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Dynamic Chest Image Analysis: Model-Based Perfusion
Analysis in Dynamic Pulmonary Imaging
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The “Dynamic Chest Image Analysis” project aims to develop model-based computer analysis and visualization methods for
showing focal and general abnormalities of lung ventilation and perfusion based on a sequence of digital chest fluoroscopy frames
collected with the dynamic pulmonary imaging technique. We have proposed and evaluated a multiresolutional method with
an explicit ventilation model for ventilation analysis. This paper presents a new model-based method for pulmonary perfusion
analysis. According to perfusion properties, we first devise a novel mathematical function to form a perfusion model. A simple
yet accurate approach is further introduced to extract cardiac systolic and diastolic phases from the heart, so that this cardiac
information may be utilized to accelerate the perfusion analysis and improve its sensitivity in detecting pulmonary perfusion
abnormalities. This makes perfusion analysis not only fast but also robust in computation; consequently, perfusion analysis be-
comes computationally feasible without using contrast media. Our clinical case studies with 52 patients show that this technique
is effective for pulmonary embolism even without using contrast media, demonstrating consistent correlations with computed
tomography (CT) and nuclear medicine (NM) studies. This fluoroscopical examination takes only about 2 seconds for perfusion
study with only low radiation dose to patient, involving no preparation, no radioactive isotopes, and no contrast media.

Keywords and phrases: chest images, dynamic chest image analysis, pulmonary perfusion, perfusion model, effects of contrast
media.

1. INTRODUCTION

The lungs take air in order to absorb oxygen from air into
blood. This means that sufficient pulmonary ventilation (air
flow) and perfusion (blood flow) are essential for the lungs
to function properly; inadequate lung function may be due
to failure in ventilation or perfusion among other factors. In

order to detect abnormalities in lung ventilation and perfu-
sion, ventilation isotope scan and perfusion isotope scan are
conventionally used. They can provide a static, coarse geo-
graphic 2D distribution of air/blood in the lungs, but they
have the disadvantage of using radioactive isotopes.

Chest X-ray is the primary imaging method for the di-
agnosis of pulmonary disorders. Automated analysis of chest
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X-ray images was one of the first areas to receive attention
[1, 2]. Since then, many good results have been reported (e.g.,
[3, 4, 5, 6]). However, the previous work is mostly restricted
to a single chest image and limited to using spatial informa-
tion for diagnosis with a few exceptions (e.g., [7, 8]). The in-
formation about pulmonary function (ventilation and perfu-
sion) that may be gleaned from a single chest X-ray is rather
limited, but it is evident that, for effective diagnosis, the func-
tion of lungs must be carefully examined.

Functional imaging has become increasingly prominent
in recent years as an important new frontier in medical
imaging sciences. Turku University Central Hospital has de-
veloped a technique called dynamic pulmonary imaging
[9, 10, 11, 12], which can grab a sequence of digital chest flu-
oroscopy frames. This present research—dynamic chest im-
age analysis—aims to develop model-based computer analy-
sis and visualization methods for showing focal and general
abnormalities of lung ventilation and perfusion based on a
sequence of digital chest fluoroscopy frames collected with
the dynamic pulmonary imaging technique. We have pro-
posed and evaluated a multiresolutional method with an ex-
plicit ventilation model for ventilation analysis [13, 14]. This
paper reports a new model-based method for pulmonary
perfusion analysis.

In the balance of this paper, the patient examination pro-
cedure is first reviewed in Section 2. After the definition of
perfusion signals in Section 3.1, we devise a mathematical
function serving as a perfusion model in perfusion analysis
in Section 3.2. In order to accelerate pulmonary perfusion
analysis and improve its sensitivity in detecting pulmonary
embolism, Section 3.3 introduces a simple, yet accurate, ap-
proach to extract cardiac systolic and diastolic phases from
the heart, so that this cardiac information may be utilized
to constrain the optimization processes. We illustrate the ef-
fects of contrast media with clinical cases in Section 4 and
present our clinical evaluation with 52 patients without us-
ing contrast media in Section 5, followed by a conclusion in
Section 6.

