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Many common modalities of medical images acquire high-resolution and multispectral images, which are subsequently processed,
visualized, and transmitted by subsampling. These subsampled images compromise resolution for processing ability, thus risking
loss of significant diagnostic information. A hybrid multiresolution vector quantizer (HMVQ) has been developed exploiting
the statistical characteristics of the features in a multiresolution wavelet-transformed domain. The global codebook generated
by HMVQ, using a combination of multiresolution vector quantization and residual scalar encoding, retains edge information
better and avoids significant blurring observed in reconstructed medical images by other well-known encoding schemes at low bit
rates. Two specific image modalities, namely, X-ray radiographic and magnetic resonance imaging (MRI), have been considered as
examples. The ability of HMVQ in reconstructing high-fidelity images at low bit rates makes it particularly desirable for medical
image encoding and fast transmission of 3D medical images generated from multiview stereo pairs for visual communications.

Keywords and phrases: high fidelity hybrid encoding, global codebook, low bit rate, multilevel wavelet feature statistics, efficient

retrieval of high-resolution medical images.

1. INTRODUCTION

Large volumes of digitized radiographic images accumulated
in hospitals and educational institutes pose a challenge in im-
age database management, requiring high fidelity and image
modality-specific compression approaches. Such level of im-
age management necessitates a system that provides easy ac-
cess and high fidelity reconstruction. The use of image com-
pression for fast medical image retrieval is a debatable subject

since high compression ratios usually introduce critical in-
formation loss that might impede accurate diagnosis. How-
ever, requirements for image quality also differ depending
on applications. It is therefore desirable to construct a flexi-
ble image management system that can cater to the specific
needs of its users. The system should address important is-
sues such as user-preferred image resolution and scale and
transmission time and method (progressive or nonprogres-
sive transmission), as well as possess a user friendly interface.
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FIGURE 1: A block diagram of the HMVQ coding scheme.

Such system’s applications are broad in nature and include
telemedicine, video conferencing, and distance education, to
name a few [1, 2].

Content-based retrieval of specific images from large im-
age databases is a challenging research area relevant to many
types of image archives encountered in medical, remote sens-
ing, and hyperspectral imagery. In general, image features
must be extracted to facilitate indexing and content-based
retrieval procedures. When multiscale vectors are used for
codebook training using the Euclidean distance as a distor-
tion measure, distortions from each coefficient of the vec-
tor are equally weighed, thus, the contribution to the dis-
tortion depends on the coefficients themselves instead of
their orders. This principle has been proven successful in
scalar coding methods such as the embedded zerotree wavelet
(EZW) coding [3] and the set partitioning in hierarchical
trees (SPIHT) [4]. In EZW and SPIHT, many bits have to
be used in distinguishing significant coefficients and coding
their locations. The use of multiscale vectors [5, 6, 7, 8, 9] can
further improve performance by saving valuable bits used in
coding the locations of important coefficients since the loca-
tion information has already been embedded in the vectors
and their order.

Traditionally, vectors are generated by grouping neigh-
boring wavelet coefficients within the same subband and
orientation; square blocks are usually used for this pur-
pose. The size of the block (i.e., vector dimension) is usually
chosen randomly or as a result of bit-allocation optimiza-
tion. The resulting multiresolution codebooks [10] fail to
form efficient global codebooks for large medical image data
sets. The hybrid multiscale vector quantization (HMVQ)
scheme described in this paper, on the other hand, gener-
ates multidimensional vectors across multiresolution levels,

thus eliminating the problem of building codebooks for all
subimages at each level. In addition, analysis of the mag-
nitude distribution of the multiscale vectors has led to the
novel scheme of HMVQ, having an embedded residual scalar
quantization within the global codebook. Preliminary results
of HMVQ have been presented in [7, 8, 9], showing excellent
performance for good quality reconstruction of natural and
medical images. However, a codebook designed for a specific
application is desirable to obtain high fidelity image recon-
struction at low bit rates. This paper presents the analysis
and criteria of designing such codebooks (HMVQ) in detail
with a novel wavelet feature statistics-based hybrid encod-
ing, including vector quantization and residual scalar encod-
ing. Results obtained from three specific 2D medical image
data sets are included with discussions on the advantages of
HMVQ in encoding and fast transmission of 3D medical im-
ages.

