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Cardiac output is often measured by indicator dilution techniques, usually based on dye or cold saline injections. Developments
of more stable ultrasound contrast agents (UCA) are leading to new noninvasive indicator dilution methods. However, several
problems concerning the interpretation of dilution curves as detected by ultrasound transducers have arisen. This paper presents a
method for blood flowmeasurements based on UCA dilution. Dilution curves are determined by real-time densitometric analysis
of the video output of an ultrasound scanner and are automatically fitted by the Local Density Random Walk model. A new
fitting algorithm based on multiple linear regression is developed. Calibration, that is, the relation between videodensity and
UCA concentration, is modelled by in vitro experimentation. The flow measurement system is validated by in vitro perfusion of
SonoVue contrast agent. The results show an accurate dilution curve fit and flow estimation with determination coefficient larger
than 0.95 and 0.99, respectively.
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1. INTRODUCTION

The measurement of cardiac blood flow, referred to as car-
diac output (CO), is a common practice in the operating
room as well as in the intensive care unit. Nowadays the stan-
dard techniques for COmeasurements are the thermodilution
and the dye-dilution. As these techniques require catheteriza-
tion, they are considered invasive. The development of suffi-
ciently stable ultrasound contrast agents (UCA) has led to the
consideration of their applicability as indicators in dilution
techniques [1, 2, 3, 4]. UCA are microbubbles (diameter of
few µm) of gas stabilized by a shell of biocompatible mate-
rial, which are easily detectable by ultrasound analysis [5]. In
vitro studies, mainly based on the radio frequency output of
the ultrasound scanner, have confirmed that the use of UCA
is suitable for flow measurements [6, 7, 8, 9, 10, 11].

A newmethod for flowmeasurements, which can be used
for CO estimations, is presented in this study. It is based

on the density analysis of the video output of an ultrasound
scanner, referred to as videodensitometry. The videodensito-
metric approach has the advantage of being applicable in ev-
ery ultrasound scanner since a video output is always avail-
able. The same is not true for the radio frequency output,
which is available in only a few devices. The mean video
density (gray-level) in a selected region of interest (ROI) ver-
sus time is recorded to obtain the density-time curve (DTC).
Once the DTC is calibrated, that is, when the relation be-
tween the video density and the concentration of the contrast
has been established, it is referred to as an indicator dilution
curve (IDC). The IDC contains all the information for the
flow estimation.

Calibration and modeling of the curve are the two cru-
cial issues for a reliable flow measurement. The in vitro cali-
bration shows a range of indicator concentrations where the
relation between the video density and the concentration of

mailto:m.mischi@tue.nl
mailto:ton.kalker@ieee.org
mailto:Korsten@chello.nl


480 EURASIP Journal on Applied Signal Processing

the contrast is linear. Within this range the ultrasound at-
tenuation due to the contrast and the nonlinearity (usually
logarithmic compression) introduced by ultrasound scan-
ners can be neglected. The IDC is fitted to a suitable model
to determine the parameters of interest. The model and the
fitting algorithm have to be robust to the small signal-to-
noise ratio (SNR) due to the measurement system and the
recirculation of the contrast. The Local Density RandomWalk
(LDRW)model, which was introduced by Sheppard and Sav-
age in 1951 [12, 13], is adopted to fit the IDC. It gives a phys-
ical interpretation of the dilution process [14] and further-
more, although it has never been applied to UCA dilution,
it gives the best least squares estimation of the IDC when
applied to dye-dilution and thermodilution measurements
[15, 16, 17, 18, 19, 20].

A new fitting algorithm based on multiple linear regres-
sion has been developed to fit the IDC by the LDRW model.
It allows avoiding the convergence problem of the classical
nonlinear fitting algorithms such asGauss-Newton (GN) and
Levember-Marquardt (LM) [21].

A hydrodynamic experimental model is used for the in
vitro validation of the method. SonoVue1 contrast agent is
injected and detected by a transesophageal ultrasound trans-
ducer. SonoVue is a new contrast made of microbubbles con-
taining sulfur hexafluoride (SF6) and stabilized by phospho-
lipids.

The use of transesophageal echography (TEE) [22] is made
in perspective of the in vivo use (in humans) of this tech-
nique. This approach improves the SNR since it avoids the
noise introduced by ribs and lungs in the classical transtho-
racic inspection. In addition, since the TEE transducer can be
placed almost in touch to the left atrium, it could allow using
the in vitro calibration for the in vivo experimentation.