2. IMAGE ACQUISITION

2.1. Patient examination

The image acquisition system developed at Turku Univer-
sity Central Hospital in the Dynamic Pulmonary Imaging
project can grab a sequence of chest X-ray images of up to
512 × 512 pixels at the sampling frequency of 25Hz over a
short period of time with a copper filter of 3mm (previously,
1.4mm) [9, 10, 11, 12]. Two separate examination proce-
dures are used for ventilation and perfusion studies. In ven-
tilation study, the patient is asked to breathe naturally and
normally in supine position with posteroanterior projection.
It takes about 3–5 seconds for the lungs to complete a full
ventilation cycle in most cases. Therefore, in general, an im-
age sequence of 55 frames with 192 × 144 pixels is collected
in 4.32 seconds with the sampling frequency of 12.5Hz. In
perfusion study, the patient is also in supine position with
posteroanterior projection but with the breath held in order

to effectively remove the ventilation component. An intra-
venous bolus of X-ray contrast media may be further used
to enhance the perfusion signal strength. Comparing with
ventilation, perfusion has a higher frequency. Two to three
seconds would be sufficient to capture a full cycle of per-
fusion, but this higher frequency requires a higher tempo-
ral sampling frequency in the image acquisition. Further-
more, pulmonary perfusion is asynchronous.1 It demands
a higher spatial resolution [15]. Therefore, we grab an im-
age sequence of 52 frames with 384 × 288 pixels at the
sampling frequency of 25Hz in 2.04 seconds for perfusion
analysis.

The resulting image sequence can be represented with in-
tensity function I(x, y, t), where 0 ≤ I ≤ 255, 1 ≤ x ≤ width
(192 for ventilation and 384 for perfusion), 1 ≤ y ≤ height
(144 for ventilation and 288 for perfusion), and t is a dis-
crete time point in [0, examtime] (4.32 seconds for ventila-
tion and 2.04 seconds for perfusion). We may also represent
it as I(x, y, i), where i is the frame index. The relation be-
tween the time index t and the frame index i is t = (i− 1)/ f ,
where f is the sampling frequency of 12.5Hz for ventilation
analysis and of 25Hz for perfusion analysis.

Because of the very short examination time and the use
of a copper filter, the radiation dose to patient is low. The
entrance skin dose of a patient is about 0.1–0.2mGy [11]. For
comparison, radiation dose of a normal chest X-ray image
varies between 0.1mGy and 0.2mGy, and radiation dose of
fluoroscopy is about 2mGy per minute [9, 11].

2.2. Image properties

The 2D image sequence obtained from the patient examina-
tion carries valuable information for ventilation and perfu-
sion studies thanks to the X-ray physical property: the atten-
uation of X-rays in air is much lower than in blood and soft
tissue. As a result, the average pixel intensity of an area in the
lung field varies over time due to the respiratory and car-
diac cycles; this variation—called an observation—reflects
the air and blood volume change in the corresponding 2D
projectional area of the lung when the patient breathes natu-
rally. When the patient is asked to hold the breath, we will
only observe the perfusion signal disturbed by noise. The
ventilation intensity variation depends on the depth of the
tidal volume ventilation and also on lung area. It is usu-
ally between 5–15 units in the grey scale of 8 bits. The im-
age intensity variation for perfusion is about 1–3 units with-
out contrast media. The ventilation signal-to-noise ratio is
about 10 : 1 and perfusion signal-to-noise ratio is about
2 : 1 [10]. This source of information (image property)
may be utilized for detecting pulmonary ventilation abnor-
malities and pulmonary perfusion abnormalities. This pa-
per is to employ this source of information for perfusion
study.

1The speed of blood flow is roughly 10 cm/s. When the blood flows in
the lungs, the phase (i.e., timeshifts) of a pulse signal at one location may
be different from that at another location although they have the same pulse
frequency.
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3. MODEL-BASED PERFUSION ANALYSIS USING
CARDIAC INFORMATION

3.1. Perfusion signals

For a given ROI (region of interest) in a sequence of chest
images I(x, y, t), we define a lung functional signal (i.e., an
observation) as the average pixel intensity of the ROI over
time

O(t) =
∑

x,y∈ROI I(x, y, t)
|ROI | , (1)

where |ROI | is the number of the pixels in the region of in-
terest. When the patient breathes naturally, an observation
includes both ventilation and perfusion components plus
noise, as illustrated in Figure 1. Here, we are only interested
in the perfusion component. Therefore, the patient is asked
to hold the breath to effectively remove the ventilation com-
ponent. For convenience, an observation in case of the breath
held is called perfusion signal. The perfusion signal strength
can be enhanced with an intravenous bolus of X-ray contrast
media as shown in Figure 2. For comparison, Figure 3 shows
a perfusion signal without using contrast media on the same
scale.

