantitative evaluation of the con-
trast agent presence during time implies the finding of the
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corresponding pixels in all temporal frames. Usually, the ac-
quisition protocol is made to obtain spatial alignment of all
frames. Therefore, each pixel in an image frame should cor-
respond to the pixels in the other frames with the same ge-
ometrical coordinates. In this case, the pixel selection can
be done on only one image in the temporal sequence (i.e.,
the one with the best contrast-to-noise ratio). This surely
enhances both the reliability and the performance of the
analysis. Unfortunately, obtaining spatially aligned images is
a difficult task in cardiac image acquisition, in which im-
ages misalignment due to patient breathing and poor ECG
synchronization is commonly observed. Therefore, a mis-
alignment correction, also named image registration, is of-
ten needed in postprocessing phase. A lot of methods were
proposed to address the general medical image registration
problem [4, 5, 6]. In MRI cardiac perfusion analysis, the tra-
ditional approach uses manual registration of cardiac im-
ages, using anatomical markers defined by an expert oper-
ator along all images in the temporal sequence [1, 7]. Tak-
ing in account that a single multiphase 3D study can con-
sist of hundreds of images, this procedure seems to be time
consuming and affected by intraobserver and interobserver
variability. It also requires the presence of an expert car-
diologist to effectively identify the markers. Other authors
[8, 9] proposed to extract some geometrical features (i.e.,
left ventricle cavity) from each frame and to perform the
image registration by registering the extracted geometrical
features. Manual or semiautomatic segmentation of the left
ventricle is a time-consuming task and is affected by intraob-
server and interobserver variability. On the other hand, ef-
fective full-automatic segmentation algorithms are not yet
available for CM-enhanced cardiac MRI. In fact, automatic
image segmentation algorithms are very sensitive to signal-
to-noise ratio that is usually low in CM-enhanced MRI due
to the need for very short acquisition times. Delzescaux et
al. [10] proposed a method based on the manual delineation
of myocardium, right and left ventricle on one frame in the
sequence. Then an algorithm based on template matching
performs the sequence registration. Bidaut and Vallée [11]
proposed a method based on the minimization of intrinsic
differences between each image and a reference image cou-
pled to a two-dimensional (i.e., three parameters) rigid body
correction.

We prefer to apply voxel-based methods that operate di-
rectly on the image gray values and are effective in our prob-
lem due to the high degree of similarity between involved im-
ages. Moreover, this kind of methods are image independent,
so can be applied also to image from different anatomical re-
gions [12] and can be easily extended to the registration of
3D data set. Finally, the registration procedure does not re-
quire the presence of an expert operator. Along voxel-based
methods, we select mutual information (MI) as registration
parameters because this was demonstrated effective in a large
set of applications.

The goal of this study is to apply a new automatic anal-
ysis procedure starting from contrast-enhanced MR images
of the heart in order to correct the images misalignment in
the postprocessing phase, segment the left ventricle wall, and
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Figure 1: (a) Spatial and (b) temporal 3D data acquisition in
FGRET sequence.

automatically extract the time/intensity curves and the re-
lated perfusion indexes.

2. MATERIAL ANDMETHODS

2.1. MRI perfusion imaging protocol

All exams are a set of Gd-DTPA contrast-enhanced cine car-
diac MRI acquired by using a GE Signa Horizon LX system
1.5T. A cardiac array coil (4-elements-phased array) has been
used as a radio frequency RF signal receiver, with cardiac-
gated fast gradient echo—echo train (FGRET) sequence. The
patient under examination was asked to hold his breath dur-
ing the examination. In order to perform a 3D acquisition,
several parallel slices are acquired in short axis direction
(Figure 1a). The image size is about 256 × 256 pixel with a
planar resolution of about 1.2mm. In each individual heart
beat (i.e., RR interval), a maximumof 5 slices can be acquired
during the 300 millisecond interval positioned in diastole. In
order to cover the entire left ventricle with a good spatial res-
olution along the short axis direction, 8–10 slices are needed,
so the 3D acquisition must be performed on two heart beats
for each frame (Figure 1b). The 3D acquisition is repeated 30
to 40 times over time in order to follow the diffusion of the
contrast agent.

Consequently, the time needed for a complete acquisi-
tion can reach 60–80 second or more (60–80 RR intervals);
in many cases the examination cannot be done in breath-
hold state. The acquired images are retrieved from the MR
scanner via DICOM (digital imaging and communications
in medicine) protocol.

2.2. Automatic analysis

The automatic analysis of the cardiac perfusion images ob-
tained by CM-enhanced MRI can be summarized in three
steps (Figure 2).