We have organized this paper by stating the necessity of
designing low bit rate yet high fidelity encoder/decoder for
efficient archiving and transmission of large medical image
data sets in Section 1. Section 2 presents a detailed descrip-
tion of analysis and design of HMVQ. Section 3 presents the
preliminary results of high fidelity reconstruction of two dif-
ferent image modalities. Section 4 addresses the advantages
of extending HMVQ to encoding 3D images generated from
stereo pairs. Section 5 discusses future research and conclu-
sions.

2. ANALYSES AND DESIGN OF HMVQ

Figure 1 shows the complete block diagram of the HMVQ-
based encoder/decoder system. The image in the spatial do-
main is first transformed into the wavelet domain to remove
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the statistical redundancy among image pixels. Codebooks
designed in the transform domain are believed to be closer to
optimal than those designed in the spatial domain, because
the transformed coefficients have better defined distributions
than image pixel distributions [10, 11].

2.1. Multiscale feature extraction

Traditionally, vectors in the wavelet domain are generated by
grouping neighboring wavelet coefficients within the same
subband and orientation in the same way as in the spatial
domain. Vector dimensions vary and depend on the out-
come of the adopted bit allocation scheme. For example, in
[10, 11], bit allocation is obtained based on rate distortion
optimization as a function of subband and orientation. The
total distortion rate function Dr(Rr) is given by

3
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where Dy S?(Ry5?) represents the subimage of the lowest
resolution, Dy, 4(Ry,q4) represents the average distortion re-
sulting from encoding the subimage (m, d) at (R, 4) bits per
pixel, M is the total number of scale, and d represents three
orientations. The total distortion rate function Dr(Rr) is
minimized subject to the total rate Ry, where Ry is defined
as
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The optimized rate at a certain scale m and orientation d is
then given by
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Generally, when Euclidean distance is used as the distortion
measure, + = 2. Then the lower bound is defined by the co-
efficient c(k, 2) of vector dimension k, and is given by

1 k
C(k,2) = (k+—2)ﬂr(1+5>, (4)

where T'(x) is the Gamma function.

As a result, this vector extraction method produces vec-
tors of different dimensions at different scales and orienta-
tions. Consequently, multiresolution codebooks, which con-
sist of subcodebooks of different dimensions and sizes, are
needed. Although the use of subcodebooks makes the vector-
codeword matching process faster, the resulting vector di-
mension and codebook size become image-size dependent.

Therefore, the latter type of vector extraction methods is dif-
ficult to use for training and generating universal codebooks.
On the other hand, motivated by the success of the hi-
erarchical scalar encoding of wavelet transform coefficients,
such as the EZW algorithm and SPIHT, several attempts
have been made to adopt a similar methodology to dis-
card insignificant vectors (or zerotrees) as a preprocessing
step before the actual vector quantization is performed, us-
ing traditional vector extraction methods. In [12], the set-
partitioning approach in SPIHT is used to partially order
the vectors of wavelet coefficients by their vector magnitudes,
followed by a multistage or tree-structured vector quantiza-
tion for successive refinement. In [13], 21-dimensional vec-
tors are generated by cascading vectors from lower scale to
higher scales in the same orientation in a 3-level wavelet
transform. Coefficients 1, 4, and 16 from the 3rd, 2nd, and
Ist level bands of the same orientation are sequenced to form
the desired vectors. If the magnitudes of all the elements of
such a vector are less than a threshold, the vector is consid-
ered to be a zerotree and not coded. After all zerotrees are
designated, the remaining coefficients are reorganized into
lower-dimensional vectors, and then vector quantized.

Our approach of vector extraction resembles only the
first stage of generating vectors similar to [13] but quite dif-
ferent in the way it is organized as explained below. Firstly,
instead of using the multiscale vectors just for insignificant
coefficient rejection, we use the entire multiscale vectors as
sample vectors for codebook training. Secondly, the dimen-
sion of the vector is not limited to 21. Depending on the level
of wavelet transform and the complexity of the quantizer, it
can be varied. Our new way of forming sample vectors takes
both dependencies into consideration. Vectors are formed by
stacking blocks of wavelet coefficients at different scales at
the same orientation location. Since the scale size decreases
as the decomposition level goes up, block size at lower level
is twice the size of that of its adjacent higher level. The same
procedure is used to extract feature vectors for all three ori-
entations. The dimension of the vector is fixed once the de-
composition level is chosen.

