
EURASIP Journal on Applied Signal Processing 2003:6, 514–529
c© 2003 Hindawi Publishing Corporation

Memory-Optimized Software Synthesis
fromDataflow ProgramGraphs
with Large Size Data Samples

Hyunok Oh
The School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Korea
Email: oho@comp.snu.ac.kr

Soonhoi Ha
The School of Electrical Engineering and Computer Science, Seoul National University, Seoul 151-742, Korea
Email: sha@comp.snu.ac.kr

Received 28 February 2002 and in revised form 15 October 2002

In multimedia and graphics applications, data samples of nonprimitive type require significant amount of buffer memory. This
paper addresses the problem of minimizing the buffer memory requirement for such applications in embedded software synthesis
from graphical dataflow programs based on the synchronous dataflow (SDF) model with the given execution order of nodes. We
propose a memory minimization technique that separates global memory buffers from local pointer buffers: the global buffers
store live data samples and the local buffers store the pointers to the global buffer entries. The proposed algorithm reduces 67%
memory for a JPEG encoder, 40% for an H.263 encoder compared with unshared versions, and 22% compared with the previous
sharing algorithm for the H.263 encoder. Through extensive buffer sharing optimization, we believe that automatic software
synthesis from dataflow program graphs achieves the comparable code quality with the manually optimized code in terms of
memory requirement.

Keywords and phrases: software synthesis, memory optimization, multimedia, dataflow.

1. INTRODUCTION

Reducing the size of memory is an important objective in
embedded system design since an embedded system has tight
area and power budgets. Therefore, application designers
usually spend significant amount of code development time
to optimize the memory requirement.

On the other hand, as system complexity increases and
fast design turn-around time becomes important, it attracts
more attention to use high-level software design methodol-
ogy: automatic code generation from block diagram specifi-
cation. COSSAP [1], GRAPE [2], and Ptolemy [3] are well-
known design environments, especially for digital signal pro-
cessing applications, with automatic code synthesis facility
from graphical dataflow programs.

In a hierarchical dataflow program graph, a node, or
a block, represents a function that transforms input data
streams into output streams. The functionality of an atomic
node is described in a high-level language such as C or
VHDL. An arc represents a channel that carries streams of
data samples from the source node to the destination node.
The number of samples produced (or consumed) per node

firing is called the output (or the input) sample rate of the
node. In case the number of samples consumed or produced
on each arc is statically determined and can be any integer,
the graph is called a synchronous dataflow graph (SDF) [4]
which is widely adopted in aforementioned design environ-
ments. We illustrate an example of SDF graph in Figure 1a.
Each arc is annotated with the number of samples consumed
or produced per node execution. In this paper, we are con-
cerned with memory optimized software synthesis from SDF
graphs though the proposed techniques can be easily ex-
tended to other SDF extensions.

To generate a code from the given SDF graph, the or-
der of block executions is determined at compile time, which
is called “scheduling.” Since a dataflow graph specifies only
partial orders between blocks, there are usually more than
one valid schedule. Figure 1b shows one of many possible
scheduling results in a list form, where 2(A) means that block
A is executed twice. The schedule will be repeated with the
streams of input samples to the application. A code template
according to the schedule of Figure 1b is shown in Figure 1c.

When synthesizing software from an SDF graph, a buffer
space is allocated to each arc to store the data samples

mailto:oho@comp.snu.ac.kr
mailto:sha@comp.snu.ac.kr

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 515

C

BA D
1

2

1 2 2 1

(a)

2(A)CB2(D)

(b)

main() {
for(i = 0; i < 2; i++){A}
{C}
{B}
for(i = 0; i < 2; i++){D}

}

(c)

C

BA D
1

2

1 2 2 1

(d)

Figure 1: (a) SDF graph example, (b) a scheduling result, (c) a code template, and (d) a buffer allocation.

DCT−1
8 × 8

Zigzag−1
8 × 8

Q−1
8 × 8

Q
8 × 8

Zigzag
8 × 8

DCT

a b c d e

A B

Figure 2: Image processing example.

between the source and the destination blocks. The number
of allocated buffer entries should be no less than the maxi-
mum number of samples accumulated on the arc at runtime.
After block A is executed twice, two data samples are pro-
duced on each output arc as explicitly depicted in Figure 1d.
We define a buffer allocated on each arc as a local buffer that
is used for data transfer between two associated blocks. If the
data samples are of primitive types, the local buffers store
data values and the generated code defines a local buffer with
an array of primitive type data.

Required memory spaces in the synthesized code con-
sist of code segments and data segments. The latter stores
constants and parameters as well as data samples. We regard
memory space for data samples as buffer memory, or shortly
buffer, in this paper.

There are several classes of applications that deal with
nonprimitive data types. The typical data type of an image
processing application is a matrix of fixed block size as il-
lustrated in Figure 2. Graphic applications usually need to
deal with structure-type data samples that contain informa-
tion on vertex coordinates, viewpoints, light sources, and
so on. Networked multimedia applications exchange pack-
ets of data samples between blocks. In those applications,
the buffer requirements are likely to be more significant than
others. For example, the code size of H.263 encoder [5] is
about 100K bytes but the buffer size is more than 300K
bytes.

Since the buffer requirement of an SDF graph depends
on the execution order of nodes, there have been several ap-
proaches [6, 7, 8] to take the buffer size minimization as
one of the scheduling objectives. However, they do not con-
sider either buffer sharing possibilities nor nonprimitive data
types. Finding out an optimal schedule for minimum buffer
requirements considering both is a future research topic. In
this paper, instead, we propose a buffer sharing technique for
nonprimitive type data samples to minimize the buffer mem-
ory requirement assuming that the execution order of nodes is

already determined at compile time. Thus, this work is com-
plementary to existent scheduling algorithms to further re-
duce the buffer requirement.

Figure 2 demonstrates a simple example where we can re-
duce the significant amount of buffer memory by sharing
buffers. Without buffer sharing, five local buffers of size 64
(= 8 × 8) are needed. On the other hand, only two buffers
are needed if buffer sharing is used so that a, c, and e buffers
share buffer A, and b and d buffers share buffer B. Such shar-
ing decision can be made at compile time through lifetime
analysis of data samples, which is a well-known compilation
technique.

A key difference between the proposed technique and
the previous approaches is that we separate the local pointer
buffers from global data buffers explicitly in the synthesized
code. In Figure 2, we use five local pointer buffers and two
global buffers. This separation provides more memory shar-
ing chances when the number of local buffer entries becomes
more than one. If the local buffer size becomes one after
buffer optimization, no separation is needed. We examine
Figure 3a which illustrates a simplified version of an H.263
encoder algorithmwhere “ME” node indicates a motion esti-
mation block, “Trans” is a transform coding block which per-
forms DCT and Quantization, and “InvTrans” performs in-
verse transform coding and image reconstruction. Each sam-
ple between nodes is a frame of 176 × 144 byte size which is
large enough to ignore local buffer size. The diamond sym-
bol on the arc between ME and InvTrans denotes an initial
data sample, which is the previous frame in this example. If
we do not separate local buffers from global buffers, then we
need three frame buffers as shown in Figure 3b since buffers
a and c overlap their lifetimes at ME, a and b at Trans, and b
and c at InvTrans. Even though two frames are sufficient for
this graph, we cannot share any buffer without separation
of local buffers and global buffers. In fact, we can use only
two frame buffers if we use separate local pointer buffers.
Figure 3c shows the allocation of local buffers and global

516 EURASIP Journal on Applied Signal Processing

1
Trans

11
ME

1

1 InvTrans
11

(a)

ba

TransME

1
c

InvTrans

(b)

g2g1

TransME

1 InvTrans

(c)

Figure 3: (a) Simplified H.263 encoder in which a diamond between InvTrans and ME indicates an initial sample delay, (b) and (c) a
minimum buffer allocation without and with separation of global buffers and local buffers, respectively.