(1) The user selects the zone of interest on one frame. All
the image sequence is automatically registered in or-
der to correct the misalignments induced by patient
breathing during examination.

(2) The left ventricle wall is segmented on one frame by a
semiautomatic procedure. This procedure can be done



Automatic Characterization of Myocardial Perfusion in Contrast Enhanced MRI 415

ROI selection

Registration

Segmentation

T/I curves
extraction

Indices
calculation

403020100
Frames

0
50

100
150
200
250

In
te
n
si
ty

Figure 2: Automatic cardiac perfusion images analysis.

on only one frame, that is, the one with the best signal-
to-noise ratio.

(3) The segmented myocardium is automatically divided
in regions of interest (ROIs). The user can select the
number and the disposition of ROIs along the my-
ocardium. For each ROI, the related time/intensity
curves are extracted and perfusion indices are evalu-
ated.

2.3. Registration algorithm

The MI concept comes from information theory, measuring
the dependence between two variables or, in other words, the
amount of information that one variable contains about the
other [13]. In our application, we can identify the two vari-
ables with the gray levels distribution in two images to be
aligned.

Let Q and K be images with M pixels that can assume
N gray levels g1, g2, . . . , gN . The MI between Q and K can be
defined as

MI(Q,K) = H(Q) +H(K)−H(Q,K), (1)

whereH(·) is the entropy of an image. The entropy of Q im-
age H(Q) can be written as

H(Q) = −
N∑
i=1

log
[
P
(
Q = gi

)] · P(Q = gi
)
, (2)

P(Q = gi) means the probability that a pixel in Q image will
assume the value gi so that the image entropy can be written
in terms of the image histogram HisQ,

H(Q) = − 1
M

N∑
i=1

log

[
HisQ(i)

M

]
·HisQ(i). (3)

As well, the joint entropy of two images Q and K with the
same number of pixels M and the same gray level range N
can be written in terms of joint image histogram HisQK ,

H(Q,K) = − 1
M2

N∑
i=1

N∑
j=1

log

[
HisQK (i, j)

M2

]
·HisQK (i, j).

(4)

The joint histogram HisQK (i, j) is equal to the number of si-
multaneous occurrences of Q = i and K = j.

The MI measures the relationship between two images. If
the two images are independent, H(Q,K) = H(Q) + H(K),
and MI = 0. If one image provides some information about
the second one, the MI becomes greater than zero.

TheMI registration criterion states that theMI of the im-
age intensity values of corresponding voxel pair is maximal if
the images are geometrically aligned. Because no assumption
is made about the nature of the relation between the image
intensities, this criterion is very general and powerful [14, 15]
so that it can be applied automatically at any image in the se-
quence also during CM transit.

In fact, in MR perfusion images the pixel values can
change in dependence from the transit of CM. Instead, the
statistics of gray levels distribution along the images remain
almost the same, leading an MI-based registration effective
with respect to other methods.

Let Q be the reference image and K the image that has
to be registered with Q. The best rigid transformation T that
perform the registration can be found, maximizing the MI
betweenQ and T(K), where T(K) means the image obtained
by the roto-translation of K by the transformation matrix T ,

MI
[
Q,T(K)

] = H(Q) +H
[
T(K)

]−H
[
Q,T(K)

]
. (5)

Finding the T matrix that maximizes the value of MI implies
the solution of an optimization problem with three (in case
of 2D images) or six (in case of 3D images) variables.

In our problem, we have to find the best alignment not
only between two images but also along all frames in the
temporal sequence. In order to reduce the algorithm com-
plexity and the related processing time, we choose to reduce
the problem to a sequence of MI maximization between im-
age/volume pairs. The way in which we choose the pairs will
be shown in the following, now we can illustrate the registra-
tion algorithm between two images, as shown in Figure 3.

First, the MI between the reference image and the image
under examination is evaluated. An optimization algorithm
is used in order to estimate the best roto-translation matrix
(T); the matrix is used to rotate and translate the image. An
interpolation operation is also required. If the result is sat-
isfactory, the procedure ends; if not, a new roto-translation
matrix is evaluated and a new loop is executed. A lot of work
was done about medical image interpolation in order to find
the best interpolation method [16]; we use two solutions:
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Figure 3: Flow chart of the registration algorithm.

a simple bilinear interpolation method during the MI maxi-
mum search to obtain the best time performance and an in-
terpolation algorithm optimized for MR images [17] in the
last step to compute the final volume.

The problem of finding the parameters set that maxi-
mizes a multivariable function is called optimization prob-
lem. The optimization algorithm should find the rotation
and translation parameters that will maximize the MI. The
main troubles are the presence of MI local maxima and the
long processing time required by a lot of optimization algo-
rithms.

