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Speckle Suppression in Ultrasonic Images
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An original method to denoise ultrasonic images affected by speckle is presented. Speckle is modeled as a signal-dependent noise
corrupting the image. Noise reduction is approached as a Wiener-like filtering performed in a shift-invariant wavelet domain by
means of an adaptive rescaling of the coefficients of an undecimated octave decomposition. The scaling factor of each coefficient
is calculated from local statistics of the degraded image, the parameters of the noise model, and the wavelet filters. Experimen-
tal results demonstrate that excellent background smoothing as well as preservation of edge sharpness and fine details can be

obtained.
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1. INTRODUCTION

Since the introduction of first coherent imaging systems,
speckle noise has been widely studied. Speckle makes a ho-
mogeneous object to assume a granular appearance, and
consequently, the contrast of the image is drastically reduced.
The presence of a speckle pattern in a coherently formed
image is due to the received backscatter signal from un-
resolvable particles constituting the inspected mean. Par-
ticular attention has been reserved to speckle noise in ul-
trasonic images since the degradation in the acquired im-
age implies strong uncertainties in the detection of patholo-
gies performed by an expert human observer. The texture
of the speckle pattern tends also to hide fine details useful
for computer-aided diagnosis. Moreover, it severely decreases
the effectiveness of image postprocessing algorithms.

The theoretical foundations of speckle were given in op-
tics, where laser holographic image formation has been stud-
ied [1]. By using a laser as a monochromatic coherent radia-
tion, it was possible to reconstruct the inspected object by us-
ing the backscattered signal. The signal statistical properties
obtained by theoretical analysis have been validated in many
other imaging systems using coherent radiation, like radar
and ultrasound, even if, in these cases, the representation of
the image obtained by envelope detection is poorer due to
the propagation of the radiation through an inhomogeneous

medium. Ultrasound images represent the worst case since
the ultrasonic wave encounters multiple interfaces that im-
plies a masking effect for those reflectors laying farther from
the probe. Both phase and amplitude (speckle) noise degrade
the backscattered signal. Phase aberration may occur because
of the imperfections of the focusing system that is realized by
means of a delay line for each transducer of the phased array.
An additional contribute to this kind of aberration is given by
the random delays generated while the ultrasonic wave prop-
agates through regions with different density. A great variety
of techniques have been devised to reduce the effect of the
phase distortion [2, 3, 4, 5]. Speckle noise, however, repre-
sents the principal cause of the whole degradation. In order
to enhance the quality of the ultrasonic image, many different
approaches have been proposed. Most of them can be related
to averaging uncorrelated samples. In particular, effective re-
sults have been obtained with spatial compounding [6] and
frequency compounding [7] that allow us to trade SNR im-
provement for loss of resolution in the lateral or longitudinal
direction. Another algorithm based on frequency diversity
has been proposed in [8]. A practical implementation of fre-
quency diversity, based on split spectrum processing (SSP),
has been introduced in [9]. Even if simple versions of these
methods are currently used in many commercial ultrasonic
systems, some other postprocessing algorithms have been
developed to overcome the limit of resolution and overall
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system complexity imposed by compounding. For example,
an adaptive median filter driven by local statistics is proposed
in [10].

The proposed algorithm is based on spatial filtering ap-
plied in the wavelet domain. Several denoising algorithms
based on the wavelet decomposition have been presented in
the literature for additive signal-independent noise. Thresh-
olding of wavelet coefficients was proposed by Donoho [11].
Wavelet thresholding adapted to the local context of the
image has been presented in [12]. A Wiener-like approach
working in the wavelet domain has been proposed in [13]. In
[14], spatially adaptive rescaling based on a statistical model
of wavelet coefficients was used.

Speckle noise, however, is not modeled as an additive
signal-independent noise but as an additive signal-dependent
noise. Models for ultrasonic speckle noise are discussed
in Section 2. A recent approach working in a transformed
domain to remove signal-dependent noise is presented in
[15].