CBA
1 1 1

1
2

a b

Schedule: ABCAB

(a)

B2A2C1B1A1

An iteration cycle

t

Samples

s(a, 1)
s(b, 1)

s(b, 2)
s(a, 2)

s(b, 3)

(b)

B2A2C1B1A1 t

Global
buffer

g(3)
g(2)
g(1) s(a, 1)

s(b, 1)
s(b, 2)

s(a, 2)

s(b, 3)

(c)

B2A2C1B1A1 t

Local
buffer

B(a, 1)
B(b, 1)
B(b, 2)

s(a, 1)
s(b, 1)

s(b, 2)

s(a, 2)
s(b, 3)

(d)

Figure 4: (a) An example of SDF graph with an initial delay between B and C illustrated by a diamond, (b) the sample lifetime chart, (c) a
global buffer lifetime chart, and (d) a local buffer lifetime chart.

buffers, and the mapping of local buffers to global buffers.
The detailed algorithm and code synthesis techniques will be
explained in Section 4.

It is NP-hard to determine the optimal local buffer,
global buffer sizes, and their mappings in general cases where
there are feedback structures in the graph topology. The
problem becomes harder if we consider buffer sharing among
different size data samples. Therefore, we devise a heuristic
that focuses on global buffer minimization first and applies
an optimal algorithm next to find theminimum local pointer
buffer sizes and to map the local pointer buffers to the min-
imum global buffers. The proposed heuristic results in less
than 5% overhead than an optimal solution on average.

In Section 2, we define a new buffer sharing problem
for nonprimitive data types, and survey the previous works
briefly. The overview of the proposed technique is presented
in Section 3. Section 4 explains how to minimize the size
of local buffers and their mappings to the minimum global
buffers assuming that all data samples have the same size. In
Section 5, we extend the technique to the case where data
samples have the different sizes. Graphs with initial sam-
ples are discussed in Section 6. Finally, we present some ex-
perimental results in Section 7, and make conclusions in
Section 8.

2. PROBLEM STATEMENT AND PREVIOUSWORKS

In the proposed technique, global buffers store the live data
samples of nonprimitive type while the local pointer buffers

store the pointers for the global buffer entries. Since multiple
data samples can share the buffer space as long as their life-
times do not overlap, we should examine the lifetimes of data
samples. We denote s(a, k) as the kth stored sample on arc a
and TNSE(a) as the total number of samples exchanged dur-
ing an iteration cycle. Consider an example of Figure 4a with
the associated schedule. TNSE(a) becomes 2 and two sam-
ples, s(a, 1) and s(a, 2), are produced and consumed on arc
a. Arc b has an initial sample s(b, 1) and two more samples,
s(b, 2) and s(b, 3), during an iteration cycle.

The lifetimes of data samples are displayed in the sam-
ple lifetime chart as shown in Figure 4b, where the horizontal
axis indicates the abstract notion of time: each invocation of a
node is considered to be one unit of time. The vertical axis in-
dicates the memory size and each rectangle denotes the life-
time interval of a data sample. Note that each sample lifetime
defines a single time interval whose start time is the invoca-
tion time of the source block and the stop time is the comple-
tion time of the destination block. For example, the lifetime
interval of sample s(b, 2) is [B1, C1]. We take special care of
initial samples. The lifetime of sample s(b, 1) is carried for-
ward from the last iteration cycle while that of sample s(b, 3)
is carried forward to the next iteration cycle. We denote the
former-type interval as a tail lifetime interval, or shortly a tail
interval, and the latter as a head lifetime interval, or a head in-
terval. In fact, sample s(b, 3) at the current iteration cycle be-
comes s(b, 1) at the next iteration cycle. To distinguish itera-
tion cycles, we use sk(b, 2) to indicate sample s(b, 2) at the kth
iteration. Then, in Figure 4, s1(b, 3) is equivalent to s2(b, 1).

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 517

And the sample lifetime that spans multiple iteration cycles is
defined as a multicycle lifetime. Note that the sample lifetime
chart is determined from the schedule.

From the sample lifetime chart, it is obvious that the
minimum size of global buffer memory is the maximum
of the total memory requirements of live data samples over
time. We summarize this fact as the following lemma with-
out proof.

Lemma 1. The minimum size of global buffer memory is equal
to the maximum total size of live data samples at any instance
during an iteration cycle.

We map the sample lifetimes to the global buffers: an
example is shown in Figure 4c where g(k) indicates the kth
global buffer. In case all data types have the same size, an in-
terval scheduling algorithm can successfully map the sample
lifetimes to the minimum size of global buffer memory.

Sample lifetime is distinguished from local buffer lifetime
since a local buffermay storemultiple samples during an iter-
ation cycle. Consider an example of Figure 4a where the local
buffer sizes of arcs a and b are set to be 1 and 2, respectively.
We denote B(a, k) as the kth local buffer entry on arc a. Then,
the local buffer lifetime chart becomes as drawn in Figure 4d.
Buffer B(a, 1) stores two samples, s(a, 1) and s(a, 2), to have
multiple lifetime intervals during an iteration cycle. Now, we
state the problem this paper aims to solve as follows.

Problem 1. Determine LB(g, s(g)) and GB(g, s(g)) in order
to minimize the sum of them, where LB(g, s(g)) is the sum
of local buffer sizes on all arcs and GB(g, s(g)) is the global
buffer size with a given graph g and a given schedule s(g).

Since the simpler problems are NP-hard, this problem
is NP-hard, too. Consider a special case when all samples
have the same type or the same size. For a given local buffer
size, determining the minimum global buffer size is difficult
if a local buffer may have multiple lifetime intervals, which is
stated in the following theorem.

Theorem 1. If the lifetime of a local buffer may have multi-
ple lifetime intervals and all data types have the same size, the
decision problem whether there exists a mapping from a given
number of local buffers to a given number of global buffers is
NP-hard.

Proof. We will prove this theorem by showing that the graph
coloring problem can be reduced to this mapping problem.
Consider a graph G(V,E) where V is a vertex set and E is
an edge set. A simple example graph is shown in Figure 5a.
We associate a new graph G′ (Figure 5b) where a pair of
nodes are created for each vertex of graph G and connected
to the dummy source node S and the dummy sink node
K of the graph G′. In other words, a vertex in graph G is
mapped to a local buffer in graph G′. The next step is to
map an arc of graph G to a schedule sequence in graph G′.
For instance, an arc AB in graph G is mapped to a sched-
ule segment (A′B′A′′B′′) to enforce that two local buffers on

KB′′B′S

A′

C′

A′′

C′′

B

C

A

(a) (b)

Figure 5: (a) An example instance of graph coloring problem, and
(b) the mapped graph for the proof of Theorem 1.

arcs A′A′′ and B′B′′ may not be shared. As we traverse all
arcs of graph G, we generate a valid schedule of graph G′.
Traversing arcs AB and AC in graph G generates a schedule:
S(A′B′A′′B′′)(A′C′A′′C′′)K . From this schedule, we find out
that the buffer lifetime on arc A′A′′ consists of two intervals.
The constraint that two adjacent nodes in G may not have
the same color is translated to the constraint that two local
buffers may not be shared in G′. Therefore, the graph color-
ing problem for graph G is reduced to the mapping problem
for graph G′.

The register allocation problem in traditional compilers
is to share the memory space for the variables of nonover-
lapped lifetimes [9]. If the variable sizes are not uniform, the
allocation problem, known as the dynamic storage allocation
problem [10, 11], is NP-complete. In our context, this prob-
lem is equivalent to minimize the global buffer memory ig-
noring the local buffer sizes and mapping problems.