2. METHODOLOGY

2.1. Theory of the LDRWmodel

The LDRWmodel is a monodimensional characterization of
the dilution process (see Figure 1). It describes the injection
of an indicator into a straight tube where a fluid (carrier)
flows with constant velocity u. The assumptions are a fast in-
jection and a Brownian motion of the indicator, whose par-
ticles interact by pure elastic collisions. Without any loss of
generality, we consider the injection time t0 and the injection
position x(t0) to be equal to zero. If we focus on the discrete
motion of a single particle, its position X(nT) at time nT can
be described by the stochastic process given by

X(nT) =
n∑
i=1

S(iT), (1)

where S is a random variable that represents the distance cov-
ered by the particle in the time interval T (single step).

1SonoVue, trade mark of Bracco Diagnostics (Geneva), information
available at http://www.bracco.com/Bracco/Internet/Imaging/Ultrasound/.
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Figure 1: LDRW experimental model.

No assumptions are made about the probability density
function of the random variable S. As a consequence of the
Brownian motion hypothesis, each step S(iT) is independent
from the previous ones and X(nT) is a Markov process [23].
Therefore, for increasing n (or decreasing T) we can apply
the central limit theorem [24] to the process X(nT). If µ and
σ are the mean and the standard deviation of S, respectively,
then the probability density function of the random variable
X at time nT is described by the processW(x, nT) as follows:

W(x, nT) = e−(x−nµ)2/2nσ2√
2πnσ2

. (2)

In terms of continuous time t = nT (with T infinitely
small), (2) can be expressed by the Wiener process [25] as

W(x, t) = e−(x−tu)2/2tα√
2πtα

, (3)

where α = σ2/T and u = µ/T .
The concentration of the indicator C(x, t) is determined

by (m/A)W(x, t), where m is the mass of injected indicator
andA is the section of the tube. Thus,C(x, t) is described by a
normal distribution that moves along the tube with the same
velocity of the carrier (mean equal to tu) and spreads with a
variance that is a linear function of time (variance equal to
tσ2). If we consider α = 2D (D diffusion coefficient), C(x, t)
is the solution of the monodimensional diffusion with drift
equation given as

∂C(x, t)
∂t

= D
∂2C(x, t)

∂x2
− u

∂C(x, t)
∂x

(4)

with the boundary conditions [14]

C(x, 0) = m

A
δ(x), (5)∫∞

0
C(x, t)dx = m

A
. (6)

The conditions stated in (5) and (6) express the fast in-
jection hypothesis and the mass conservation law, respec-
tively. Equation (4) represents the link between the statisti-
cal and the physical interpretation of the dilution process. In
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Figure 2: Examples of LDRW curves with different λ (γ = 10 and
m/q = 1).

order to obtain a model to describe the IDC, we must focus
on a fixed section of the tube (detection section) where the
concentration of the indicator is evaluated versus time (see
Figure 1). The distance between the injection point and the
detection section is determined by x = x0 = uγ. Bogaard et
al. [15, 17, 18] formalized the concentration time curve eval-
uated at distance x0 as

C(t) = m

γq
eλ

√
λγ

2πt
e−(λ/2)(t/γ+γ/t), (7)

where q = uA is the flow of the carrier and λ = mu2/D =
mq2/DA2 is a parameter related to the skewness of the curve.

For λ > 10 the curve is almost symmetric while for λ < 2
the curve is very skew (see Figure 2). Themaximum ofC(t) is
reached for t = (γ/2λ)(

√
1 + 4λ2 − 1). Notice that max[C(t)]

is given when t = γ only for λ → ∞. It can be explained by
the physics of the dilution process. If we consider L = x0 as
the characteristic length of the LDRWmodel, we have that 2λ
equals the Peclet number, which is defined as uL/D and is the
hydrodynamic parameter used to quantify the ratio between
convection and diffusion in a dilution process [17, 26]. The
limit λ → ∞ can be interpreted as an infinitely small contri-
bution of the diffusion in comparison to the convection. As
a consequence, all the particles reach the detection section
at the same time γ = x0/u. Therefore, it is evident that the
LDRW model is related to the physical interpretation of the
dilution as described by classic hydrodynamics. Some inter-
esting properties of C(t) are∫∞

0
C(t) = m

q
, (8)∫∞

0 tC(t)dt∫∞
0 C(t)dt

= γ
(
1 +

1
λ

)
. (9)

The flow q can be directly calculated by (8) once the in-
jected dose m is known. Equation (9) is the first moment
of the LDRW model and it is referred to as the mean tran-
sit time (MTT), which is the “mean residence time” of the

indicator before the detection distance x0 [17]. Once the flow
q is known, the volume of fluid between the injection and the
detection point is simply given by (MTT) · q (see [13]).