In this paper, we propose a denoising method based on
linear minimum mean square error (LMMSE) estimation
of wavelet coefficients. The observed wavelet coefficients are
rescaled according to a coefficient computed, taking into
consideration the wavelet filters, the noise-model parame-
ters, and local statistics of the observed image. We use an un-
decimated wavelet decomposition, the advantages of which
for smoothing signal-independent noise have been pointed
out in [16, 17]. The rationale of working in the undecimated
wavelet domain is that classical dyadic wavelet decomposi-
tions, characterized by iterated filtering and downsampling,
make the estimation of signal and noise variances critical due
to aliasing introduced by decimation.

This paper is organized as follows. Section 2 is devoted
to a brief discussion on speckle noise models. In Section 3,
the LMMSE estimator and its application to despeckling will
be introduced. After a brief review of the wavelet decom-
position, the extension of LMMSE filtering in the wavelet
domain will be presented. In Section 4, several experimen-
tal results will allow us to show the effectiveness of the
proposed technique. Some concluding remarks are given in
Section 5.

2. SPECKLE MODELING

The basic assumption behind the models of speckle noise is
that the received signal from a specific resolution cell can
be considered as the composition of several different pha-
sors, having random, statistically independent, amplitudes
and phases. Due to the large number of independent com-
ponents, the received signal has a complex Gaussian distribu-
tion. A two-dimensional histogram of the detected complex
image z = x + jy is shown in Figure 1. The histogram has
been computed from the pixels belonging to a homogeneous
area of a tissue.

Let a = \/x2 + y2 be the amplitude of the acquired sig-

nal; it represents the signal that is finally displayed. The dis-
tribution of a depends on the characteristics of the imaged
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F1GURE 1: Two-dimensional histogram of the detected complex sig-
nal relative to a homogeneous area.

tissue. If the scattering structure is fine, the scattering surface
is rough with respect to the wavelength, and the number of
scatterers within a resolution cell is large, then the magnitude
has a Rayleigh distribution; in this case, speckle noise is re-
ferred to as fully developed. Instead, if the backscattered signal
can be modeled as a specular reflection, then the distribution
is Rician [18, 19].
The first-order statistics of the Rayleigh distribution are

2
Ela) = /=%,

2 (1)
0’ = E[a®] — E[a]* = 02—2 T
and, consequently, defining the speckle contrast ¢ as the ratio
between the standard deviation and the mean, we have

\/UT% 4—-m
c= Ela] =,/ - = 0.52. (2)

This property of the Rayleigh distribution suggests that
speckle has a multiplicative nature that leads to bind together
the local value of the image with the standard deviation of
the noise term. Similar multiplicative noise models have been
proposed in the literature to deal with coherent acquisition
systems different than ultrasonic scanners [20, 21].

In this paper, a general multiplicative noise model is used.
For the sake of simplicity, consider a one-dimensional signal.
The observed signal g(n) is expressed by

g(n) = f(n) +v(n) = f(n)+ f(n)" - u(n), (3)

in which f(n) is the original, or noise-free, signal. The noise-
generating random process u(#n) is assumed independent of
f(n), stationary, uncorrelated, with zero mean and variance
o2. The term v(n) = f¥(n) - u(n) represents an additive
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signal-dependent noise. Since f(n), in general, is not sta-
tionary, the noise term v(#n) must be assumed as nonstation-
ary as well. The quantity y acts as a parameter that gen-
eralizes the noise model. The values of y that are consid-
ered in the literature are essentially two. The value y = 1
yields a purely multiplicative noise model. This model is ac-
cepted not only for ultrasonic scanners [22] but also for syn-
thetic aperture radar (SAR) images [23]. However, in the ul-
trasound community, also the value y = 0.5 is taken into
consideration, especially to model speckle noise of images
where a logarithmic precompression has been performed
[10, 24]. Therefore, both these cases will be considered
hereafter.