De Greef et al. [12] presented a systematic procedure to
share arrays for multimedia applications in a synthesis tool
called ATOMIUM. They analyze lifetimes of array variables
during a single iteration trace of a C program and do not con-
sider the case where lifetimes span multiple iteration cycles.
If the program is retimed, some variables can be live longer
than a single iteration cycle. Another extension we make in
the proposed approach is that we consider each array element
separately for sharing decision when each array element is of
nonprimitive type.

Recently, Murthy and Bhattacharyya [13] proposed a
scheduling technique for SDF graphs to optimize the lo-
cal memory size by buffer sharing. Since they assume only
primitive type data, their sharing decision considers array
variables as a whole. However, their research result is com-
plementary to our work since the schedule reduces the num-
ber of live data samples at runtime, which reduces the global
memory size in our framework. They compared their re-
search work with Ritz et al.’s [14] whose schedule pat-
tern does not allow nested loop structure. They showed
that nested loop structure may significantly reduce the local
memory size.

Even though memory sharing techniques have been re-
searched extensively from compiler optimization to high
level synthesis, no previous work has been performed, to the
authors’ knowledge, to solve the problem we are solving in
this paper.

518 EURASIP Journal on Applied Signal Processing

1: U is a set of sample lifetimes; P is an empty global buffer lifetime chart.
2: While (U is not empty){
3: Take out a sample lifetime x with the earliest start time from U .
4: Find out a global buffer whose lifetime ends earlier than the start time of x.
5: Priority is given to the buffer that stores samples on the same arc if exists.
6: If no such global buffer exists in P, create another global buffer.
7: Map x to the selected global buffer
8: }

Figure 6: Interval scheduling algorithm.

BA
2 3

a
2(A)BAB

(a)

B2A3B1A2A1

Samples

s(a, 1)
s(a, 2)

s(a, 3)
s(a, 4)

s(a, 5)

s(a, 6)

(b)

B2A3B1A2A1

Global
buffer

s(a, 1) s(a, 6)
s(a, 2) s(a, 5)

s(a, 3)
s(a, 4)

g(1)
g(2)
g(3)
g(4)

(c)

BA

B(1) B(2) B(3)B(4)

Global
buffer g(1) g(2) g(3) g(4)

(d)

Figure 7: (a) An SDF subgraph with a given schedule, (b) the sample lifetime chart, (c) the global buffer lifetime chart, and (d) local buffer
allocation and mapping.

3. PROPOSED TECHNIQUE

In this section, we sketch the proposed heuristic for the prob-
lem stated in the previous section. Since the size of nonprimi-
tive data type is usually much larger than that of pointer type
in multimedia applications of interest, reducing the global
buffer size is more important than reducing the local pointer
buffers. Therefore, our heuristic consists of two phases: the
first phase is to map the sample lifetimes within an iteration
cycle into the minimum number of global buffers ignoring
local buffer sizes, and the second phase is to determine the
minimum local buffer sizes and to map the local buffers to
the given global buffers.

3.1. Global bufferminimization

Recall that a sample lifetime has a single interval within an
iteration cycle. When all samples have the same data size,
the interval scheduling algorithm is known to be an optimal
algorithm [15] to find the minimum global buffer size. We
summarize the interval scheduling algorithm in Figure 6.

Consider an example of Figure 4a whose global buffer
lifetime chart is displayed in Figure 4c. After samples s(a, 1),
s(b, 1), and s(b, 2) are mapped into three global buffers,
s(a, 2) can be mapped to all three buffers. Among the can-
didate global buffers, we select one that already stores s(a, 1)
according to the policy of line 5 of Figure 6. The reason of
this priority selection is to minimize the local buffer sizes,
which will be discussed in the next section.

When the data samples have different sizes, this mapping
problem becomes NP-hard since a special case can be re-
duced to 3-partition problem [10]. Therefore, we develop a
heuristic, which will be discussed in Section 5.

3.2. Local buffer size determination

The global buffer minimization algorithm in the previous
phase runs for one iteration cycle while the graph will be ex-
ecuted repeatedly. The next phase is to determine the mini-
mum local buffer sizes that are necessary to store the point-
ers of data samples mapped to the global buffers. Initially we
assign a separate local buffer to each live sample during an it-
eration cycle. Then, the local buffer size on each arc becomes
the total number of live samples within an iteration cycle:
each sample occupies a separate local buffer. In Figure 4a, for
instance, two local buffers are allocated on arc a while three
local buffers on arc b.

What is the optimal local buffer size? The answer depends
on when we set the pointer values, or when we bind the local
buffers to the global buffers. If binding is performed statically
at compile time, we call it static binding. If binding can be
changed at runtime, it is called dynamic binding. In general,
the dynamic binding can reduce the local buffer size signifi-
cantly with small runtime overhead of global buffer manage-
ment.

3.2.1 Dynamic binding strategy

Since we can change the pointer values at runtime in dy-
namic binding strategy, the local buffer size of an arc can be
as small as the maximum number of live samples at any time
instance during an iteration cycle. Consider another exam-
ple of Figure 7a with a given scheduling result and a global
buffer lifetime chart as shown in Figure 7c. Since the maxi-
mum number of live samples is four, we need at least four
local buffers on arc a. Suppose we have the minimum num-
ber of local buffers on arc a. Local buffer B(a, 1) stores two

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 519

samples, s(a, 1) and s(a, 5), which are unfortunately mapped
to different global buffers. It means that the pointer value of
local buffer B(a, 1) should be set to g(1) at the first invocation
of node A but to g(2) at the third invocation, dynamically.
We repeat this pointer assignment at every iteration cycle at
runtime.

If there are initial samples on an arc, care should be taken
to compute the repetition period of pointer assignment. Arc
b of Figure 4a has an initial sample and needs only two local
buffers since there are at most two live samples at the same
time. Unlike the previous example of Figure 7, the global
buffer lifetime chart may not repeat itself at the next itera-
tion cycle. The lifetime patterns of local buffers B(b, 1) and
B(b, 2) are interchanged at the next iteration cycle as shown
in Figure 8. In other words, the repetition periods of pointer
assignment for arcs with initial samples may span multiple
iteration cycles. Section 4 is devoted to computing the repe-
tition period of pointer assignment for the arcs with initial
samples.

Suppose an arc a has M local buffers. Since the local
buffers are accessed sequentially, each local buffer entry has at
most �TNSE(a)/M� samples and the pointer to sample s(a, k)
is stored in B(a, kmodM). After the first phase is completed,
we examine the mapping results of the allocated sample in a
local buffer to the global buffers at the code generation stage.
If the mapping result of the current sample is changed from
the previous one, a code segment is inserted automatically to
alter the pointer value at the current schedule instance. Note
that it incurs both memory overhead of code insertion and
time overhead of runtime mapping.

3.2.2 Static binding strategy

If we use static binding, wemay not change the pointer values
of local buffers at runtime. It means that all allocated samples
to a local buffer should be mapped to the same global buffer.
For example of Figure 7, we need six local buffers for static
binding: two more buffers than the dynamic binding case
since s(a, 1) and s(a, 5) are not mapped to the same global
buffer. On the other hand, arc a of Figure 4 needs only one
local buffer for static binding since two allocated samples are
mapped to the same global buffer. How many buffers do we
need for arc b of Figure 4 for static binding?

To answer this question, we extend the global buffer life-
time chart over multiple iteration cycles until the sample life-
time patterns on the arc become periodic. We need to extend
the lifetime chart over two iteration cycles as displayed in
Figure 8. Note that the head interval of s2(b, 3) is connected
to the tail interval of s3(b, 1) in the next repetition period.
Therefore, four live samples are involved in the repetition pe-
riod that consists of two iteration cycles. The problem is to
find the minimum local buffer size M such that all allocated
samples on each local buffer are mapped to the same global
buffer. The minimum number is four in this example since
s3(b, 1) can be placed at the same local buffer as s1(b, 1).