Pulmonary perfusion analysis is to extract meaningful
medical perfusion parameters (e.g., perfusion amplitude,
systolic and diastolic phases, etc.) from perfusion signals and
visualize the extracted parameters for showing pulmonary
perfusion abnormalities. Since the patient only needs to lie
down for about two seconds, our experiments show that
there is no need to register the lungs in order to perform per-
fusion analysis.

3.2. A perfusionmodel

In order to extract perfusion parameters, for instance, sys-
tolic phase and diastolic phase, from a perfusion signal, it
requires to accurately locate the “turning points” from the
signal. Obviously, it is rather difficult if solely based on the
perfusion signals as shown in Figures 2 and 3 due to the low
perfusion signal-to-noise ratio. Therefore, it becomes neces-
sary to model the physiological process of pulmonary perfu-
sion. The blood volume change in a lung area is continuous,
smooth, and periodical with two distinct phases for systole
and diastole. To this end, we introduce a perfusion model as
depicted in Figure 4. This perfusion model looks like a si-
nusoidal function, but it is not symmetrical, so as to explic-
itly model the two distinct, systolic, and diastolic phases. The
model can be expressed as a mathematical function with five
parameters: amplitude A, downtime D, uptime U , timeshift S,
and level L:

M(A,D,U, S, L, t)

=


A cos(πt′/D) + L if 0 ≤ t′ < D,

A cos
(
π(t′ −D)/U + π

)
+ L if D ≤ t′ < (D +U),

(2)

where

t′ = (t − S)mod(D +U), (3)

and t indicates time. Note that t′ is always in the interval
[0, D + U). The five parameters have the following medical
meanings:

(i) amplitude A: perfusion strength;
(ii) uptime U : time corresponding to the diastolic phase in

the lung area;
(iii) downtime D: time corresponding to the systolic phase

in the lung area;
(iv) timeshift S: time from the first image to the completion

of the first diastolic phase;
(v) level L: intensity mean—a mathematically necessary

parameter without well-definedmedical meaning (i.e.,
its value depends on many factors).

Our novel perfusion model has all the intuitive proper-
ties one would like to have in modeling the physiological
process of pulmonary perfusion, but it still remains sim-
ple enough for efficient model realization. Once a perfusion
model M( · · · ) is available, a set of perfusion parameters
(A∗, D∗, U∗, S∗, and L∗) can be extracted from a perfusion
signal O(t) by minimizing the error function

e =
∑

t∈[0,examtime]

[
M(A,D,U, S, L, t)−O(t)

]2
. (4)

with the Levenberg-Marquardt method [16, 17, 18].
In the perfusion literature,Wolfkiel and Rich [19, 20,

21], among other researchers, have developed mathematical
models for estimating myocardial contrast-medium trans-
port process. Their models are not suitable for modeling the
blood volume change of pulmonary perfusion in a specific
lung area because of their lack of the necessary periodical and
nonsymmetrical properties.

3.3. Robustly accelerating perfusion analysis
with cardiac information

We have formulated the extraction of perfusion parameters
as a nonlinear least squares optimization problem. It is well
known that the convergence speed and result accuracy de-
pend on the initial guess. Therefore, it is essential to have a
good guess when fitting the model to an observation. How-
ever, due to the low signal-to-noise ratio, it is difficult to es-
timate an initial guess from a perfusion signal. It is also the
low signal-to-noise ratio that gives more local minima for the
error function in optimization, consequently, it takes longer
time to converge to a solution. Clearly, it would be desirable
if we can reduce the number of free perfusion model param-
eters, because it not only reduces the optimization time but
also improves its stability and result accuracy. In the follow-
ing, we present a simple, yet accurate, approach to extract
cardiac systolic and diastolic phases from the heart, so that
this cardiac information may be utilized to constrain the op-
timization process, making perfusion analysis not only fast
but also robust.