3. FILTERING SPECKLE NOISE
3.1. LLMMSE filtering

The processes introduced in (3) can be represented as vectors
and will be indicated by f, g, and v, where f is the noise-free
signal, g is the observed signal, and v is the noise term. In
this section, we still consider one-dimensional signals. The
extension to the two-dimensional signal case is straightfor-
ward. The MMSE estimate of f is its expectation conditional
to the observed signal, that is, fMMSE = E[fl|g]. This is usu-
ally too complex to be computed, so we resort to the LMMSE
estimator, that requires only statistics up to the second order
and is given by,

finuse = EI[f] + CeCq' - [g - E(®)], (4)

[25], where the matrices C; and Cgg are the covariance of
g and the cross-covariance between f and g, respectively.
Equation (4) imposes a global MSE minimization over the
whole image within the constraint of a linear solution. The
solution is optimum if the joint pdf’s of f are multivari-
ate Gaussian. Suppose now that f is uncorrelated, that is,
C¢ = E{[f — E(f)][f — E(f)]"} is a diagonal matrix. This
fact means that all the correlation of f is conveyed by its
space-varying mean E[f] only. Let 0}(11) and agz(n) denote
the variances of f and g at the nth sample position. It can
be shown that [26], under the assumed hypotheses, the co-
variance matrices Cg and Cgg are diagonal and are given
by Cg = diag[agz(l), 05(2),...,0§(N)] and Cg = Cf =
diag[aj%(l), 0]%(2), . af(N )]. By replacing these functions
into (4), we can see that the estimate of f is a pointwise oper-
ator. The local LMMSE (LLMMSE) estimate of f(n) is given
by (see [26])

2

, ()
Fuusse(n) = ELF)] + L5 - (g0n) = Elg(m]). (5
g

To apply the filter in (5), we need to know E[ f] and 0}. From
the model in (3), since u(n) is assumed zero mean and inde-
pendent of f(n), we have

E[g(n)] = E[f(n)]. (6)

The variance of the observed signal can be expressed as

o2(n) = E[g*(m)] - E[g(n)]*
= E[f2(n) + f(n)?u2(n) + 2f ()" u(n)] — E[ f(n)]?
= aj%(n) + a,ffy(n),

(7)

The term f,(n) = E[f*(n)] is dependent on the model we
assume for the speckled image. For the models we consider
in this paper, this term becomes

(B,
Jm) = 1E[f2(n)],

y = 0.5,

- (8)

Hence, f,(n) can be estimated from first-order statistics of
the noise-free image.

Substituting expression (8) into (7) allows us to estimate
the variance of the original image as

aé(n) - 02E[g(n)], y =05
0}(m) = 62(n) - Elg(n)]’02 )
1+ 02 »or=th

where we have used (6). Hence, the final expression for the
LLMMSE estimator in (5) may be rewritten as

( og(n) — 0,E[g(n)]
E[g(n)] + ()

-(g(n) — E[g(m)]), y =05,
og(n) — E[g(n)] o}
Elg(m]+ (1+ ag)og(n)

(g(n) —E[gn)]), y=1

fLLMMSE(Yl) =1 (10)

The LLMMSE estimate uses only the first-order statistics
of the observed image. The estimator fLLMMSE(n) can be re-
formulated introducing local approximations of the nonsta-
tionary mean and variance of the observed image calculated
as

w

P .
E[g(m] = g(n) = 37 i;Wg(nﬂ),
” (1)
og(n) = ﬁ 2 (g(n+1i) - g(m)?,

where 2W +1 is the size of the local window. To avoid the nu-
merator in (10) to be negative, it is clipped to positive values
after the substitution of (11).

In Section 3.2, we show the application of the LLMMSE
algorithm in the wavelet domain. The experimental results
will demonstrate that filtering in the wavelet domain largely
improves the performance of the method in terms of both
texture preservation and homogeneous areas smoothing.
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FIGURE 2: (a) Scheme of a critically sampled wavelet decomposition;
(b) scheme with undecimated wavelet subbands.

3.2. LLMMSE filtering in the wavelet domain

Wavelet analysis provides a multiresolution representation of
continuous and discrete-time signals and images [27, 28].