How many iteration cycles should be extended is an
equivalent problem to computing the repetition period of
pointer assignment for dynamic binding case. We refer to the
next section for detailed discussion.

tB2A2C1B1A1B2A2C1B1A1

Global
buffer

g(3)

g(2)

g(1) s1(a, 1)

s1(b, 1)

s1(b, 2)

s1(a, 2) s2(a, 1) s2(a, 2)

s2(b, 3)s2(b, 2)

s1(b, 3) = s2(b, 1)

Iteration
boundary

Figure 8: The global buffer lifetime chart spanning two iteration
cycles for the example of Figure 4.

4. REPETITION PERIODOF SAMPLE LIFETIME
PATTERNS

Initial samples may make the repetition period of the sample
lifetime chart longer than a single iteration cycle since their
lifetimesmay span tomultiple cycles. In this section, we show
how to compute the repetition period of sample lifetime pat-
terns to determine the periodic pointer assignment for dy-
namic binding or to determine the minimum size of local
buffers for static binding. For simplicity, we assume that all
samples have the same size in this section. This assumption
will be released in Section 5.

First, we compute the iteration length of a sample life-
time. Suppose d initial samples stay alive on an arc and N
samples are newly produced for each iteration cycle. Then,N
samples on the arc are consumed from the destination node.
If d is greater than N , the newly produced samples all live
longer than an iteration cycle. Otherwise, N − d newly cre-
ated samples are consumed during the same iteration cycle
while d samples live longer. We summarize this fact in the
following lemma.

Lemma 2. If there are d(a) initial samples on an arc a, the
lifetime interval of (d(a)modTNSE(a)) newly created sam-
ples on the arc spans �d(a)/ TNSE(a)� + 1 iteration cycles
and that of (TNSE(a) − (d(a)modTNSE(a))) samples spans
�d(a)/ TNSE(a)� iteration cycles.

Let p be the number of iteration cycles in which a sample
lifetime interval lies. Figure 9 illustrates two patterns that a
sample lifetime interval can have in a global lifetime chart.
A sample starts its lifetime at the first iteration cycle with a
head interval and ends its lifetime at the pth iteration with
a tail interval. Note that the tail interval at the pth iteration
also appears at the first iteration cycle. The first pattern, as
shown in Figure 9a, occurs when the tail interval is mapped
to the same global buffer as the head interval. The interval
mapping pattern repeats every p − 1 iteration cycles in this
case.

The second pattern appears when the tail interval is
mapped to a different global buffer. To compute the repe-
tition period, we have to examine when a new head inter-
val can be placed at the same global buffer. Figure 9b shows
a simple case that a new head interval can be placed at the
next iteration cycle. Then, the repetition period of the sample

520 EURASIP Journal on Applied Signal Processing

Tail
interval

p − 1
Head
interval

Tail

Global
buffer

Iterations

1 2 p· · ·

(a)

Tail
interval

p

Global
buffer

1 2 p· · · p + 1

(b)

Figure 9: Illustration of a sample lifetime interval: (a) when the tail interval is mapped to the same global buffer as the head interval, and
(b) when the tail interval is mapped to a different global buffer and there is no chained multicycle sample lifetime interval.

k + p1+
· · · + pn

k + p1+
· · · + pn−1

k+ p1+ p2k + p1k

Global
buffer

tn−1 hn

t1 h2

tn h1

· · ·

t1 h2

· · ·

t2 h3

· · ·

tn−1 hn

· · ·

tn h1

t1 h2

tn−1 hn

(a)

k+ 2 + p1
+ · · · + pn

k+ 1 + p1
+ · · · + pn

k+ 1 + p1
+ · · · + pn−1

k + 1+
p1 + p2

k+ 1 + p1k + 1k

Global
buffer

tn−1 hn

t1 h2

tn h1

tn

· · ·

t1 h2

· · ·

t2 h3

· · ·

tn−1 hn

· · ·

tn

tn h1

t1 h2

tn−1 hn

(b)

Figure 10: Sample lifetime patterns when multicycle lifetimes are chained so that tail interval ti is chained to the lifetime of sample j + 1.
(a) Case 1: tn is chained back to the lifetime of sample 1. The repetition period of sample lifetime patterns becomes

∑n
i=1 pi. (b) Case 2: tn is

chained to none. The repetition period becomes
∑n

i=1 pi + 1. Here, we assume that the lifetime of sample k spans pk + 1 iteration cycles.

lifetime pattern becomes p. More general case occurs when
another multicycle sample lifetime on a different arc is
chained after the tail interval. A multicycle lifetime is called
chained to a tail interval when its head interval is placed at
the same global buffer. The next theorem concerns this gen-
eral case.

Theorem 2. Let ti be the tail interval and hi the head interval
of sample i, respectively. Assume the lifetime of sample i spans
pi + 1 and ti is chained to the lifetime of sample i + 1 for i = 1
to n − 1. The interval mapping pattern repeats every

∑n
i=1 pi

iteration cycles if interval tn is chained back to the lifetime of
sample 1. Otherwise it repeats every

∑n
i=1 pi+1 iteration cycles.

Proof. Figure 10 illustrates two patterns where chained mul-
ticycle lifetime intervals are placed. The horizontal axis in-
dicates the iteration cycles. The lifetime interval of sample 1
starts at k with head interval h1 and finishes at k + p1 with
tail interval t1. Since the lifetime of sample 2 is chained, its
head interval h2 is placed at the same global buffer as t1. The
lifetime of sample 2 ends k+ p1 + p2. If we repeat this process,
we can find that the lifetime of sample n ends at k +

∑n
i=1 pi.

Now, we consider two cases separately. Case 1: when interval
tn is chained back to the lifetime of sample 1, the repetition
period becomes

∑n
i=1 pi as illustrated in Figure 10a. Case 2:

when interval tn is chained to no more lifetime, we should
prove that sample 1 is mapped to the same global buffer at

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 521

CBA
1111

1 1
1 c

a b

(a)

CBA

s(c, 1)

s(a, 1)

s(b, 1)

s(c, 2)
Intervals

(b)

CBA

s(c, 1)

s(a, 1)

s(b, 1)

s(c, 2)

0

1

Global
buffer
offset

(c)

Repetition period
s(c, 1), s(c, 2) : 2
s(a, 1) : 2
s(b, 1) : 2

(d)

struct frame g[2];
main()
{

structG ∗a, ∗b, ∗c[2] = {g, g + 1};
int in A = 0, out C = 1;
for(int i = 0; i < max iteration; i++) {

{ a = c[(i + 1)%2];
// A’s codes. Use c[in A] and a.
in A = (in A + 1)%2;

}
{ b = c[i%2];

// B’s codes. Use a and b.
}
{ // C’s codes. Use b and c[out C].

out C = (out C + 1)%2;
}

}
}

(e)

struct frame g[2];

main()

{
structG ∗a[2] = {g + 1, g}, ∗b[2] = {g, g + 1}, ∗c[2] = {g, g + 1};
int in A = 0, out A = 0, in B = 0, out B = 0, in C = 0, out C = 1;

for(int i = 0; i < max iteration; i++) {
{ // A’s codes. Use c[in A] and a[out A].

in A = (in A + 1)%2; out A = (out A + 1)%2;
}
{ // B’s codes. Use a[in B] and b[out B].

in B = (in B + 1)%2; out B = (out B + 1)%2;
}
{ // C’s codes. Use b[in C] and c[out C].

in C = (in C + 1)%2; out C = (out C + 1)%2;
}

}
}

(f)

Figure 11: (a) A graph which is equivalent to Figure 3a, (b) lifetime intervals of samples for an iteration cycle, (c) an optimal global buffer
lifetime chart, (d) repetition periods of sample lifetime patterns, (e) generated code with dynamic binding, and (f) generated code with static
binding.

the next iteration cycle as shown in Figure 10b. Then, the
period becomes

∑n
i=1 pi + 1. Since the sample lifetime pat-

terns over iteration cycles are permutations of each other,
sample 1 should be mapped to among n global buffers as-
signed to samples 1 through n during previous iterations. As
illustrated in Figure 10b, other global buffers are occupied
by other samples at k +

∑n
i=1 pi + 1 except the global buffer

mapped to tn. Therefore, sample 1 is mapped to the same
global buffer at the next iteration cycle.