In our approach, multiscale feature vectors are extracted
from the wavelet coefficients such that both interscale and
intrascale redundancy can be exploited in vector quantiza-
tion. Figure 2a illustrates how an 85-dimensional vector is
extracted from a 4-level wavelet transformed image. Coeffi-
cients 1, 4, 16, and 64 from the fourth, third, second, and first
level subbands of the same orientation are sequenced. The
use of multiscale vectors for vector quantization has several
advantages over the use of vectors formed from traditional
rectangular blocks. The new multiscale vectors are image-size
independent, retain image features, and exploit intra- and in-
terscale redundancy, and the resulting codebook is scalable
(i.e., higher-dimensional codebooks contain all codewords
for lower-dimensional ones).

The major advantage of using such multiscale vector gen-
eration scheme is that we are able to capture image features
from the coarser version to finer version within one vector,
thus making it image-size independent. This common fea-
ture is illustrated in Figure 2b, where a number of vectors
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FIGURE 2: (a) An example of multiscale vector extraction. (b) Dis-
tribution of multiscale vector magnitudes.

from different images are plotted together to illustrate the
relationship between vector magnitudes with vector dimen-
sions. Thus, when vectors are trained into a codebook, the
codebook incorporates both image features and wavelet coef-
ficient properties. In addition, both intrascale and interscale
redundancy among wavelet coefficients can be efficiently ex-
ploited since the vector contains coefficients inside the sub-
bands and across the subbands. Based on the same principle,
human perceptual models can be embedded into the opti-
mization process [14].

2.2. HMVQ including residual scalar encoding [8, 9]

Residual encoding

All vector quantization schemes result in somewhat blurring
in the reconstructed image, especially when the codebook

size is reduced to meet practical processing speed and storage
requirements. Detail features such as edges can be lost, par-
ticularly, at low bit rates. It is therefore desirable to find an
approach to compensate for the lost details. To accomplish
such a goal, a second-step residual scalar coding is used in
our approach after the vector quantization of the multiscale
vectors. The residual represents the details lost during vector
quantization. Because multiscale vectors preserve the scale
structure of the wavelet coefficients, zerotree-based coding
algorithms such as EZW and SPIHT can be used for resid-
ual coding. When the codebook is well designed, the residual
contains only a small number of large magnitude elements.
Therefore, only a few large magnitude elements have to be
coded, saving a large number of bits.

Possibility of generating universal codebooks

If any image information can be described by a common dis-
tribution and a clustering algorithm that achieves the global
minimum for this type of distribution is used to design a
codebook, such a codebook can be referred to as a univer-
sal codebook [11, 15]. When a simple coding scheme, such
as the one described in [16], is used, a universal codebook
for all types of images is difficult to generate. The problem
of generating a universal codebook can be addressed in two
ways. Firstly, regardless of the source characteristics, an effi-
cient codebook generation algorithm must be used to pro-
duce global codebooks with reasonable computational com-
plexity. Roughly speaking, there are two most popular tech-
niques for codebook generation. One way is to use pattern
recognition techniques to generate codebooks with a large
amount of training data and seek a minimum distortion
codebook for the data [17, 18]. By using training data sets,
the codebook can be optimized for the data type. Clustering
algorithms are usually used for codebook training. However,
well-structured lattice codebooks have also been designed
[19], in which the centroids are predefined once the type of
lattice is selected. Secondly, the ability to characterize image
information by a common distribution is needed. Since it is
obvious that this cannot be accomplished in the spatial do-
main, image coefficients in the transformed domain should
be considered. However, for vector quantization, we are seek-
ing an approach that can use a limited number of vectors
to represent the vast variety of image features as shown in
Figure 2b.

Vector quantization in the wavelet domain

It has already been demonstrated that image wavelet coeffi-
cients possess the most valuable property of having a distri-
bution similar to a generalized Gaussian distribution [10, 11]
for every subband. If the coefficients are adequately decorre-
lated such that the vectors extracted from the coefficients can
be approximated as i.i.d generalized Gaussian distributed,
then the gain in reduction of distortion by vector quantiza-
tion is higher than Gaussian and uniform sources. Because
of such predictable coefficient distributions and theoretically
high distortion reduction, image vector quantization in the
wavelet domain is believed to be able to achieve a better
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performance than in other domains and can be a starting
ground for building a universal codebook.