For discrete-time signals, the wavelet decomposition is
implemented filtering the input signal with a lowpass filter
Hy(z) and a highpass filter H,(z), and downsampling the
outputs by a factor of 2. The two output sequences rep-
resent a smoothed version of f(n), or approximation, and
the rapid changes occurring within the signal, or detail. To
achieve signal reconstruction, the coefficients of the approx-
imation and detail signals are upsampled and filtered by a
lowpass and a highpass filter, Fy(z) and F,(z), respectively.
The scheme of a wavelet decomposition and reconstruction
is depicted in Figure 2a, in which f(n) is a discrete 1D se-
quence and f'(n) the sequence reconstructed after the anal-
ysis/synthesis stages. As it can be seen, the wavelet represen-
tation is closely related to a subband decomposition scheme
[29]. A two-channel representation can also be obtained,
eliminating the downsampling and upsampling blocks and
yielding the scheme shown in Figure 2b. It can be shown that,
thanks to wavelet filters properties, perfect reconstruction of
the input signal is maintained. Using an undecimated wavelet
will allow us to simplify the representation of signal and noise
in the transformed domain.

Applying the same splitting to the lowpass channel of a
wavelet decomposition yields a two-level wavelet transform,
whose scheme is shown in Figure 3a. Extending the scheme
to K levels of decomposition is straightforward. We use the
notation fk(l)(n) and fk(h)(n) to denote the lowpass and high-
pass wavelet coefficients at the kth level of the decomposi-
tion, respectively.

An equivalent representation of the two-level analysis
bank is given in Figure 3b. It is obtained from that of
Figure 3a by shifting the downsamplers towards the output
of the system and by using upsampled filters, as noble identi-

ties state [29]. As can be seen, the wavelet coefficients fkw (n)
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FIGURE 3: (a) Scheme of a two-level critically sampled wavelet de-
composition; (b) equivalent scheme with undecimated wavelet sub-
bands (denoted with a tilde).
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FIGURE 4: Equivalent scheme for a K-level undecimated wavelet.

and fk(h)(n) can be obtained from the undecimated outputs
fk(l) (n) and fk(h)(n), that will be referred to as undecimated
wavelet coefficients. It can be easily noted that the sequences
fk(l)(n) and fk(h)(n) are obtained by filtering the original sig-
nal with equivalent filters whose expressions are

k—1
HY(2) = [ Ho(2"),
m=k0_2 (12)
B (2) = [ i Ho<zf">} ().
m=0

It can be easily shown that perfect reconstruction can be
obtained by dropping downsamplers and upsamplers from
the K-level analysis/synthesis scheme. The equivalent K-level
undecimated wavelet representation is shown in Figure 4.
Consider now the representation of signal and noise in
the undecimated wavelet domain. The projection of a signal

is obtained by filtering it with either hg‘i «(n) or hg;)k(n). Due
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to the linearity of the transform, we have

&(n) = F(n) 5 W)+ v(n) 5 ()
= 7P+ 7 (),

(13)
& (n) = f(n) % heg(n) +v(n)  heg) (n)
= 1P + 7 ().

Without loss of generality, we refer to the highpass and band-
pass wavelet coefficients and, for the sake of simplicity, we
drop the superscript (h).

Now, we would like to apply the LLMMSE estimation
algorithm to the signals obtained from the undecimated
wavelet decomposition. Hence, we need their first-order
statistics. The mean of the noise component is given by

E[v(n)] = E[ > heqi () f7(n — D)u(n — i)}
" (14)
= Z heq,k(i)E[fy(n - l)]E[U(n - l)] =0.