The models that are adopted to fit the IDC are of-
ten distinguished between compartmental (cascade of mix-
ing chambers, which includes also the mono-exponential
Stewart-Hamilton model) and distributed ones (statistical
distributions such as the LDRWmodel) [16]. However, both
of them can be interpreted as impulse response of a mix-
ing system, since the fast injection of the indicator is usu-
ally modelled by an impulse. In general, the use of dis-
tributed models leads to more precise least square interpo-
lations of the IDC with respect to the compartmental models
[8, 15, 16, 19, 20, 27]. Furthermore, among the distributed
models, the LDRW, the lognormal, and the n-compartmental
model, which can be interpreted as a chi-squared distributed
model [28], fit the IDC better than the first passage time and
the gammamodel [15, 18, 20]. As the LDRWmodel, the first
passage model is also based on a random walk of the parti-
cles, but it assumes that the detection section is crossed only
once [13, 18]. The reported results and the physical interpre-
tation of the model motivate our choice to adopt the LDRW
model to fit the IDC as measured by dilution of UCA.

2.2. Calibration

Videodensitometry is based on gray-level measurements. To
obtain the IDC out of the videodensitometric analysis, the
relation between mean gray-level and real concentration of
the contrast must be defined. This relation, referred to as
calibration, depends on both the ultrasound intensity that is
backscattered by UCA and its conversion into gray levels.

The ultrasound backscatter is defined by the backscatter
coefficient β, which is the scattering cross-section (cm2) per
unit volume (cm3) and per scattering angle (sr). The scatter-
ing cross-section of a bubble is the ratio between the power
scattered out in all directions and the incident acoustic in-
tensity. If a bubble is approximated by a sphere and its ra-
dius changes are described by the Rayleight-Plesset equation
[29, 30], the scattering cross-section σ for a single bubble is
a function of the radius R of the sphere and the ultrasound
frequency f as given by

σ(R, f ) = W(R, f )
I0( f )

= 4πR2[(
fr(R)/ f

)2 − 1
]2

+ δt(R, f )
, (10)

where W is the scattered power, I0 is the incident intensity,
and fr is the resonance frequency [29, 31, 32, 33].

The term δt(R, f ) summarizes all the damping factors.
Damping is due to reradiation, viscosity, thermic losses,
and—only for shell encapsulated bubbles—internal friction.
Since the Rayleight-Plesset equation represents a second-
order system, the scattering cross-section shows a resonance
frequency where the system gives the strongest response in
terms of scattered power. For f � fr it follows that σ(R, f ) �
4πR2, which is the physical cross-section, that is, the bub-
ble surface [32, 34]. The resonance frequency is inversely
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proportional to the radius of the bubbles. Therefore, the to-
tal scattering cross-section σtot depends on the normalized
radius distribution n(R) of the bubbles [31, 35]

σtot( f ) =
∫ Rmax

Rmin

n(R)σ(R, f )dR, (11)

where n(R) is a characteristic of the specific contrast. Assum-
ing an isotropic scattering and a low concentration of bub-
bles, the backscatter coefficient (expressed in cm−1 · sr−1) is

β( f ) = ρnσtot( f )
4π

, (12)

where ρn is the number of bubbles per unit volume concen-
tration) [31].

Therefore, the backscatter coefficient is a linear func-
tion of the UCA concentration [1, 3, 8, 31, 35, 36] and
the backscattered acoustic intensity I that is received by the
transducer can be approximated as

I = V

r2
β( f )I0 = ρnVσtot( f )

4πr2
I0, (13)

where I0 is the acoustic intensity insonating the contrast,V is
the sample volume of contrast, and r is the distance between
the contrast sample and the transducer.