However, the choice of clustering algorithm has a sig-
nificant effect on codebook generation by vector quantiza-
tion. The LBG algorithm [20], ever since it came to exis-
tence in 1980, it has been the most popularly used cluster-
ing algorithm for vector quantization codebook training be-
cause of its simplicity and adequate performance. However,
its shortcoming of being easily trapped in local minima is
also well known. The recently developed deterministic an-
nealing (DA) [21] algorithm is believed to reach the global
minimum despite lacking theoretical support. Our investi-
gation of LBG, DA, and AFLC [22] reveals various difficul-
ties and advantages associated with each of them in their
application to vector quantization [7, 23]. We came to the
conclusion that when the source distribution is symmet-
ric and rotationally invariant around the origin, DA comes
closer to the global optimum than the other two. Other-
wise, LBG gives the most consistent performance. Fortu-
nately, we can observe that wavelet coefficients are approx-
imately symmetric and rotationally invariant to the origin,
thus, DA is the best choice for accurate codebook training.
However, DA is also computational intensive. Therefore, al-
gorithm selection is a compromise that depends on available
resources.

3. RESULTS

The performance of HMVQ was tested with two different
medical image modalities, MRI and X-ray radiographic data.
Separate codebooks were formed for each modality to have
high fidelity reconstruction at low bit rate by keeping the
codebook size small.

3.1. MRIdata

The first set of training data we used is a group of slices
(slice 1 to slice 31) from a 3D simulated MR image of a
human brain http://www.bic.mni.mcgill.ca/brainweb. This
set of images is an MR simulation of T'1-weighted, zero
noise level, zero intensity nonuniformity, I-mm thick, and
8 bits per pixel (bpp) normal human brain with voxels of
181 X 217 X 181 (X X Y X Z) when it is at a 1-mm isotropic
voxel grid in Talairach space. Thus, the training images are
reasonably different because of the span from top of the brain
to the lower part of the brain despite belonging to the same
class.

Figure 3 shows some of the images from the training set.
A few slices inside the group, for example, slice 6, slice 12, and
so forth, are randomly chosen and excluded from the train-
ing set and later used as test images. A codebook of size 256
is used. Reconstructed images comparing the HMVQ and
SPIHT are shown in Figure 4. The results show that HMVQ
preserves more detail information than SPIHT. This is more
evident in Figure 8 where Canny edge detection operation
has been performed on Figure 4b and Figure 4e. Numerical
comparison on peak signal-to-noise ratio (PSNR) versus bit
rate (PSNR(R)) is summarized in Figure 7.

3.2. X-rayradiographic data

When the targeted images belong to the same category, a
special codebook can be generated to improve the perfor-
mance of HMVQ. To obtain a codebook of reasonable size,
a training set must be selected. Two training sets were chosen
from the cervical and lumbar spine X-ray images collected by
NHANES II [24, 25]. The original images were 12 bpp with
size of 2487 by 2048. To aid processing, the images are con-
verted to 8 bpp. For experimental purposes, parts of the im-
ages that contained important information were cropped, re-
sulting in training images of size 2048 by 1024. A codebook
containing 256 multiscale codewords is generated for lum-
bar image encoding. Similarly, another codebook is obtained
for the cervical spine images, which are also 8 bpp 1024 by
1024 gray scale images. The test images, which are outside
the training set, are used to demonstrate the quality of the re-
constructed images at different bit rates. Figure 5 presents the
lumbar and cervical spine test images, all displayed at a ratio
of 1 to 256 of their original sizes. Because it is not practical
to show the reconstructed images in their original sizes here,
a region of interest in the spine area is shown in Figure 6,
with an edge detection comparison in Figure 8. Here, bet-
ter edge preservation of HMVQ codec over SPIHT codec can
be clearly observed. The overall PSNR versus bit rate perfor-
mance of the HMVQ codec is compared to that of SPTHT in
Figure 7a for lumbar images and Figure 7b for cervical spine
images.

Quantitative evaluation of HMVQ performance

The effectiveness of HMVQ in terms of quantitative mea-
sures such as the PSNR is demonstrated for medical as well
as standard images in Figure 8. For standard images, 85-
dimensional vectors from a set of 28 images, most of which
are from the USC standard image database and some are
taken from the author’s own database, are generated to de-
sign a codebook for standard images. A codebook size of 256
is used in this experiment. The well-known Lena (8 bpp),
which is outside the training set, is used as the test image
[23]. In Figure 7d, PSNR versus bit rate curves resulting from
HMVQ is compared with that of SPIHT as well as another
well-known multiresolution vector quantizer [10]. HMVQ
outperforms both. In Figure 8, edges detected on sections
of the reconstructed cervical spine and Lena images further
demonstrate better detail retaining capability of HMVQ over
SPIHT even at a very low bit rate.