440 EURASIP Journal on Applied Signal Processing

0

20

40

60

80

100

120

(a)

0 1 2 3 4 4.32
Time (s)

95

100

105

110

115

In
te
n
si
ty

(b)

Figure 1: A case in quiet breath. (a) An ROI in the right lung field and (b) its corresponding lung functional signal (observation), which
reflects the air and blood change in the corresponding lung area over time during the examination, due to the X-ray physical property.
The image gets whiter (higher intensity) during inhalation (more air in the lungs). The ROI shown here is a rectangle, but it may be of an
arbitrary shape. The ROI may be as large as a whole lung and may be as small as a single pixel.
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Figure 2: A case with the breath held and an intravenous bolus of X-ray contrast media. (a) An ROI in the right lung field and (b) its
corresponding observation—an enhanced lung perfusion signal, which, due to the X-ray physical property, reflects the blood flow in the
corresponding lung area with contrast media. The image gets darker (lower intensity) during the systolic phase (more blood in the lungs).
Comparing to ventilation in Figure 1, the perfusion signal is very noisy and weak (only about 3 intensity-unit variation).

0

20

40

60

80

100

120

140

160

(a)

0 0.5 1 1.5 2
Time (s)

154.5

155

155.5

156

156.5

157

157.5

158

In
te
n
si
ty

(b)

Figure 3: A case with the breath held but no X-ray contrast media. (a) An ROI in the right lung and (b) its corresponding observation—a
perfusion signal reflecting the blood flow in the lung area due to the X-ray physical property. It is plotted on the same scale as in Figure 2 for
comparison.
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Figure 4: A perfusion model with five free primitive parameters:
amplitude A (perfusion strength in the lung area), downtime D
(time for the systolic phase in the lung area), uptime U (time for
the diastolic phase in the lung area), timeshift S (time from the
first image to the completion of the first diastolic phase), and
level L (the mean intensity but with no well-defined medical
meaning). This function models the blood volume change of pul-
monary perfusion. It increases during the diastolic phase and de-
creases during the systolic phase. The systolic phase is generally
shorter than the diastolic phase. The free parameters downtime D
and uptime U may be further constrained with the cardiac systolic
and diastolic phases extracted from the heart to make the optimiza-
tion process fast and robust (see Section 3.3).

3.3.1 Extracting systolic and diastolic phases
from the heart

The perfusion examination takes only 2–3 seconds; it is rea-
sonable to assume that the duration of the patient’s systolic
phase is the same anywhere in the lungs during the exami-
nation and so is the duration of the diastolic phase. Conse-
quently, the patient’s pulse frequency is the same anywhere
in the lungs during the examination. Based on this assump-
tion, we can extract the systolic and diastolic phases from one
source, the heart, so that the estimated results of the systolic
and diastolic phases can be used as fixed parameters to accel-
erate the convergence of the optimization processes.

More specifically, first we employ a trick by using an ROI
on the heart border2 as shown in Figure 5a and Figure 6a to
have an observation (also called a heart signal) (see Figure 5b
and Figure 6b). The dominant information this observation
carries is the change of the heart proportion in the ROI from
one frame to another. This signal is generally strong, and the
initial guesses for those parameters can be conveniently esti-
mated from the signal itself. The uptime of this signal corre-
sponds to the systolic phase of the heart, while its downtime

2One might argue for using an ROI within the heart area to extract the
systolic and diastolic phases. However, the resulting signal is rather noisy
and weak because of the nature of cardiac motion in the current patient ori-
entation. Moreover, there are no well-defined medical meanings associated
with its parameters if extracted due to the overlapping lung area.

corresponds to the diastolic phase of the heart. By fitting the
perfusionmodel to this observation, the systolic and diastolic
phases are available. Mathematically, from the heart observa-
tion Oh(t), the fitting can determine a set of parameters (A∗h ,
D∗h , U

∗
h , S

∗
h , and L∗h ) which minimize

∑

t∈[0,examtime]

[
M
(
Ah,Dh,Uh, Sh, Lh, t

)−Oh(t)
]2
. (5)