We have tested two optimization algorithms, the simplex
algorithm and the Powell algorithm [18], showing that the
main advantage of the downhill simplex method is about
time performance, because the simplexmethod requires only
function evaluations—not derivatives—and so may be more
reliable than other optimizationmethods. Instead, the Powell
method is more effective with respect to the simplex method,
especially for avoiding local maxima. On the other hand, it
requires a long computation time.

In order to obtain an effective image registration, an im-
portant aspect is the way to choose the pair of images to
be registered. The first idea is to register each image with
the previous one. Because the CM diffuses in continuous
manner, two consecutive images are almost similar in the
sequence, so the registration algorithm can better correct
the misalignment. On the other hand, an error in the reg-
istration of one image pair will affect the alignment of the

whole temporal sequence. A second approach is to register
all frames with respect to one image in the sequence. This
one is selected by the user as the image that has to be used to
perform the segmentation. Therefore, the user will select an
image in which the ROI is well delineated. The user has also
to roughly identify the left ventricle, surrounding it with a
circular mask. Without the mask, the registration algorithm
may try to register structures that do not belong to the heart
region.

We have found that a registration with the second ap-
proach using the simplex method followed by a more ac-
curate registration using the first approach and the Powell
method leads in many cases to good results.

2.4. Myocardium segmentation

As shown in previous papers [19, 20, 21], anisotropic filter-
ing of MR images joined with application of GVF-snake al-
gorithm allows to effectively segment the endocardium and
epicardium of the left ventricle.

The nonlinear anisotropic diffusion equation is

∂

∂t
I(x, t) = div

[
c(x, t) · ∇I(x, t)]. (6)

The diffusion strength is controlled by c(x, t). The vector
x represents the spatial coordinate, while the variable t in our
discrete implementation corresponds to iteration step n. The
function I(x, t) is the image intensity. In order to preserve
edges, the diffusion must be reduced or even blocked when
close to a discontinuity.

We choose c(x, t) = g(|∇I(x, t)|) to be a function of gra-
dient magnitude evaluated on image intensity I(x, t),

c(x, t) = 1
2

[
tanh

(
γ
(
k − ∥∥∇I(x, t)∥∥)) + 1

]
. (7)

The parameter γ controls the steepness of the min-max
transition region, whereas k controls the extent of the diffu-
sion region in terms of gradient gray level. The parameter γ
can be fixed to 0.2 for 256 gray level images. In MR images
processing, the γ value has to be scaled proportionally to the
range of the image values. In our application we use γ = 0.5.

Starting from prefiltered images, a deformable model was
developed as a curve that moves through the spatial domain
of an image to minimize the following energy functional:

E =
∫ 1

0

1
2

[
α
∣∣x′(s)∣∣2 + β

∣∣x′′(s)∣∣2 + Eext
(
x(s)

)]
ds, (8)

where x(s) = [x(s), y(s)], s∈[0, 1], α and β control the me-
chanical properties of the snake, that is, tension and rigidity,
respectively, x′ and x′′ denote the first and the second deriva-
tives of x(s) with respect to s, and Eext(x) is the potential asso-
ciated to the external forces. External force Eext(x) is derived
from the image gradient so that it takes on its smaller values
at the edge points. The external force can be defined to be a
vector field v(x) that minimizes the following functional:

ε =
∫∫ (

µ|∇v|2 + |∇I|2|v −∇I|2)dx. (9)
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The optimal µ value is related with the signal-to-noise ra-
tio and can be set to 0.2 in MRI imaging. This formulation
forces the field to vary slowly in homogeneous regions and
to keep v nearly equal to the gradient map where high spatial
variations are present. In fact, the first term of (9) becomes
dominant where∇I(x, t) is small, yielding a slowing-varying
field in homogeneous regions. On the other hand, the second
term becomes dominant where ∇I(x, t) is large and is mini-
mized by setting ∇v(x, t) = ∇I(x, t). The external field v(x)
resulting from this calculus of variations is used in E expres-
sion as potential force −∇Eext(x), yielding [22]

xt(s, t) = αx′′(s)− βx′′′′(s) + v, (10)

where x′′ and x′′′′ are, respectively, the second and the fourth
derivatives of x(s) with respect to s. We call the paramet-
ric deformable curve solving the previous equation the GVF
snake. Values of α and β parameters were tuned during the
algorithm test on a large set of MRI images.

The semiautomatic segmentation of the myocardium can
be done by the following steps.