Possible experimental solutions for the estimation of β
are based on the measurement of the ratio between the signal
power detected from the contrast and that detected from an
acoustic mirror (100% reflecting layer) when the contrast is
absent [29, 36, 37]. This is indeed what is often referred to as
integrated backscatter index [36].

The interaction between ultrasound and UCA is not only
described by the backscatter coefficient, but also by the in-
crease of the attenuation coefficient, which represents the loss
of acoustic pressure in Neper per cm. It is due to the viscous
and thermic damping represented by the term δt in (10), and
by the scattering of acoustic energy into multiple directions.
As for the backscatter coefficient, also the attenuation coeffi-
cient can be described by a cross-section surface, referred to
as extinction cross-section [29, 31, 33]. Since for our appli-
cation we use low UCA concentrations, we neglect the atten-
uation effect and we consider the backscattered intensity to
be linearly proportional to the UCA concentration, as given
in (13).

The relation between mean gray-level and UCA concen-
tration is established once the conversion of the backscat-
tered ultrasound intensity into gray level is defined. The ul-
trasound transducer performs a linear conversion between
ultrasound pressure and electrical voltage. Then, after de-
modulation, the voltage is quantized into gray-levels by
means of a nonlinear relation, which is often implemented
as a logarithmic-like compression. In addition, the gamma
compensation and the effects of the machine setting (gain
and time-gain compensation) should be also taken into ac-
count.

Summarizing the linear and logarithmic relations be-
tween UCA concentration and gray-levels, we end up with

a model to describe the calibration curve. It is defined as

M
(
ρn
) = a0 log

(
a1ρn + a2

)
, (14)

where a0, a1, and a2 are the parameters of the model, and
M(ρn) is the mean gray-level as a function of the UCA con-
centration ρn. The term a1ρn + a2 describes the linear rela-
tion between backscattered intensity and UCA concentration
ρn (see (13)) and the coefficient a0 takes into account the
squared relation between voltage and ultrasound intensity as
well as the unknown basis of the logarithmic compression.

This model was used to fit the experimental calibration
data. The machine setting was kept fixed and a linear gamma
was set. The adopted contrast agent was SonoVue. The bub-
bles contain an innocuous gas (SF6, whose molecules are
much bigger than H2O, leading to low diffusiveness) encap-
suled in a phospholipidic shell. The bubble size distribu-
tion extends from approximately 0.7µm to 10µmwith mean
value equal to 2.5µm [37]. Studies on the echogenicity2 of
SonoVue prove that the bigger the bubbles the higher the
backscattered power and the lower the resonance frequency
fr [32]. As a result, the bubble count is a poor indicator of the
efficacy of SonoVue in terms of backscattered power. Much
better is the volume evaluation, which is highly related with
the amount of bigger bubbles.

SonoVue is delivered in a septum-sealed vial containing
25mg of lyophilized product in SF6 gas. After the injection
of 5mL of saline (0.9% NaCl blood isotonic solution) the
product is ready for further dilutions. 100mL rubber bags
were filled with different dilutions of SonoVue in degassed
water. The agent was diluted into saline solution. The bags
and the TEE ultrasound transducer were plunged in water in
order to achieve a good acoustic impedance matching. The
B-mode output [38] of the ultrasound scanner was analyzed
for all the different dilutions and the mean gray-level mea-
surements were fitted by the model in (14) using an LM al-
gorithm. Since the SonoVue bubbles are stable for only a few
minutes [37], each measurement must be executed in a short
time (about three minutes). In addition, both themechanical
index (MI, ratio between the peak rarefactional pressure ex-
pressed inMPa and the square root of the centre frequency of
the ultrasound pulse expressed inMHz [39]) and the num-
ber of frames per seconds (FPS) in the machine setting were
set low (MI = 0.3 and FPS = 25) in order to avoid bubble
disruption. The burst carrier frequency was 5MHz and only
fundamental harmonic imaging was used.