We apply the above theorem to the case of Figure 4b
where head interval s(b, 3) and tail interval s(b, 1) are
mapped to the different global buffers. And the sample life-
time spans two iteration cycles. Therefore, the repetition pe-
riod becomes 2 and Figure 8 confirms it.

Another example graph is shown in Figure 11a, which
is identical to the simplified H.263 encoder example of
Figure 3. There is a delay symbol on arc CA with a number
inside which indicates that there is an initial sample s(c, 1).
Assume that the execution order is ABC. During an itera-
tion cycle, sample s(c, 1) is consumed by A and a new sam-
ple s(c, 2) is produced by C as shown in Figure 11b. If we
expand the lifetime chart over two iteration cycles, we can

notice that head interval s1(c, 2) is extended to tail interval
s2(c, 1) at the second iteration cycle. By interval scheduling,
an optimal mapping is found like Figure 11c. By Theorem 2,
the mapping patterns of s(c, 1) and s(c, 2) repeat every other
iteration cycles since head interval s(c, 2) is not mapped to
the same global buffer as tail interval s(c, 1).

Initial samples also affect the lifetime patterns of sam-
ples on the other arcs if they are mapped to the same global
buffers as the initial samples. In Figure 11c, sample s(b, 1) are
mapped to the same global buffer with s(c, 1) while s(a, 1)
with s(c, 2). As a result, their lifetime patterns also repeat
themselves every other iteration cycles. The summary of rep-
etition periods is displayed in Figure 11d.

Recall that the repetition periods determine the period of
pointer update in the generated code with dynamic binding
strategy, and the size of local buffers in the generated code
with static binding strategy. Figures 11e and 11f show the
code segments that highlight the difference.

The dynamic binding scheme allocates a local pointer
buffer onto arc AB since the number of samples accumulated
on arc AB is no greater than one. Similarly, a local buffer is
allocated on arc BC. Figure 11e shows a code with dynamic

522 EURASIP Journal on Applied Signal Processing

A B C D
1

6
2 1 1 1 1

a b c

(a)

A B C A D

0

1

2

3

4

5

6

7

Global
buffer
offset

s(a, 3)

s(a, 4)

s(a, 5)

s(a, 6)

s(a, 7) (head)

s(c, 1)s(a, 1) (tail)

s(a, 2) (tail) s(a, 8) (head)

s(b, 1)

(b)

Repetition period
s(a, 1), s(a, 3), s(a, 5), s(a, 7) : 4
s(a, 2), s(a, 4), s(a, 6), s(a, 8) : 3
s(b, 1) : 1
s(c, 1) : 4

(c)

structGg[8];
main()
{

structG ∗a0[4] = {g + 4, g, g + 2, g + 5}, ∗a1[3] = {g + 6, g + 1, g + 3},
∗b[1] = {g + 7}, ∗c[1] = {0};

for(int i = 0; i < max iteration; i++) {
{ structG ∗output = a0[(i + 3)%4];

// A’s codes
}{ structG ∗input[2];

input[0] = a0[i%4]; input[1] = a1[i%3];
// B’s codes

}{ c[0] = a0[i%4];
// C’s codes

}{ structG ∗output = a1[(i + 2)%3];
// A’s codes

}{
// D’s codes

}
}

}

(d)

Figure 12: (a) An SDF graph with large initial samples, (b) an optimal global buffer lifetime chart, (c) repetition periods of sample lifetime
patterns, and (d) generated code with dynamic binding after dividing local buffers on arc AB into two local buffer arrays.

binding. When the size of a local buffer is the same as the
number of newly produced samples within an iteration, no
buffer index is needed for the buffer in the generated inlined
code. The mapped offset of sample s(a, 1) repeats every other
cycles as that of s(c, 2) does. The mapped offset of s(b, 1) fol-
lows that of s(c, 1). For arc CA, the minimum size of local
buffers is one since there is at most a live sample on the arc.
But we notice that if we have a local buffer on the arc, we
need to update the pointer value of each local buffer at every
access since the repetition period is two. Therefore, we allo-
cate two local buffers on arc CA and fix the buffer pointers.
Instead, we update the local buffer indices, in A for block A
and out C for block C. The decision of the binding scheme
is automatically taken care of by the algorithm.

The static binding requires two local pointer buffers for
arc AB and BC, respectively, since the mapping patterns of
samples on AB repeat every other iteration cycles. The lo-

cal buffer size for arc CA is two and has the same binding as
Figure 11e. Figure 11f represents a generated code with static
binding, which additionally requires buffer indices for local
buffers on arc AB and BC [16]. Hence, we add additional
code of updating buffer indices before and after the associ-
ated block’s execution. We should consider this overhead to
compare the static binding with the dynamic binding strate-
gies. In this example, using the dynamic binding strategy is
more advantageous.

We illustrate an example graph which has large initial de-
lays and thus has long repetition period of sample lifetime
patterns in Figure 12. The schedule is assumed to be given
as ABCAD. Interestingly enough, samples on the same arc
AB have different repetition periods. The mapping patterns
repeat every four iteration cycles for samples s(a, 1), s(a, 3),
s(a, 5), and s(a, 7) since each sample spans four iteration cy-
cles and tail interval s(a, 1) is not mapped to the same global

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 523

1: Procedure LOES(U is a set of sample lifetimes) {
2: P ← {}
3: While(U is not empty) {
4: /* compute feasible offsets of every interval in U with P */
5: compute lowest offset(U, P);
6: /* 1st step: choose intervals with the smallest feasible offset from U */
7: C ←find intervals with lowest offset(U);
8: /* 2nd step(tie breaking) : interval scheduling */
9: select interval x with the earliest arrival time from C;
10: remove x from U .
11: P ← P

⋃
U{x}.

12: }
13:}

Figure 13: Pseudocode of LOES algorithm.

buffer as head interval s(a, 7). On the other hand, samples
s(a, 2), s(a, 4), s(a, 6), and s(a, 8) repeat their lifetime patterns
every three iteration cycles since tail interval s(a, 2) and head
interval s(a, 8) are mapped to the same global buffer. The
static binding method allocates twelve local buffers to arc AB
since the overall repetition period of local buffers on arc AB
becomes twelve that is equal to the least commonmultiple of
4 and 3 (= LCM(4, 3)). The dynamic binding method, how-
ever, allots two local buffer arrays that have four and three
buffers, respectively, to arc AB. Hence the dynamic binding
method can reduce five local pointer buffers than the static
binding. A code template with inlined coding style is dis-
played in Figure 12d. The local buffer pointer for arc CD fol-
lows that of sample s(a, 1).

Up to now, we assume that all samples have the same size.
The next two sections will discuss the extension of the pro-
posed scheme to a more general case, where samples of dif-
ferent sizes share the same global buffer space.

5. BUFFER SHARING FOR DIFFERENT SIZE SAMPLES
WITHOUT DELAYS

We are given sample lifetime intervals which are determined
from the scheduled execution order of blocks. The optimal
assignment problem of local buffer pointers to the global
buffers is nothing but to pack the sample lifetime intervals
into a single box of global buffer space. Since the horizon-
tal position of each interval is fixed, we have to determine
the vertical position, which is called the “vertical offset” or
simply “offset.” The bottom of the box, or the bottom of the
global buffer space has offset 0. The objective function is to
minimize the global buffer space. Recall that if all samples
have the same size, interval scheduling algorithm gives the
optimal result. Unfortunately, however, the optimal assign-
ment problem with intervals of different sizes is known to be
NP-hard. The lower bound is evident from the sample life-
time chart; it is the maximum of the total sample sizes live at
any time instance during an iteration. We propose a simple
but efficient heuristic algorithm. If the graph has no delays
(initial samples), we can repeat the assignment every itera-

tion cycle. Graphs with initial samples will be discussed in
the next section.