(1) Anisotropic prefiltering of the MR image.
(2) Initialization of GVF snake procedure is made manu-

ally by tracing a very rough closed curve inside the 2D image
at the level of ventricular cavity.

(3) The fitting of myocardium borders with a GVF snake
is made as follows: (i) the GVF field is evaluated starting from
an image edge map and an approximation to its gradient.
Starting from the initial curve and fitting the first GVF field
crest with a snake, the endocardial border is mathematically
described; (ii) using the detected endocardial border as a new
starting data set, the deformable model continues to search
for a new curve that corresponds to a new local minimum
of image energy. In particular, the GVF field experiences a
second crest at this new local minimum which is used to de-
scribe the epicardial border with the snake model.

Figure 4 shows the results obtained after each algorithm
phase. In particular, (a) is the starting image, (b) is the gra-
dient map of the anisotropic filtered image, (c) is the map of
the GVF module, and (d) is the original image with overim-
posing the two detected curves delimiting, respectively, the
endocardial and epicardial borders.

The contours obtained by the previous procedure was
copied along all frames. The users can manually modify the
contours in order to correct errors introduced by the auto-
matic registration procedure.

2.5. Time/intensity curves extraction

After the left ventricle wall segmentation, the user has to de-
fine a reference point (i.e., the anterior septal insertion of the
right ventricle). The myocardium is automatically divided
into the needed number of equiangular sectors starting from
the reference point. Optionally, the myocardium can be di-
vided into the inner and outer half (i.e., subendocardial and
subepicardial layer). In this way, in each slice, the left ven-
tricle wall can be automatically divided into a number of re-
gions, ranging from 3 to 24, as shown in Figure 5.

(a) (b)

(c) (d)

Figure 4: Segmentation algorithm phases: (a) starting image;
(b) gradient of filtered image; (c) GVF image; and (d) segmented
image.

(a) (b)

Figure 5: Automatic segmentation of the myocardial wall: (a) 9 sec-
tors and (b) 6 sectors with subendocardial and subepicardial layers.

The T/I curves are extracted for all pixels in all defined
regions in segmented myocardium. For each region, the av-
erage T/I curve is defined as the average along all T/I curves
in the region. Normalized T/I curves are also evaluated by
normalizing curves by the precontrast signal intensity.

Finally, average T/I curve is automatically extracted from
the center of the left ventricle cavity in order to evaluate the
input function.

In order to extract quantitative indexes from T/I curves,
such curves have been fitted by using the ERF function
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Table 1: OA values evaluated before and after MI-based registration on voluntaries and patients.

Av. endo OA index without
registration (mean ± SD)

Av. endo OA index with
registration (mean ± SD)

Av. epi OA index without
registration (mean ± SD)

Av. epi OA index with
registration (mean ± SD)

Voluntaries 0.98 ± 0.022 0.98 ± 0.025 0.97± 0.028 0.97± 0.031

Patients 0.93± 0.038 0.97± 0.015 0.92± 0.028 0.97± 0.013
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Figure 6: Example of a typical T/I average intensity curve and the
related ERF function.

defined as

erf(x) = a2 + a3
2√
π

∫ x

0
e−(t−a1)

2/a4 dt. (11)

The four parameters used in curve fitting are the ERF trans-
lation on x and y axes (a1 and a2), the scaling a3, and the
slope a4.

Figure 6 shows a typical T/I average intensity curve and
the related ERF function.

Fitting with Gamma function is also available to exam-
ine images obtained by an intravascular CM, according to
[23]. Useful perfusion indexes are then extracted and evalu-
ated. They are wash-in slope, time to peak intensity, and peak
value. These parameters are measured as absolute values and
as relative values with respect to the input function for both
original and normalizedT/I curves.Manual correction of the
ERF function is available: the user can manually cut off curve
points in order to obtain a correct shape for the ERF curve.

3. RESULTS

The algorithm was implemented on interactive data lan-
guage (IDL) release 5.4. IDL is widely used in medi-
cal community for data analysis, visualization, and cross-
platform application development. The software implement-
ing the proposed algorithm is available on request (consult
http://nmr-aurora.ifc.cnr.it/imaging/hippo.html). The im-
ages in DICOM format produced by the MR device was

transferred by a high-speed network to a workstation and an-
alyzed by a cardiologist.

The method has been tested on two kinds of image data
set. The first set was acquired from collaborative voluntaries,
able to hold their breath and to reduce movements during
the entire examination. The second data set was acquired
from patients with suspected CAD scheduled for MRI exam-
ination. For each exam, a total of 245 images was acquired,
consisting of 7 short axis slices, each one with 35 temporal
frames acquired in diastolic phase. A total of 5 examinations
on voluntaries and 5 examinations on patients were used for
algorithm effectiveness evaluation. Therefore, a total number
of 70 temporal image sequences was used.