Themodel is tested on two different scanners to verify the
machine independency of the model. Figure 3 shows the re-
sults as measured with a Sonos 4500 and a Sonos 5500 ultra-
sound scanners. The determination coefficient (ρ2, correla-
tion coefficient squared) between the experimental data and
the fitted model is 0.99 and 0.98, respectively. Sometimes,
due to the presence of air bubbles, it was difficult to establish
the background mean gray-level and therefore the correct

2Echogenicity is the capability of the contrast to generate echoes when
interacting with pressure waves.
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Figure 3: (a) The calibration fit for the Sonos 4500 scanner. The
machine setting was MI = 0.3, FPS = 25, burst carrier frequency =
5MHz, gain = 44, and time gain = 50. The estimated parameters of
the fitted model are a0 = 83.1, a1 = 1.6, and a2 = 1.2. The determi-
nation coefficient is 0.99. (b) The calibration fit for the Sonos 5500
scanner. The machine setting was MI = 0.3, FPS = 25, burst carrier
frequency = 5MHz, gain = 44, and time gain = 50. The estimated
parameters of the fitted model are a0 = 90.5, a1 = 3.2, and a2 = 1.4.
The determination coefficient is 0.98.

measurements for very low UCA concentrations. Since the
logarithmic fitting is very sensitive to the low-concentration
data, it is not easy to apply the nonlinear calibration for flow
measurements.

Instead, it is interesting to notice that for low concen-
trations of SonoVue (below 5mg · L−1), the relation be-
tween UCA concentration and mean gray-level can be
approximated by a linear function M(ρn) = a0 + a1ρn with
ρ2 � 0.95. Therefore, we use this simple linear relation for
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Figure 4: Example of noisy IDC.

the conversion of the DTC into IDC. As a consequence, in
terms if fitting performance, it does not make sense to distin-
guish between IDC andDTC. In fact, under linear calibration
hypothesis, the DTC could be fitted before calibration with-
out any loss of accuracy.

2.3. Fitting of the LDRWmodel

The algorithms that are used for the LDRW model fit are
based on either LM or GN nonlinear least square interpo-
lations. The LM and the GN interpolations are recursive al-
gorithms and need an initial estimation of the parameters
[21]. Such an estimation is usually performed by the inflec-
tion triangle technique or by linear regression to a segment of
the ln-transformed IDC (transformed by natural logarithmic
function ln) [19, 40]. The inflection triangle is constructed
by the tangents to the inflection points of the IDC and its
shape can be related to the parameters of the LDRW model
[18]. The disadvantage of the nonlinear fitting is the conver-
gence problem. In fact the convergence time is strongly de-
pendent on the initial estimation of the parameters. Further-
more, when the IDC (or the DTC) is noisy (see Figure 4),
the fitting can converge into local minima. The uncertainty
about the injection time t0 adds even more complexity.

Therefore, we have developed a new automatic fitting al-
gorithm that is based on multiple linear regression. No as-
sumptions are needed on the input IDC and the injection
time. The calibrated density-time signal C(t), which contains
the IDC, is processed in two main phases.

In the first phase C(t) is filtered by a low-pass FIR filter
(finite impulse response, impulse response defined by h(t))
to remove the high frequency noise introduced by the mea-
surement system. Then the filtered signal G(t) = h(t)∗C(t)
is used to determine the position of the IDC within the sig-
nal C(t). The time coordinate tmax of the maximum of G(t)
is determined, and based on this value the time interval for
performing the multiple linear regression is established. This
regression time interval is defined for t ∈ [tstart, tend], with
G(tstart) = 0.1G(tmax) along the rising edge of G(t) and
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G(tend) = 0.3G(tmax) along the descending edge of G(t),
which is the recirculation appearance time [19]. In perspec-
tive of future in vivo applications, the recirculation appear-
ance time defines the time when the contrast reappears into
the ROI after a first passage through all the circulatory sys-
tem.

The initial part of C(t) contains only background noise
from the measurement system while the IDC is absent. Fur-
thermore, especially when γ is large, the first part of the IDC
shows a low SNR (smaller than −50dB). As a consequence,
it is impossible to determine the injection time t0 by a simple
analysis of either G(t) or C(t). The definition of tstart ensures
that tstart > t0 and therefore that the regression interval does
not include the low-SNR initial part of the IDC.

Before starting the linear fitting, the baseline of C(t) is
estimated and subtracted. It is estimated as the mean of C(t)
calculated in an early time interval with t < t0.