This method is simple and easy to use, but the true magic
is its power to extract accurate systolic and diastolic phases
from the heart without segmentation. We have developed
a technique called united snakes [22, 23], which can accu-
rately extract the cardiac boundary. With united snakes, we
have justified that the simple method is actually accurate
in extracting systolic and diastolic phases for the perfusion
analysis in [15]. However, for measuring the effectiveness of
cardiac function, which is beyond the scope of this paper
and which has been addressed with the united snakes tech-
nique in [15], the simple method does have a limitation since
the extracted amplitude parameter cannot be fully trusted.
In perfusion examination, the patient is asked to hold the
breath. The amount of air held in the lungs may differ from
patient to patient and may differ from examination to exam-
ination even for the same patient. As a result, when there is
more air kept in the right lung, even if the heart does not
pump effectively, we still may have a higher amplitude due to
the higher contrast along the cardiac boundary. However, for
the purpose of accelerating perfusion analysis, we only need
the estimated systolic and diastolic phases and the amplitude
is not useful in the presented perfusion analysis. Therefore,
in this case, we would prefer this simple and working trick.

3.3.2 Constraining the fitting process

The estimated systolic and diastolic phases (U∗
h and D∗h )

from the heart signal are then used as fixed parameters in ex-
tracting the perfusion parameters from observations in the
lung fields (see Figures 7 and 8). However, it should be noted
that the uptime and downtime of an observation in the lung
fields have completely different meanings from those of the
heart signal: the downtime of the signal in the lung areas cor-
responds to the systolic phase; while its uptime corresponds
to the diastolic phase. Mathematically, from the lung signal
Ol(t), we determine a set of parameters (A∗l ,D

∗
l ,U

∗
l , S

∗
l , and

L∗l ) which minimize

∑

t∈[0,examtime]

[
M
(
Al,Dl, Ul, Sl, Ll, t

)−Ol(t)
]2

(6)

subject to the constraints

Dl = U∗
h , Ul = D∗h . (7)

Naturally, we always have

D∗l = U∗
h , U∗

l = D∗h . (8)
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Figure 5: An example for extracting the systolic and diastolic phases from the heart in the case with contrast media. (a) An ROI on the
heart border. (b) The corresponding observation and the parameter extraction process. The observation indicated by “◦” mainly reflects the
change of the heart proportion in the ROI from frame to frame. The initial guess is plotted as dashed curve and the final solution as the
solid curve. During the systolic phase, the heart proportion in the ROI becomes smaller and smaller, thus, the average intensity values of
the ROI gets bigger and bigger. In other words, the uptime of this signal corresponds to the systolic phase of the heart; while its downtime
corresponds to the diastolic phase of the heart—the uptime and downtime extracted from a heart signal have completely different medical
meanings from those of an observation in the lung (see Figure 7). The medical meaning of the extracted amplitude from the heart signal is
undefined since not only does it depend on the heart pumping strength but also on the amount of air in the lungs.
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Figure 6: An example for extracting the cardiac systolic and diastolic phases in the case without using contrast media. The same convention
is used as in Figure 5.

Therefore, the perfusion analysis gives three parameters (per-
fusion amplitude, timeshift, and level). However, our exper-
iments showed that we only need the perfusion amplitude
which appears to be sufficient for detection of pulmonary
embolism.

3.4. ROI-based analysis and pixel-based analysis

The perfusion analysis we have seen so far is called ROI-
based analysis, because the user specifies an ROI in the lung
field and the system automatically extracts the perfusion am-
plitude parameter from its corresponding perfusion signal.
This type of analysis is flexible and convenient in examining
a particular area of lungs since the ROI can be placed any-
where in the lung fields; it may be of arbitrary shape, may
be as large as a whole lung, and may be as small as a sin-
gle pixel. Meanwhile, we are also interested in a whole pic-
ture of the pulmonary perfusion in both lungs. This is what
a pixel-based analysis does. In a pixel-based analysis, we first

construct all the perfusion signals by regarding each single
pixel in the lung fields as an ROI, then we visualize the ex-
tracted amplitude parameters from all these perfusion signals
as an image, which is called perfusion amplitude image. In a
perfusion amplitude image, a white area (with high intensity
values) indicates strong perfusion in the area, while the dark
areas are those with weak perfusion or no perfusion.