The proposed heuristic is called LOES (lowest offset and
earliest start time first). As the name implies, it assigns inter-
vals in the increasing order of offsets, and in the increasing
order of start times as a tie breaker. At the first step, the algo-
rithm chooses an interval that can be assigned to the small-
est offset, among unmapped intervals. If more than one in-
terval is selected, then an interval is chosen which starts no
later than others. The earliest start time first policy allows the
placement algorithm to produce an optimal result when all
samples have the same size since the algorithm is equivalent
to the interval scheduling algorithm.

The detailed algorithm is depicted in Figure 13. In this
pseudocode, U indicates a set of unplaced sample lifetime
intervals and P a set of placed intervals. At line 5, we com-
pute the feasible offset of each interval in U . Set C contains
intervals whose feasible offsets are lowest among unplaced
intervals at line 7. We select the interval with the earliest start
time in C at line 9 and place it at its feasible offset to remove
it from U and add it to P. This process repeats until every
interval in U is placed.

Since the LOES algorithm can find intervals with lowest
offset in O(n) time and choose the earliest interval among
them in O(n), where n is the number of lifetime intervals, it
hasO(n) time complexity to assign an interval. Therefore the
time complexity of the algorithm is O(n2) for n intervals.

Figure 14 shows an example graph where the circled
number on each arc indicates the sample size. Figure 14b
presents a schedule result and the resultant sample lifetime
intervals. Figure 15 shows the procedure of the LOES algo-
rithm at work. At first, we select d with the earliest start time
first among the intervals that can be mapped to lowest offset
0. Next, f is selected and placed since it is the only inter-
val that can be placed at offset 0. In this example, the LOES
algorithm produces an optimal assignment result. With ran-
domly generated graphs, it gives near-optimal results most of
the time as shown later.

De Greef et al. proposed a similar heuristic that consid-
ers the offset first and sample size next in [12]. Even though

524 EURASIP Journal on Applied Signal Processing

F

100

f
E

1

e
D

99

d

A

100

a
B

1

b
C

99

c

(a)

FEDCBA

a

d
b

c
e

f

Samples

(b)

Figure 14: (a) An input graph with samples of different sizes and (b) a schedule (= ABCDEF) and the resultant sample lifetime chart.

fd

a c

Bottom(b, c, e) = (199, 100, 100)
Lowest bottom = {c, e}
Earliest = {c}

fd

a c
b

Bottom(b, e) = (199, 199)
Lowest bottom = {b, e}
Earliest = {b}

fd

ca
b e

Bottom(e) = (199)
Lowest bottom = {e}
Earliest = {e}

d

Bottom(a, b, c, d, e, f) = (0, 0, 0, 0, 0, 0)
Lowest bottom = {a, b, c, d, e, f }
Earliest = {d}

d f

Bottom(a, b, c, d, e, f) = (99, 99, 99, 99, 0)
Lowest bottom = { f }
Earliest = { f }

d f

a

Bottom(a, b, c, e) = (99, 99, 100, 100)
Lowest bottom = {a, b}
Earliest = {a}

Figure 15: The proposed placement algorithm at work.

their heuristic gives similar performance with randomly gen-
erated graphs, it does not guarantee to produce optimal re-
sults when all samples have the same size.

6. BUFFER SHARING FOR DIFFERENT SAMPLE SIZES
WITH INITIAL SAMPLE DELAYS

In this section, we discuss the most general case where a
graph has initial samples and samples have different sizes.
The LOES algorithm is not directly applicable to this case.
Figure 16 illustrates the difficulty with a simple example.
Figure 16a shows a mapping result after the LOES algorithm
is applied to the first iteration period. We assume that “h”
and “t ” indicate the head interval and the tail interval of
the same sample lifetime, respectively. At the second iter-
ation, interval h should be placed as shown in Figure 16b
since it is extended from the first cycle. The head inter-
val h prohibits interval x from lying on contiguous mem-
ory space at the second iteration. Such splitting is not al-
lowed in the generated code since the code regards each
sample as a unit of assignment. To overcome this diffi-
culty, we enforce that multicycle intervals do not share the
global buffer space with other intervals with different sample
size.

Figure 17displays the main procedure, ASSIGN MAIN,
for the proposed technique. We first classify intervals into
several groups (lines 2–13 in Figure 17); a new group is
formed with all intervals of the same size if there is at least
one multicycle interval, and is denoted as D(x) where x is
the sample size. If there is no multicycle interval, all re-
maining intervals form the last group R. Consider an exam-
ple of Figure 18a where sample sizes are indicated as circled
numbers on the arcs. The sample lifetimes are displayed in
Figure 18b. We make three groups of intervals for this graph.
Group D(100) includes all sample intervals associated with
arcs b, c, and d while group D(200) includes all intervals as-
sociated with arcs a and e. Initially group R is empty in this
example.

The next step is to apply the LOES algorithm for each
group D(x) since D(x) contains samples of the same size
only (lines 14–17). We slightly modify the LOES algorithm so
that the algorithm finishes the mapping as soon as all mul-
ticycle intervals are mapped: compare line 24 of Figure 17
and line 12 of Figure 13. The remaining unmapped inter-
vals are moved to group R. In Figure 18c, the modified
LOES algorithm places intervals in D(100) in the order
of [s(c, 1), s(b, 2), s(d, 2), s(d, 1), s(b, 1), s(c, 3)]. After placing
s(c, 3), it completes and moves a remaining interval s(c, 2)

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 525

y
t

h

x

Global
buffer
offset

(a)

t

y

yt
h

x

Global
buffer
offset

1st iteration 2nd iteration

Split

(b)

Figure 16: (a) A global buffer lifetime chart with different size samples where t is a tail interval and h is a head interval. (b) Interval x should
be split at the second iteration, which is not allowed in the generated code.

1: Procedure ASSIGN MAIN(U is a set of sample lifetimes) {
2: R ← {}
3: for each x in U{/* classify intervals and sort them */
4: if (x is delayed interval)
5: D(size(x)) ← D(size(x))

⋃{x}
6: else R ← R

⋃{x}
7: }
8: for each x in R{/* add ordinary intervals into D(x) */
9: if(there is a delayed interval whose size is equal to that of x) {
10: D(size(x)) ← D(size(x))

⋃{x}
11: R ← R − {x}
12: }
13: }
14: for each D(size){ /* place intervals in D(x) */
15: call M LOES (D(size)).
16: R ← R

⋃
D(size)

17: }
18: /* place ordinary intervals in R */
19: call LOES(R).
20: }
21:}
22: Procedure M LOES(U is a set of sample lifetimes) { /* slightly modified LOES */
23: P ← {}
24: While(U has delayed intervals) {

· · ·

Figure 17: Pseudocode of the proposed algorithm for a graph with delays.

into R. Similarly, ordinary interval s(e, 2) and s(a, 1) are
moved into R after s(e, 3) is placed for group D(200). At
last we apply the original LOES algorithm to group R (line
19 of Figure 17) as shown in Figure 18e. The algorithm lo-
cates intervals s(c, 2), s(e, 2), and s(a, 1) in R as shown in
Figure 18e.

After all intervals are mapped to the global buffers, we
move to the next stage of determining the local buffer sizes,
which is already discussed in Section 4. Repetition periods
for s(c, 1) and s(c, 3) become two since tail interval s(c, 1)
spans two iteration cycles and is not mapped to the same
global buffer as s(c, 3) is. Repetition periods of s(e, 1), s(e, 2),
and s(e, 3) become all two. A generated code with static bind-
ing is displayed in Figure 18f.