Once the interval [tstart, tend] is defined and the baseline
is adjusted, in the second phase of the fitting process C(t)
and the LDRW model are ln-transformed to obtain a linear
model and to apply themultiple linear regression. The result-
ing linear model is given as

ln
(
C
(
x1
))

+
1
2
ln
(
x1
) = P1 − P2x1 − P3x2,

x1 = t − t̂0, x2 = 1

t − t̂0
,

P1 = λ + ln
(
m

γq

)
+
1
2
ln
(
λγ

2π

)
,

P2 = λ

2γ
, P3 = λγ

2
,

(15)

where P1, P2, and P3 are the parameters to be optimized, x1
and x2 are the variables of the linearized model, and t̂0 is the
estimate of t0. The least squares estimation of the parameters
P1, P2, and P3 is solved by (17) [41], which gives the optimum
estimation Popt = [Popt

1 P
opt
2 P

opt
3

]
. The matrix [X] and the

vector Y are defined as shown in (16), where xi1 and xi2 (i ∈
[1 · · ·n]) are the n samples of x1 = t− t̂0 and x2 = (t− t̂0)−1

in the regression interval

Popt = ([X]t[X])−1[X]tY =

P
opt
1

P
opt
2

P
opt
3

 , (16)

[X] =


1 x11 x12
1 x21 x22
...

...
...

1 xn1 xn2

 ,

Y =



ln
(
C
(
x11
))

+
1
2
ln
(
x11
)

ln
(
C
(
x21
))

+
1
2
ln
(
x21
)

...

ln
(
C
(
xn1
))

+
1
2
ln
(
xn1
)


.

(17)
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Figure 5: MSE of the fitting in the regression interval as function of
tstart − t̂0.

However, t0 is not determined yet. Since by definition
tstart > t0, the optimum t0 can be estimated by applying
(16) and (17) recursively for decreasing values of t̂0 staring
from t̂0 = tstart until the minimum square error of the fit
is found. This technique is based on the characteristic rela-
tion between the mean square error (MSE) of the fit and t̂0
(t̂0 ≤ tstart). In fact, the relation shows a monotonic behavior
and a global minimum for t̂0 = t0 (see Figure 5). In order
to decrease the time-complexity the recursive search is per-
formed by two subsearches with resolution of 40ms (as the
CCIR system, standard European format [42]) and 1ms, re-
spectively. Therefore, the final time resolution is 1ms.

Curves of 2000 samples are fitted in less than 1 s (Mat-
lab3 implementation with an AMD 750MHz processor and
128MBytes RAM). When C(t) is defined by (7), the curve fit
is very accurate.

When C(t) is measured experimentally, it emerges the
importance of defining tstart large enough to exclude from
the linear fitting the initial part of the IDC. In fact, due to
the noise, the limit t → t0 of ln[C(t)] does not go to −∞
as expected. Therefore, when the regression interval is close
to t0, the parameter P3, which is a factor of the hyperbole
1/(t − t0), is not properly estimated. Figure 6 shows ln[C(t)]
in the complete time domain (a) and in the selected regres-
sion interval (b). It is evident that the linear regression is not
performed on the low-SNR time interval.

The performance of the fitting algorithm is evaluated by
adding noise to the theoretical LDRWcurveCt(t). The exper-
imental measurements show amodulated white noise, whose
amplitude is linearly related to the amplitude of C(t) with
ρ2 > 0.7 (see Figure 7). Therefore, artificial white noise N(t)
is generated by a random sequence of numbers whose vari-
ance (var) is a linear function of C2

t (t), that is, var[N(t)] =

3Matlab 6, trade mark of The Mathworks, information available at
http://www.mathworks.com/.

http://www.mathworks.com/
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Figure 6: Linear fitting of ln[C(t)]. (a) The fitting in the complete
time domain with t0 = 0. Note that C(t) does not go to −∞ when
t → 0 because of the noise. Re[ln[C(t)]] is plotted for negative val-
ues of C(t). (b) The time interval where the multiple linear regres-
sion is performed.

kC2
t (t), so that k can be interpreted as (SNR)−1. The low-

power background noise is neglected. The fitting of CN (t) =
Ct(t) + N(t) is performed for k ∈ [0 · · · 1/16]. Lower SNRs
have never been met in the experimentation.