Therefore, we have

E[g(n)] = E[ fi(n)]. (15)
The estimate in (5) needs the knowledge of the variances of

G(n) and fi(n), or equivalently, of E[g2(n)] and E[fZ(n)].
The expression of E [g,f(n)] is given by

E[&(m)] = E| (fi(m) + #(m)’]
= E[f¢(m] +E[#(n)]
+2§i:§heq,k(i)heq,k(j) (16)
X E[fV(n—i)f"(n - ju(n - j)]
= E[ff ()] + E[7(n)],
the double summation term being identically zero, thanks to

the independence of f and u. Therefore, by using (15), we
have

o} (n) = o, (n) — E[7(n)], (17)
where E[#(n)] is given by
EL70] = E| & X bk (Dhege ()
ij
PV (n = dyuln — i)Y (n — fu(n - j)]

= Z heq,k(i)zoﬁ ) E[ny(n - l)])
’ (18)

where we used the uncorrelatedness of u(n). The computa-
tion of E[#}(n)] is different according to the model we use,
that is,

2 heqi(iy’oy - E[g(n = 1)], 'y =05,

i
2
[
h l'2 u
2 eq,k() 1+0'5

E[#(n)] =

E[gln—19)?], y=1

(19)
For the case y = 1, we have used the fact that E[g?(n)] =
(14+02)E[ f2(n)], which can be obtained by taking the squares
of the model in (3) and exploiting the independence of f and

u.
Using (17) into the LLMMSE, estimator (5) yields

o (n) = E[%(n)]
oz, (n) (20)
- (g(n) — E[g(m)]),

where E [17,%(11)] is given by (19). The LLMMSE estimate of
the undecimated wavelet coefficients is computable by using
the observed first-order statistics of gi(n) as well as E[g(n)]
and ng (n). All these quantities can be computed as local aver-

fLLMMSE(") = E[g(n)] +

ages. Actually, for detail signals, the function E [g,ih)(n)] may
be assumed to be approximately zero, thus simplifying the
estimator.

After the denoised wavelet coefficients have been esti-
mated, the restored signal is to be reconstructed. A first pos-
sibility is to use a classical wavelet scheme, in which the crit-
ically sampled wavelet coefficients are reconstructed by us-
ing upsampling and synthesis filters. A second possibility is
dropping the downsamplers and upsamplers and using the
scheme shown in Figure 4.

4. EXPERIMENTAL RESULTS

The performance of the proposed method has been assessed
by using both images affected by synthetic speckle and actual
ultrasonic images.

In order to evaluate quantitatively the performance of the
algorithm, we used images corrupted by synthetic noise. The
noise model in (3) with y = 0.5 and y = 1 has been used.
We have compared the spatial LLMMSE algorithm, proposed
for y = 1in [26], and denoted hereafter as Kuan filter, with
its multiscale version denoted as undecimated wavelet scal-
ing (UWS). The test image Lenna has been corrupted by a
speckle pattern characterized by values of y equal to either
0.5 or 1. Raw images with SNR = 2.9dB and SNR = 9.9dB
have been processed. Table 1 shows the SNR obtained after
using the Kuan filter and UWS algorithm. As can be seen,
UWS outperforms Kuan filter of about 2-3 dB. In Figure 5,
visual results show that UWS yields better performances in
terms of both speckle removal and image contrast enhance-
ments with respect to Kuan filter.

Ultrasonic images have been acquired with two different
probes. In particular, an image of a human liver has been
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(c) (d)

FIGURE 5: (a) Original image Lenna. (b) Speckled image corrupted
with y = 1 and SNR = 2.9dB. (c) Image obtained by filtering with
Kuan’s algorithm. (d) Image obtained by filtering with UWS algo-
rithm.

TaBLE 1: SNR (dB) of denoised images. Raw image with either
SNR = 2.9dB or SNR = 9.9dB. Noise generated and filtered as-
suming y = 0.5and y = 1.