7. EXPERIMENT

In this section, we demonstrate the performance of the pro-
posed technique with three real-life examples and randomly
generated graphs.

First, we experimented three real-life applications: a
JPEG encoder, an MP3 decoder, and an H.263 encoder.
We have implemented the proposed technique in a de-
sign environment called PeaCE Ptolemy extension as Code-
sign Environment (http://peace.snu.ac.kr/research/peace) in
which dataflow program graphs for a JPEG encoder and an
H.263 encoder are displayed in Figures 19 and 20, respec-
tively. From the automatically synthesized codes, we com-
pute the buffer memory requirements and summarize the

http://peace.snu.ac.kr/research/peace

526 EURASIP Journal on Applied Signal Processing

EDCBA 1

1

1 2 1 1 1 1 1 2

1

2

a b c d

e

200 100 100 100

200

(a)

EDCCBAD

Sample
lifetime
intervals

s(a, 1)

s(b, 1)

s(b, 2)

s(c, 1)

s(c, 2)

s(c, 3)

s(d, 1)

s(d, 2)

s(e, 1)

s(e, 2)

s(e, 3)

(b)
EDCCBAD

Global
buffer
offset

s(c, 1) s(b, 2) s(d, 2)

s(d, 1)

s(b, 1) s(c, 3)

s(e, 1) s(e, 3)

s(e, 2)

s(c, 2)
s(a, 1)

0

100

200

300

500

700

800
900

(e)

EDCCBAD

Global
buffer
offset

s(c, 1) s(b, 2) s(d, 2)

s(d, 1)

s(b, 1) s(c, 3)

s(e, 1) s(e, 3)

0

100

200

300

500

(d)

EDCCBAD

Global
buffer
offset

s(c, 1) s(b, 2) s(d, 2)

s(d, 1)

s(b, 1) s(c, 3)

0

100

200

300

(c)

char g[900];
main()
{

struct G100 ∗b[4] = {g + 200, g, g, g + 200},
∗ c[4] = {g, g + 700, g + 200, g + 700},
∗ d[4] = {g + 100, g, g + 100, g + 200};

struct G200 ∗a[1] = {g + 700}, ∗e[2] = {g + 300, g + 500};

for(int i = 0; i < max iteration; i + +) {
{ // D’s codes
}{ // A’s codes
}{ // B’s codes
}{ // C’s codes
}{ // C’s codes
}{ // D’s codes
}{ // E’s codes
}

}
}

(f)

Figure 18: (a) A graph with samples of different sizes and delays, (b) a sample lifetime chart, (c) LOES placement of samples whose size is
100, (d) LOES placement of samples whose size is 200, (e) LOES placement of the remained samples without delay, and (f) a generated code
with static binding.

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 527

Figure 19: JPEG encoder example that represents a graph of same
size samples without delays.

Figure 20: H.263 encoder example that represents a graph of dif-
ferent size samples with delays.

performance comparison results in Table 1. Since the func-
tion body of each dataflow node is equivalent in all experi-
ments, only buffer memory requirements are the main item
of comparison and the execution times are all similar except
for the buffer copy overhead to be discussed below.

A JPEG encoder example represents the first and the sim-
plest class of program graphs in which all nonprimitive data
samples have the same size and no initial delay exists. Since
the local buffer size of each arc is one in this example, we do
not have to separate the local pointer buffer and the global
data buffer, which is taken into account in the implementa-
tion of the proposed technique. We can reduce the memory
requirements to one third as the third and the fourth rows of
Table 1 illustrate. The last row indicates the lower bound of
global buffer requirements that a given execution sequence
of nodes needs. The lower bound is nothing but the maxi-
mum total size of data samples live at any instance of time
during an execution period. No better result is possible since
it is optimal.

An MP3 decoder example is composed of three kinds of
different size samples. It represents the second class of graphs
that have different size samples but no initial delay sample. In
this example, we also do not have to separate local and global
buffers because the local buffer size of each arc is one. The
proposed algorithm that shares the buffer space between dif-
ferent size samples reduces the memory requirement by 52%
compared with any sharing algorithm that shares the buffer
space among only equal size samples. The fourth and the fifth

rows show the performance difference. The proposed algo-
rithm also achieves the lower bound in this example.

As for an H.263 encoder example, we make two ver-
sions: the simplified version as discussed in the first section
and the full version. The simplified version is an example
of the third class of graphs in which all nonprimitive data
samples have the equal size and initial delay samples exist.
As discussed earlier, separation of local buffers from global
buffers allows us to reduce the buffer space to optimum as
the sixth row reveals. The full version of an H.263 encoder
example represents the fourth and the most general class of
graphs that consist of different size samples and initial sam-
ples. The H.263 encoder example include four different size
sample sizes and eight initial delay samples on eight differ-
ent arcs. The proposed technique can reduce the memory re-
quirement by 40% compared with the unshared version. On
the other hand, a sharing technique reduces the buffer size
only 23% if neither buffer separation nor sharing between
different samples is considered. In this sample, we cannot
achieve the lower bound but 256 bytes larger buffer space.
Note that the lower bound is usually not achievable if differ-
ent size samples and initial samples are involved in the same
graph.

The SDF model has a limitation that it regards a sample
of nonprimitive type as a unit of data delivery. In an H.263
encoder example, the SDF model needs an additional block
that explicitly divides a frame into 99 macroblocks, paying
nonnegligible data copy overhead and extra frame-size buffer
space. In a manually written reference code, such data copy is
replaced with pointer operation. Table 2 reveals this observa-
tion: that even the lower bound of memory requirements of
the synthesized code from the SDF model is greater than that
of the reference code. Therefore, we apply the proposed tech-
nique to an extended SDFmodel, called cyclo-static dataflow
(CSDF) [17]. With the CSDF model, we could remove such
data copy overhead. And the proposed buffer sharing tech-
nique further reduce the memory requirement by 17% more
than the reference code.

In the experiments, we choose the better binding strat-
egy, static or dynamic, for each data samples, considering the
buffer memory and the code overhead of index updates. In
the H.263 encoder example, static binding is preferred for
places where the repetition periods of sample lifetimes span
more than one iteration cycle. In this example, the pointer
referencing through local buffers incurs runtime overhead,
which is about 0.16% compared with the total execution time
in the H.263 encoder.

The second set of experiments as shown in Table 3 have
been performed to evaluate the proposed LOES heuristic. We
compare it with an integer linear programming (ILP) solver,
CPLEX (http://www.cplex.com). We randomly generate the
sample lifetimes within a first iteration interval, varying the
start/end times, sizes, and initial delays. When the number of
sample intervals exceeds 20, the ILP solver takes prohibitively
long execution times. With small size problems below 20
sample intervals, the overhead of LOES heuristic is less than
1% on the average for 150 experiments.

http://www.cplex.com

528 EURASIP Journal on Applied Signal Processing

Table 1: Comparison of buffer memory requirements for three real-life examples.

Example JPEG MP3
Simplified H.263

H.263 encoder
encoder

Class
Same size Different size Same size Different size

No delay No delay With delay With delay

of samples 6 336 3 1804

Without buffer sharing 1536 B 36KB 111KB 659KB

Sharing buffers of same size only 512 B 23KB 111KB 510KB

Buffer sharing without buffer separation 512 B 11KB 111KB 510KB

Buffer sharing with buffer separation — — 74KB 396KB

Lower bound of global buffer size 512 B 11KB 74KB 396KB

Table 2: Comparison of synthesize codes with reference code for the H.263 encoder.