The evaluation of the fitting is mainly aimed to study the
behavior of the estimation of the area below Ct(t) when noise
is added. The area below the LDRW model is equal to m/q
(see (8)), which is indeed the only parameter involved in the
flow measurement. Once the vector Popt of (15) and (16) is
estimated on the curve CN (t), assuming M(ρn) = ρn (linear
calibration with unitary angular coefficient, that is, IDC =
DTC), the IDC estimated area is given as[

m

q

]
e
=
√

π

P
opt
2

e
(
P
opt
1 −2

√
P
opt
2 P

opt
3

)
. (18)

The estimated area [m/q]e of the LDRW fit of CN (t) is
compared to the area m/q below Ct(t). The results, aver-
aged over 1000 different noise sequences, show a negative
bias of ([m/q]e − m/q) that increases with increasing noise
(i.e., increasing k). Notice that bias/[m/q]e ∼= bias/(m/q). No
significant differences are appreciated for different λ (λ ∈
[1 · · · 10]). Different γ and m/q also lead to the same re-
sults. Therefore, the results obtained for different λ are av-
eraged as shown in Figure 8 and interpolated by linear re-
gression (ρ2 > 0.9990). The resulting linear relation between
(bias/[m/q]e) and k is

bias
[m/q]e

∼= 0.5255 · k. (19)
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Figure 7: A measured IDC with fitted LDRW model (a) and the
absolute value of the difference between the model and the experi-
mental data (b). The noise is clearly correlated to the signal ampli-
tude.

The bias described in (19) can be explained as an ef-
fect of the ln-transformation of CN (t) before the linear
fitting, which changes the error metrics. In fact, the ln-
transformation compresses the positive noise more than the
negative one. As a consequence the fitted curve is lower than
the original Ct(t), resulting in a reduced area below the curve
(see Figure 9).

Based on (19), a compensation of this effect is imple-
mented in the fitting algorithm. k is determined as the vari-
ance of the difference between the LDRW fit and C(t)—
estimated where the LDRW fit is larger than 95% of its
peak—divided by the squared value of the LDRW-fit peak.
When the fitting includes the compensation algorithm, no
bias is found in the estimation of the integral ofC(t). Figure 9
gives an example of compensation in case of high power
noise (k = 1/16).
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Figure 8: The increase of the negative bias (normalized to the esti-
mated area [m/q]e) as function of k.
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Figure 9: Simulation of the fitting. The dots and the upper curve
represent the LDRW model (λ = 5) with and without added noise
(k = 1/16), respectively. The mid and the lowest curves are the
LDRW fit of the noise-added curve with and without area compen-
sation.

The variance of ([m/q]e−m/q) is not affected by the com-
pensation algorithm. It is a linear function of k(m/q)2. The
angular coefficient for λ ∈ [1 · · · 10] is estimated to be equal
to 0.0049 with ρ2 = 0.98. Therefore, in the worst considered
case (k = 1/16) the standard deviation of ([m/q]e −m/q) is
equal to 1.75% of m/q. No bias is recognized in the estima-
tion of λ and γ.

2.4. Experimental in vitro setup

A hydrodynamic in vitro circuit was built to test the method
(see Figure 10). A centrifugal pump and a magnetic flowme-
ter (clinically used for extracorporeal circulation) generated
and measured the flow, respectively. The flow measured by
the magnetic flowmeter was the reference to validate the per-
formance of the ultrasound method.

Water input

Solution output

Water basin

BAG

Ultrasound
transducer

Contrast injection (bolus)

Magnetic
flowmeter

Centrifugal
pump

Figure 10: Experimental flow-measurement setup.

The contrast injector was positioned after the pump in
order to avoid the collapse of the contrast microbubbles due
to the turbulence of the pump. The TEE transducer was
placed on a plastic bag, considered as a model for a cardiac
chamber. The ultrasound transducer and the plastic bag were
both plunged in a water-filled basin for the improvement of
the acoustic impedance matching.

The adopted ultrasound scanner was a Sonos 4500 (the
same machine used for the calibration) equipped with TEE
transducer. The centrifugal pump was covered by aluminium
foils for magnetic insulation. Such a solution allowed avoid-
ing the interference between the Sonos 4500 scanner and the
pump.

A bolus (10ml) of SonoVue with a concentration of
50mg · L−1 was injected and detected in B-mode while flow-
ing through the bag. The setting of the ultrasound scanner
was the same as adopted for calibration purposes.

A critical part of the setup is the injector. A double injec-
tor system was developed in order to avoid air-bubble injec-
tions. Several injections of degassed water were used in order
to test the system. No air bubbles were detected.