. SNR =2.9dB SNR =9.9dB
Filter
y=0.5 y=1 y =05 y=1
Kuan 11.9 12.3 15.5 15.9
UWS 14.1 15.7 18.6 19.2

generated by using a 5-MHz probe, and an image of the
carotid artery bifurcation has been generated by using a 7.5-
MHz probe. Both of these probes are phased arrays of 128
elements. The focus has been set at a distance of around 5
centimeters from the probe-tissue interface. After envelope
detection and logarithmic compression, the images look like
as they appear in Figures 6a and 7a. The two darker circles
appearing almost in the center of Figure 6a are the transverse
sections of the carotid artery bifurcation. In this image, the
main effect of speckle is to reduce the contrast around the
borders of the arteries, highlighting no significative struc-
tures in low-level signal regions. Moreover, it tends to mask
the real structure of the tissues surrounding the vessels. The
scanning of the liver is visible in the bottom area of Figure 7a.
Particularly interesting interfaces of the abdominal tissues
are visible in the zone near the probe, positioned at the top
of the figure. Speckle noise effects are evident in the region
representing the liver, where a strong granular pattern is su-
perimposed to the characteristic texture of the liver.

(c) (d)

FiGuUrek 6: (a) Ultrasonic image of a carotid artery bifurcation. (b)
Results of filtering obtained with frequency compounding. (c) Kuan
filter. (d) UWS filter.

(c) (d)

FIGURE 7: (a) Ultrasonic image of the liver and some abdominal in-
terfaces. (b) Results of filtering obtained with frequency compound-
ing. (¢) Kuan filter. (d) UWS filter.

TaBLE 2: Estimated noise model parameters.

Image y Oy
Liver 0.965 0.485
Carotid 1.079 0.311
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F1GURE 8: Filtering of a single trace. Original trace (solid line) com-
pared to the filtered traces (dashed lines) obtained with (a) fre-
quency compound, (b) Kuan filter, and (c) UWS algorithm.

Three bands frequency compounding has been applied
to the acquired signals for a comparison with the proposed
denoising methods. Results obtained by applying this tech-
nique are shown in Figures 6b and 7b. Frequency compound-
ing improves the image quality, removing part of the gran-
ular speckle pattern that corrupts the original texture of
the tissue, at the price of a reduction of resolution in the
longitudinal direction. However, speckle still affects darker
areas.

Both ultrasonic images have been processed, after enve-
lope detection, with the filters proposed in this paper. The
knowledge of the variance 62 of the noise generator pro-
cess and of the parameter y is needed to filter the images.
A procedure to estimate 02 and y has been proposed in [30].
The method is based on the fact that, in homogeneous areas,
log o, is a linear function of log E[g], where the linear func-
tion parameters are dependent on y and 2. Hence, linear-
best fitting of measured data yields their estimates. The es-
timated parameters y and o2 for the acquired images are
shown in Table 2. These results reveal that the actual value of
y for our imaging system is approximately equal to 1. Thus,
the case y = 0.5 will not be considered for actually acquired
images.

The scanned signals have been processed with Kuan fil-
ter and UWS after envelope detection and before logarithmic
compression. Applying Kuan filter yields the results shown
in Figures 6¢ and 7c. In this case, less speckle is smoothed
out with respect to frequency compounding both in low- and
high-level areas. The results obtained with the UWS algo-
rithm are displayed in Figures 6d and 7d. The filtered image
reveals the real structure of tissues, preserving the sharpness
of edges and without loss of resolution.

In order to betterly understand the behavior of each dif-
ferent filter, a single trace of the ultrasonic scanner and its
filtered versions are shown in Figure 8. The signal is a por-
tion of a trace belonging to the scan of the liver. The position
of the several interfaces can be detected as peaks in the trace.
Frequency compound, Kuan filter, and UWS algorithm have
been applied. Results show that frequency compound seems
to preserve most of the edges of reflectors and to remove
speckle noise. Kuan filter tends to destroy strong reflectors
peaks and smooth out small structures. The UWS algorithm
preserves peak positions and sharpness as well as smoothes
low-level signal regions.

5. CONCLUSIONS

In this paper, a procedure to denoise images affected by
additive signal-dependent noise has been proposed. The
method relies on the knowledge of a general parametric
model for the additive noise and uses LLMMSE estimation in
an undecimated wavelet domain. The proposed method has
been tested on both synthetically speckled images and ultra-
sonic images. Experimental results of the proposed method
demonstrate an efficient rejection of the distortion due to
speckle with respect to other commonly used noise reduc-
tion techniques.
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