4. EFFECTS OF CONTRASTMEDIA

The major challenge we face in perfusion analysis is to deal
with the low perfusion signal-to-noise ratio. Contrast me-
dia can significantly enhance the pulmonary perfusion signal
strength as illustrated in Figure 9. The perfusion amplitude
image in Case (a) shows the inflow of contrast media into the
pulmonary arteries causing strong arterial signal indicated
by an arrow, while Case (b) represents the inflow period of
contrast media through the right subclavian vein. However,
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Figure 7: Using the cardiac systolic and diastolic phases to constrain the parameter extraction from an enhanced pulmonary perfusion
signal with contrast media. (a) An ROI in the right lung field. (b) The perfusion signal (indicated by “◦”, first shown in Figure 2b) and the
parameter extraction process. The downtime of a pulmonary perfusion signal corresponds to its systolic phase (more blood in the lung
area); while the uptime corresponds to its diastolic phase (less blood in the lung area). Comparing to the model fitting to a heart signal in
Figure 5b, this fitting to the perfusion signal seems inaccurate; actually, this seemingly inaccurate fitting demonstrates that the model-based
approach constrained with cardiac information is robust in extracting the perfusion component from a weak perfusion signal without being
disturbed by the strong noise.
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Figure 8: Using the cardiac systolic and diastolic phases to constrain the parameter extraction from a pulmonary perfusion signal. (a) An
ROI in the lung field. (b) The perfusion signal and the parameter extraction process. The same convention is used as in Figure 7.

this also means that contrast media may cause some artifacts
disturbing the parameter image interpretation. Furthermore,
contrast media are expensive, carry a risk of contrast me-
dia reactions, should not be used in patients with pulmonary
edema or any renal problem, and also require timing in tak-
ing the X-ray series. Therefore, it is ideal that no contrast
media are used in perfusion analysis. We show in Section 5
that our model-based approach can make it possible without
contrast media by utilizing the cardiac information extracted
from the heart.

5. CLINICAL CASE STUDIES

In clinical evaluation, 52 patients were referred to this exam-
ination by the chest physician mainly to exclude pulmonary
embolism. All of them were examined with no contrast me-
dia at their request. In order to validate our findings with this
new technique, these patients were also examined with com-
puted tomography (CT) and pulmonary perfusion nuclear

medicine (NM). Both CT and NM are the “golden stan-
dard” method in detection of pulmonary perfusion distur-
bances (e.g., pulmonary embolism). NM shows the distribu-
tion of pulmonary perfusion, while CT reveals the throm-
botic masses causing pulmonary embolism. In the follow-
ing, we classify the perfusion abnormal findings into three
types, and illustrate the three types of perfusion abnormal-
ities with three representative cases, followed by a summary
of our findings from the clinical case studies.

5.1. Three types of perfusion abnormalities

Based on the perfusion amplitude image, we have classified
perfusion abnormal findings into the following three types.

(i) No perfusion (NP): the perfusion amplitude is ex-
tremely small or zero. This is associated with the
complete occlusion of pulmonary arteries by an em-
bolism, and often seen in the upper and middle parts
of the lung. When the no-perfusion area becomes



444 EURASIP Journal on Applied Signal Processing

(a)

(b)

Figure 9: Perfusion amplitude images of two clinical cases with
contrast media. An amplitude image gives an overall picture of lung
perfusion, which is constructed from the amplitude parameters ex-
tracted from all the perfusion signals when regarding each single
pixel in the lung fields as an ROI. (a) There is an inflow of contrast
media into pulmonary arteries causing strong arterial signal (indi-
cated by an arrow). (b) This case represents the inflow period of
contrast media through the right subclavian vein and pulmonary
arteries indicated by arrows.

larger, likely there will be associated overactive perfu-
sion (OP) in the normal part(s) of the lungs.

(ii) Reduced perfusion (RP): the perfusion amplitude be-
comes smaller than expected and can be seen as darker
areas in the perfusion amplitude image. This is the typ-
ical phenomenon of pulmonary embolism with partial
occlusion.