3.3. HMVQ in management of 3D medical images

Evaluation of deformation in 3D shape may provide signifi-
cant diagnostic aid in early detection and follow-up of a dis-
ease such as glaucoma by changes observed in the optic disc
volume by quantitative measures [26, 27].

Figure 9 shows how such quantitative measures can
be obtained from stereoscopic fundus images taken in an
ophthalmology clinic by computing the disparity map [26,
27, 28, 29]. However, storage of such 3D images in addi-
tion to the stereo pairs of large patient population neces-
sitates the use of a high fidelity encoding scheme. Any 2D
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(b) HMVQ coded
0.36 bpp, PSNR: 40.87 dB.

(a) Test image (slice 6).

(c) HMVQ coded
0.095 bpp, PSNR: 32.51 dB.

(d) HMVQ coded
0.048 bpp, PSNR:
29.81dB.

(e) SPIHT coded
0.37 bpp, PSNR: 40.86 dB.

(f) SPIHT coded
0.1266 bpp, PSNR:
32.53dB.

(g) SPIHT coded
0.07 bpp, PSNR: 28.87 dB.

FiGure 4: Comparison of reconstructed images by HMVQ and SPIHT.

encoding scheme is equally applicable to 3D images by en-
coding the 2D disparity map in a multiview system capable
of 3D rendering [30]. Figure 10 shows a schematic diagram
of how HMVQ can be incorporated into a multiview system,
thus reducing the bit stream to be transmitted for efficient
retrieval of 3D shapes.

4. DISCUSSIONS

The results of applying HMVQ to generate codebooks for dif-
ferent image modalities demonstrate improved performance

of HMVQ over SPIHT in high fidelity reconstruction at low
bit rates. We also demonstrate that HMVQ codec gives bet-
ter PSNR versus bit rate performance (Figure 7) on differ-
ent types of images over scalar quantizer SPIHT as well as
vector quantizer (Figure 7d). Perceptually, reconstructed im-
ages from HMVQ also have better detail preservation than
those from SPIHT, as shown in Figure 8, where more edges
can be detected in HMVQ-reconstructed images than in
SPIHT-reconstructed images. We have presented an exam-
ple where 3D surface of retinal structures can be recovered
and displayed from a stereo pair under some constraints.
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(a) Lumbar test image.

(b) Cervical spine test image.

FIGURE 5: The test images.

However, such a 3D surface recovery is an ill-posed prob-
lem and cannot be recovered exactly. Reconstruction and dis-
play of natural scenes involve intensive computation to pro-
cess multiview data necessary to avoid occlusion and pose
tremendous difficulty for on-chip processing and efficient
communications networking [31]. High-fidelity novel en-
coding techniques are, therefore, essential to reduce compu-
tational cost and overall processing time [1].

Another example of such medical image management
application is the digitally archived 17,000 cervical and lum-
bar spine images at the National Library of Medicine [24].
These images were collected in the second National Health
and Nutrition Examination Survey (NHANES II), and they
contain instances of both normal and abnormal spine fea-
tures of interest to researchers in osteoarthritis. These images
are currently accessible to the public by the Web-based Med-
ical Information Retrieval System (WebMIRS) [25], in a spa-
tial resolution reduced by a factor of 4 both horizontally and
vertically. This simple subsampling method has the signifi-
cant disadvantage of degrading visual quality considerably.
Alternative methods using lossy compression such as vector
quantization [32, 33] are known to have improved SNR and
can potentially override this loss of visual quality while si-
multaneously decreasing the file size. However, developing
global codebook for large databases is an extremely difficult
task and no such codebook is available currently. Prelimi-
nary results of the performance of a proposed system using
HMVQ for content-based retrieval and high-fidelity recon-
struction for both lumbar and cervical X-ray images from
this large database have been presented recently [8].

il

(a) A section of cervical spine from
the original test image.

(b) HMVQ reconstructed image
section. Bit rate: 0.024 bpp and PSNR:
44.57.

\«

(c) SPIHT reconstructed image
section. Bit rate: 0.045 bpp and PSNR:
39.99.