The video output of the ultrasound scanner was grabbed
by the 1407 PCI4 frame grabber and processed in real time
to obtain the DTC, that is, the plot of the mean gray level in
the selected ROI versus time. The DTC was then calibrated
to obtain the IDC and fitted by the LDRWmodel. The devel-
oped software integrates Labview,5 Imaq Vision,6 andMatlab
implementations.

Since each ultrasound scanner is provided with video-
recorder (VCR), it is easy to generate analogical archives

41407 PCI, National Instruments, specs available at http://sine.ni.com/
apps/we/nioc.vp?cid=11352&lang=US.

5Labview 6, trade mark of National Instruments, information available
at http://sine.ni.com/apps/we/nioc.vp?cid=1385&lang=US.

6Imaq Vision for Labview 6, trade mark of National Instruments, infor-
mation available at http://sine.ni.com/apps/we/nioc.vp?cid=1301&lang=US.

http://sine.ni.com/apps/we/nioc.vp?cid=11352&lang=US
http://sine.ni.com/apps/we/nioc.vp?cid=11352&lang=US
http://sine.ni.com/apps/we/nioc.vp?cid=1385&lang=US
http://sine.ni.com/apps/we/nioc.vp?cid=1301&lang=US
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Figure 11: LDRWmodel fit of a DTC, ρ2 = 0.97.

(S-VHS videotapes) and perform further off-line video anal-
ysis by playing the videotapes on a VCR.

3. RESULTS

The results of the LDRW model fit of the measured DTCs
give ρ2 > 0.95. Figure 11 shows the fit of the DTC in Figure 4.

The MSE is not considered as a parameter to validate the
LDRW model since it depends on the noise power. Instead,
the MSE is used to compare the developed linear fitting al-
gorithm to the standard LM algorithm. The initial values of
the LM fitting are the parameters estimated by linear fitting.
The results show that the LM algorithm does not improve the
MSE of the linear fit.

The flow estimates are validated by comparison with
those measured by a magnetic flowmeter inserted in the ex-
perimental hydrodynamic circuit (see Figure 10). Boluses of
10ml of SonoVue diluted 1:100 (i.e., 50mg · L−1) were in-
jected for the flowmeasurements. In general, in the perfusion
bag a peak concentration of 5mg · L−1 was hardly reached.
Therefore, the linear calibration hypothesis was applicable.
The results are given in Figure 12. The determination coeffi-
cient between the flowmeasurements executed by UCA dilu-
tion and by magnetic flowmeter is 0.9943.

4. DISCUSSION AND CONCLUSIONS

This paper presents a new flow measurement technique
based onUCA dilution. The DTC is obtained by videodensit-
ometric analysis of the video output of an ultrasound scan-
ner. In vitro experimentation was carried out in order to
define a relation between the DTC and the IDC. The ex-
perimental calibration curve shows a concentration interval
where the relation between video density and UCA concen-
tration can be approximated by a linear function. Therefore,
the flow measurements are performed within this linear in-
terval.
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Figure 12: Ultrasound flow measurements (Y-axis) compared to
the magnetic flowmeter ones (X-axis). The determination coeffi-
cient of the regression line is 0.9943.

For the first time the LDRW model is adopted to inter-
polate UCA dilution curves. The chosen model is reported
in literature as to give the most accurate IDC fit and a phys-
ical interpretation of the dilution process. A new fast linear
fitting algorithm has been developed in order to interpolate
the IDC by the LDRW model. The results confirm the reli-
ability and robustness of the fitting algorithm as well as the
effectiveness of the LDRWmodel.

The accuracy of the system in the in vitro flow mea-
surements is higher than the accuracy reported for the stan-
dard indicator dilution techniques, such as dye- or thermo-
dilution.

Since the system is validated only by in vitro experimen-
tation, the next step will be the in vivo validation. Improve-
ments in the in vitro calibration setup are also planned in or-
der to allow using a nonlinear calibration curve for the flow
measurements.

The transesophageal approach allows to place the trans-
ducer almost in touch with the left atrium (e.g., in the four
chamber view) and therefore to minimize the attenuation. As
a consequence, the results of the in vitro calibration could be
applied directly to the in vivo measurements.

The advantage of using UCA for in vivo measurements of
cardiac output is the low invasiveness of the method, which
does not require catheterization. In addition, once the sys-
tem is able to measure cardiac output, it could be also used
for the simultaneous measurements of both ejection faction
and distribution volume based on the same indicator dilu-
tion principles.
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