(iii) Overactive perfusion (OP): the perfusion amplitude is
bigger than expected and the area should be consid-
ered as normal. This is the phenomenon caused by the
excessive blood flow redirected into the normal area
due to no-perfusion and reduced perfusion in other
parts of the lungs.

5.2. Three representative clinical cases

In order to illustrate the three types of perfusion abnormali-
ties, here we include three representative cases.

Case 1 (see Figure 10). Pulmonary embolism of the right
middle lobe and the right upper lobe is associated with RP
in the middle and upper fields of the right lung. In addition,
there is RP in the left upper lobe and perihilar region of the
left lower lobe. The reason for a very high amplitude (OP) in
the right lower lung field is due to the high concentration of
the blood in this area. These findings show a good correlation
with both CT and NM studies.

Table 1: Statistics of perfusion abnormalities, where the number,
for instance, 6/8, means that no perfusion is found in 6 and 8 cases
out of the 52 patients in the upper region of the right and left lung,
respectively.

Right/Left NP RP OP

Upper 6/8 15/16 3/2

Middle 6/4 9/10 7/20

Lower 4/7 20/15 4/9

Case 2 (see Figure 11). Pulmonary embolism in the right
lung and in the superior segment of the left lower lobe shown
by CT and NM studies is correlated to RP of the right lung
and RP of the left apex and a small area in the upper left lung
field. OP is seen centrally in the left lung.

Case 3 (see Figure 12). Generally, RP of the right lung and
NP of the lateral recess in the left lung. These findings are
consistent with CT and NM studies. OP seen centrally in the
left lung is due to the redirection of blood flow.

5.3. Statistics of perfusion abnormalities

The lung field may be visually divided into three regions (up-
per, middle, and lower). The statistics of perfusion abnor-
malities found in the 52 patients are summarized in Table 1.
The abnormal patterns with the amplitude parameter im-
ages of the 52 patients were identified by the authors. We
have established 100% correlations with the CT and NM
studies. However, by correlation, we do not mean an exact
mapping (equivalence) of our results to the CT and NM re-
sults. Actually, we have found that our results are comple-
mentary to the CT and NM studies in some cases. For in-
stance, in Case 1 (Figure 10), the overactive perfusion seen
in the right lower lung field convinces us that the right pul-
monary artery is only partially filled with embolic masses,
while in Case 2 (Figure 11), the reduced perfusion of the
lower part of the right lung seen in the amplitude image can-
not be justified by the NM study but later confirmed by the
thrombotic mass in the hilar region of the right lung with
CT.

5.4. Summary and discussion

In our clinical evaluation, we have found that it is fairly
easy to identify the three types of perfusion abnormalities
in a perfusion amplitude image. Actually, all the perfusion
abnormal patterns were first recognized by the first author
(Liang)—a computer scientist—without knowing the find-
ings from the CT and NM studies, then confirmed by the
medical coauthors (Kormano and Svedström). The CT and
NM studies were performed routinely by the CT and NM
specialists in the hospital, and their reports were further
verified by the medical coauthors for our clinical evalua-
tion when necessary. Based on our own classification ex-
perience with the 52 patients, we are developing a pattern-
classification procedure for automatically partitioning an
amplitude image into normal and abnormal (NP, RP, and
OP) regions.
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(a) Perfusion amplitude. (b) CT slice 1. (c) CT slice 2.

Figure 10: Case 1. (a) OP is seen in the right lower lung field (indicated by a bracket), while slightly RP is shown in the rest of the right lung.
RP is revealed in the central part of the left lung (indicated by an arrow). The CT images, (b) and (c), of the same patient show embolic
masses partially filling the right pulmonary artery and also material in the left lower lobe artery (indicated by arrows).

(a) Perfusion amplitude.

(b) Nuclear machine.

Figure 11: Case 2. (a) Overall RP of the right lung. OP is seen cen-
trally in the left lung, while RP is shown in the left apex and a small
area (indicated by an arrow) in the upper left lung field. Pulmonary
embolism in the right lung and in the superior segment of the left
lower lobe shown by CT andNM (b) studies. Generally, the NM im-
age shows the perfusion activity in the anterior parts of the lungs,
while our perfusion amplitude image reveals perfusion through the
lungs. Therefore, the reduced perfusion of the lower part of the right
lung shown by our method (a) may be explained by the thrombotic
mass in the hilar region of the right lung as reported by CT.