FIGURE 6: Reconstructed images of cervical spine from HMVQ and
SPIHT.

Once the user decodes the transmitted image data, the
images are usually displayed on a 2D display monitor. Hu-
man binocular vision, however, perceives 3D shapes exploit-
ing the disparity of the corresponding pixels in the im-
ages [34]. Multiview high-resolution autostereoscopic im-
ages provide significant improvement in visual information
transmission and display, and may form an integral part of
future communication systems with applications in a num-
ber of areas such as telemedicine [1, 2]. Some preliminary
work in multiview including autostereoscopic video com-
pression is already in progress in the digital layered MVP
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FiGurg 7: Comparison of reconstructed image quality in terms of PSNR. Clockwise: lumbar spine, cervical spine, Lena, and MR images.

(multiview profile) mode of the MPEG-2 standard. However,
further research in algorithmic development for high fidelity
video compression is needed where human binocular vision
characteristics can be exploited to reduce transmission costs

[1].

Efficient digital design of such communication systems is
extremely challenging and requires innovative ideas in de-
veloping algorithms for 3D reconstruction and display of
the 3D objects embedded in an image which can be pro-
cessed by specialized DSPs. We have presented the concept of
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(a) Edge detection on Figure 6a,
original.

(b) Edge detection on
Figure 6b. Bit rate: 0.024 bpp
and PSNR: 44.57.

(c) Edge detection on Figure 6c.
Bit rate: 0.045 bpp and PSNR:
39.99.

(d) Edge detection on HMVQ
coded Lena. Bit rate: 0.049 bpp
and PSNR: 27.48.

HMVQ

(e) Edge detection on SPIHT
coded Lena. Bit rate: 0.06 bpp
and PSNR: 26.17.

SPIHT

(f) Edge detection on Figure 4b
HMVQ coded at 0.36 bpp.
PSNR: 40.87 dB.

(g) Edge detection on Figure 4e
SPIHT coded 0.37 bpp. PSNR:
40.86 dB.

Figure 8: Comparison of edge preservation on the sections of cervical spine, Lena, and MRI images.

a multiview digital autostereoscopic system including signal
processing modules for efficient extraction of depth, color,
and texture information for high resolution 3D display of
embedded objects in image sequences acquired from med-
ical as well as natural environments.

5. CONCLUSIONS

We have demonstrated the ability of a hybrid encoding
scheme such as HMVQ in yielding superior performance

over a well-known current encoding scheme, namely, SPIHT,
both quantitatively and perceptually in encoding some medi-
cal images even at low bit rates. Although intensive researches
and analyses on the use of wavelets in image coding have al-
ready been reported [11], difficulties still exist in generat-
ing an efficient global codebook by vector quantization as
evident by the popularity of SPIHT, a wavelet-based scalar
quantization method for image encoding. Future success and
acceptance of a hybrid coding, using a combination of vector
and scalar encoding as in HMVQ for medical image encod-
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Disparity map (1994) ONH in 3D (1994)

ONH in 3D (1999)

FiGure 9: Fundus images of a glaucoma patient shown on the top left were taken in 1994. Images of the same eye of the same patient taken
in 1999 are shown on the top right. The corresponding disparity matrices and depth representations are shown on the bottom.

HMVQ
encoding
3D Surface
3. ’4 Multiview 3D surface model with T .
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FIGURE 10: A schematic diagram of a multiview 3D digital stereoscopic video communication system.

ing, depend on designing and cascading a lossless encoder
module for general classes of medical images as shown in
Figure 1. Our current results do not include the lossless mod-
ule, thus indicating potential improvement in performance
of HMVQ when the design of such a module is completed.
At present, we have such a lossless module only for a limited
class of X-ray images showing definite improvement in per-
formance in reconstructing such images with high fidelity.
An optimal adaptive wavelet filter technique has also
been developed to minimize the energy in the high-
frequency subbands and thus maximizing the energy in the

low-frequency subband of images decomposed by wavelet
transforms. A wavelet-transformed image can thus be rep-
resented using only one-fourth of the data required for
the entire image without introducing perceptible distortion
[31, 35, 36]. The filter design itself involves a nonlinear, non-
convex adaptive optimization under specific constraints to
achieve an image representation, which can be efficiently
implemented in a compact DSP-based system as shown in
Figure 10. Such systems could be of potential benefit to fast
transmission of large 2D and 3D medical image data sets
while retaining high fidelity.
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