In order to assess the effectiveness of the automatic reg-
istration procedure, an expert user was asked to use the pro-
gram with and without the use of the automatic registration
algorithm. For each spatial slice, the endocardial and epicar-
dial contours have been obtained by the segmentation pro-
cedure previously described. The contours were replicated
along all frames and the user was asked to manually correct
the endocardial and epicardial borders. We used the overlap-
ping area (OA) index as the index of the needed correction
degree. Overlapping area is the common area between the re-
gion selected in the developing image and the reference one,
normalized by the reference area.

Table 1 shows the average values related to both volun-
taries and patients.

Figure 7 shows the average value of OA index for each
frame with and without registration on patient images. The
value of OA index on patient images is reduced by the reg-
istration procedure and becomes comparable with the index
measured on volunteer images.

Figure 8 shows an example of a T/I curve extracted from
a myocardium region before and after application of the reg-
istration algorithm. The artefacts present in the T/I curve
before registration are greatly reduced with the application
of the MI-based registration algorithm. In particular, the
algorithm was able to correct both the artefact produced
by the pass of the CM in the right ventricle (frames 2–6)
and the artefact produced by background signal (frames 21–
35).

Algorithm robustness with respect to the algorithm in-
put was tested by the following procedure: five different op-
erators were asked to perform the registration procedure on
the same data set (7 slices, 35 frames). Each operator has to
select the reference slice and to draw the ROI at the proce-
dure beginning. For each test, the required computation time
and the obtained roto-translation matrices for all frames
were recorded. The mean processing time was 90.83 second

http://nmr-aurora.ifc.cnr.it/imaging/hippo.html
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Table 2: Algorithm robustness with respect to the user input.

Operator X component (mm) Y component (mm) θ component (mm)

(mean ± SME) (mean ± SME) (mean ± SME)

1 2.68 ± 0.047 4.42 ± 0.35 1.20 ± 0.096

2 2.68 ± 0.040 4.42 ± 0.20 1.20 ± 0.062

3 2.68 ± 0.024 4.42 ± 0.25 1.20 ± 0.122

4 2.68 ± 0.033 4.42 ± 0.15 1.20 ± 0.087

5 2.68 ± 0.031 4.42 ± 0.18 1.20 ± 0.066
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Figure 7: OA index before and after registration.
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Figure 8: T/I curve extracted from a myocardium region before
and after application of the registration algorithm.

with standard deviation of 3.60. For each component of the
roto-translation matrix, the squared mean error with respect
to the mean value was then evaluated. Table 2 shows the test
result. Mean square error is measured in millimeters for X
and Y components and degrees for θ component.

The algorithm seems to be robust with respect to the ini-

tialization of the registration procedure, both in the final reg-
istration result and in the required processing times.

4. DISCUSSION

An algorithm for fast quantitative analysis of cardiacMR per-
fusion images was presented. The algorithm requires mini-
mal user interaction and is robust with respect to the user
input. The use of an automatic registration procedure based
on maximization of the MI was demonstrated to be effec-
tive in order to address the requirement of fast and automatic
tools for quantitative analysis of CM-enhanced MR images.
The quantitative index OA was introduced in order to mea-
sure in a quantitative way the algorithm effectiveness. Results
on cardiac images show that misalignments and artefacts in-
troduced by patient movement during the examination are
greatly reduced.

In this paper, our approach was to reduce the problem of
contemporary registration of several temporal frames to a lot
of registration operations between image pairs. The develop-
ment of a global registration algorithm should improve the
registration quality but the increasing of algorithm complex-
ity can leads to unacceptable processing time.

The main limitation of our approach is the 2D nature of
the image registration that does not allow correcting the mis-
alignment component along the normal to the acquisition
plane (i.e., z-axis). The proposed algorithm can be extended
in 3Dwithoutmainmodification, but some problems should
be solved. The first one is the low image resolution along the
z-axis that implies the production of interpolation artefacts.
The second one is the increasing in the algorithm complexity,
because the optimization algorithm has to work on 6 instead
of 3 parameters. Finally, slices related to a 3D volume are ac-
quired in different times, as previously shown, so they are not
homogeneous with respect to the intensity of the CM. In our
opinion, the use of 3D analysis of myocardial perfusion MRI
in clinical environment requires both an improvement inMR
device technology (i.e., better resolution in z-axis direction)
and in computer power (i.e., reduction of processing time).
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