The clinical evaluation shows that our model-based
method for pulmonary perfusion analysis is effective for
pulmonary embolism even without using contrast media,
demonstrating consistent correlations with CT and NM
studies. This gives our present technique some advantages.

(a) Perfusion amplitude.

(b) Nuclear machine.

Figure 12: Case 3. (a) Generally RP of the right lung. NP of the lat-
eral recess in the left lung (indicated by an arrow). OP seen centrally
in the left lung. These findings are consistent with NM (b) studies.

It takes only about 2 seconds and involves no radioactive iso-
topes, no contrast media, and only low radiation dose. The
NM study takes much longer (over 20 minutes) and it is
not readily available in any hospital. The CT study uses high
amount of contrast media and has side effects. Furthermore,
CT is expensive and cannot be used for all patients (e.g.,
anxiety and contrast media reactions). In perfusion analysis,
our focus is on detecting pulmonary embolism, while our
ventilation analysis is more effective for detecting other pul-
monary diseases (such as, pulmonary emphysema, pneumo-
nia, fibrosis, and scar changes, etc.) [13, 14]. In the future,
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Figure 13: Case 3. Perfusion amplitude image obtained from an
analysis without using cardiac information. Compared with the am-
plitude image in Figure 12a, this amplitude image is rather noisy
in the no-perfusion and reduced perfusion areas. The no-perfusion
area of the lateral recess in the left lung is not so visible as that in
Figure 12a.

we plan to apply many general methods reported in the lit-
erature to our data for detecting various pulmonary diseases
(e.g., [5, 6, 7, 8, 24, 25, 26, 27, 28]), while developing new
computer methods oriented to our special imaging modal-
ity.

In the image acquisition process, the lungs in 3D is pro-
jected onto a 2D image plane and some anatomical inaccu-
racy has been introduced. However, this imaging modality
is appealing for achieving our goal to provide an efficient
and rapid imaging solution to detect lung ventilation and
perfusion abnormalities. It appears to have no serious con-
sequences when powered with our model-based approach.
This performance of our computer analysis method is the
consequence of the idea of reducing the number of free per-
fusion model parameters (see Section 3.3), which makes the
optimization process not only fast but also robust in com-
putation. For comparison, we present here a test on Case 3
without constraining uptime and downtime with the cardiac
information. It takes about 10 times longer and the results
are rather sensitive to noise, specially in the no-perfusion
and reduced perfusion areas as shown in Figure 13. Perfu-
sion analysis is to show pulmonary perfusion abnormalities
(i.e., no-perfusion and reduced perfusion). In a reduced per-
fusion area, the signal component with the pulse frequency
is weak, while in a no-perfusion area its observation has no
such a component. When the uptime and downtime are con-
strained, the extraction process will only search for the com-
ponent with the pulse frequency in the observation, conse-
quently, it will be able to quickly and robustly give a small
value or zero to the amplitude parameter in the reduced per-
fusion area or no-perfusion area without being disturbed by
noise.

6. CONCLUSION

We have presented a computer analysis method for pul-
monary perfusion study in dynamic pulmonary imaging.
Two clinical cases have been used to illustrate the effects
of contrast media. To enable comparison with CT and NM
studies, perfusion abnormal findings are classified into three

types. The clinical evaluation has shown that our computer
analysis method is effective for pulmonary embolism even
without using contrast media, demonstrating consistent cor-
relations with CT and NM studies. This performance is
the consequence of the idea that the cardiac information,
recorded in the perfusion image sequence, may be utilized
to accelerate pulmonary perfusion analysis and improve its
sensitivity in detecting pulmonary embolism. In doing so, a
simple, yet accurate, approach has been introduced to extract
cardiac systolic and diastolic phases from the heart for con-
straining the optimization processes. This idea has not only
made perfusion analysis fast but also robust; consequently,
perfusion analysis becomes feasible without using contrast
media. This fluoroscopical examination has several advan-
tages: it takes only about 2 seconds for perfusion study, in-
volving no preparation, no radioactive isotopes, no contrast
media, and only low radiation dose to patient.
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