Example Reference code
Buffer sharing without Buffer sharing with

buffer separation in CSDF buffer separation in CSDF

H.263 Encoder 350KB 291KB 290KB

Table 3: Performance comparison of LOES algorithm with integer linear programming (optimal) for randomly generated graphs (unit: %).

of intervals 5 7 9 11 13 15 20 Avg. max

(LOES-ILP)/ILP 0.0 0.0 0.1 0.1 0.5 0.3 0.3 0.2 14

8. CONCLUSIONS

We have proposed a buffer sharing technique for data sam-
ples of nonprimitive type to minimize the buffer memory
requirements from graphical dataflow programs based on
the SDF model or its extension assuming that the execu-
tion order of nodes is already determined at compile time.
In order to share more buffers, the proposed technique sep-
arates global memory buffers from local pointer buffers: the
global buffers store live samples and the local buffers store
the pointers to the global buffer entries. The technique min-
imizes the buffer memory by sharing global buffers for data
samples of different size. No previous work is known to us
to solve this sharing problem especially for the graphs with
initial samples. It also involves three subproblems of map-
ping local pointer buffers onto the global buffer space, deter-
mining the local buffer sizes, and finding the repeating map-
ping patterns.

We first obtain the minimum size of global buffer spaces
assuming that local pointer buffers take negligible amount
of buffer space compared with the global buffer space. A
LOES algorithm has been developed for buffer sharing be-
tween samples of different sizes. The next step was to bind the
local pointer buffers to the given global buffers for the graph.
We present both dynamic binding and static binding meth-
ods and compare them in terms of memory requirements
and code overheads. The proposed technique, including au-

tomatic code generation andmemory optimization, has been
implemented in a block diagram design environment called
PeaCE. Nomanual intervention is necessary for the proposed
code generation technique in PeaCE.

The experimental results show that the proposed algo-
rithm is useful, especially for the graphs with initial de-
lays. The proposed algorithm that separates local buffers and
global buffers reduce more memory by 33% in the simplified
H.263 encoder and 22% in the H.263 encoder than the shar-
ing algorithm that does not separate local buffers and global
buffers. Through extensive buffer sharing optimizations, au-
tomatic software synthesis from a dataflow program graph
achieves the comparable code quality with the manually op-
timized code in terms of memory requirement.

In this paper, we assume that the execution order of
blocks is given from the compile-time scheduling. In the fu-
ture, we will develop an efficient scheduling algorithm which
minimizes the memory requirement based on the proposed
algorithm.

ACKNOWLEDGMENTS

This research is supported by National Research Laboratory
Program (no. M1-0104-00-0015) and Brain Korea 21 Pro-
gram. The RIACT at Seoul National University provides re-
search facilities for this study.

Memory-Optimized Software Synthesis from Dataflow Program Graphs with Large Size Data Samples 529

REFERENCES

[1] COSSAP User’s Manual, Synopsys, Mountain View, Calif,
USA.

[2] R. Lauwereins, M. Engels, J. A. Peperstraete, E. Steegmans,
and J. Van Ginderdeuren, “GRAPE: a CASE tool for digital
signal parallel processing,” IEEE ASSP Magazine, vol. 7, no. 2,
pp. 32–43, 1990.

[3] J. T. Buck, S. Ha, E. A. Lee, and D. G. Messerschmitt,
“Ptolemy: a framework for simulating and prototyping het-
erogeneous systems,” International Journal of Computer Sim-
ulations, vol. 4, no. 2, pp. 155–182, 1994.

[4] E. A. Lee and D. G. Messerschmitt, “Static scheduling of
synchronous dataflow programs for digital signal processing,”
IEEE Trans. on Computers, vol. 36, no. 1, pp. 24–35, 1987.

[5] Telenor Research, “TMN (H.263) Encoder/Decoder Version
2.0,” June 1997, ftp://bonde.nta.no/.

[6] P. K. Murthy, S. S. Bhattacharyya, and E. A. Lee, “Joint min-
imization of code and data for synchronous dataflow pro-
grams,” Journal of Formal Methods in System Design, vol. 11,
no. 1, pp. 41–70, 1997.

[7] W. Sung, J. Kim, and S. Ha, “Memory efficient software syn-
thesis from dataflow graph,” in 11th International Symposium
on System Synthesis (ISSS ’98), pp. 137–144, Hsinchu, Taiwan,
December 1998.

[8] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee, “APGAN and
RPMC: Complementary heuristics for translating DSP block
diagrams into efficient software implementations,” Journal of
Design Automation for Embedded Systems, vol. 2, no. 1, pp. 33–
60, 1997.

[9] F. J. Kurdahi and A. C. Parker, “REAL: a program for register
allocation,” in Proc. 24th ACM/IEEE Design Automation Con-
ference (DAC ’87), pp. 210–215, Miami Beach, Fla, USA, June
1987.

[10] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer, “Some sim-
plified NP-complete graph problems,” Theoretical Computer
Science, vol. 1, no. 3, pp. 237–267, 1976.

[11] J. Gergov, “Algorithms for compile-time memory optimiza-
tion,” in Proc. 10th Annual ACM-SIAMSymposium onDiscrete
Algorithms (SODA ’99), pp. 907–908, Baltimore, Md, USA,
January 1999.

[12] E. De Greef, F. Catthoor, and H. D. Man, “Array placement
for storage size reduction in embedded multimedia systems,”
in Proc. International Conference on Application-Specific Array
Processors (ASAP), pp. 66–75, Zurich, Switzerland, July 1997.

[13] P. K. Murthy and S. S. Bhattacharyya, “Shared buffer imple-
mentations of signal processing systems using lifetime analy-
sis techniques,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 20, no. 2, pp. 177–198,
2001.

[14] S. Ritz, M. Willems, and H. Meyr, “Scheduling for optimum
data memory compaction in block diagram oriented software
synthesis,” in Proc. IEEE Int. Conf. Acoustics, Speech, Signal
Processing, pp. 2651–2653, Detroit, Mich, USA, May 1995.

[15] F. Gavril, “Algorithms for minimum coloring, maximum
clique, minimum covering by cliques, and maximum inde-
pendent set of a chordal graph,” SIAM Journal on Computing,
vol. 1, no. 2, pp. 180–187, 1972.

[16] S. S. Bhattacharyya and E. A. Lee, “Memory management
for dataflow programming of multirate signal processing al-
gorithms,” IEEE Trans. Signal Processing, vol. 42, no. 5, pp.
1190–1201, 1994.

[17] G. Bilsen, M. Engels, R. Lauwereins, and J. A. Peperstraete,
“Cyclo-static data flow,” IEEE Trans. Signal Processing, vol. 44,
no. 2, pp. 397–408, 1996.

Hyunok Oh is a Ph.D. candidate in the
School of Computer Science and Engineer-
ing at Seoul National University, Korea.
He received his B.A. degree (1996) and
M.A. degree (1998) in computer engineer-
ing from Seoul National University, and
he is in a Ph.D. program from 1998 to
2002. He is interested in hardware-software
codesign, model of computation, hardware-
software cosynthesis, memory optimiza-
tion, and multimedia applications.

Soonhoi Ha is currently an Associate Pro-
fessor in the School of Electrical Engineer-
ing and Computer Science at Seoul National
University. From 1993 to 1994, he worked
for Hyundai Electronics Industries Corpo-
ration. He received his B.A. degree (1985)
and M.A. degree (1987) in electronics en-
gineering from Seoul National University,
and Ph.D. (1992) degree in electrical engi-
neering and computer science from Univer-
sity of California, Berkeley. He has worked on Ptolemy project.
His research interests include hardware-software codesign, design
methodology for embedded systems, and PC clusters. He is a mem-
ber of the ACM and IEEE Computer Society.

ftp://bonde.nta.no/

	1. INTRODUCTION
	2. PROBLEM STATEMENT AND PREVIOUSWORKS
	3. PROPOSED TECHNIQUE
	4. REPETITION PERIOD OF SAMPLE LIFETIME PATTERNS
	5. BUFFER SHARING FOR DIFFERENT SIZE SAMPLES WITHOUT DELAYS
	6. BUFFER SHARING FOR DIFFERENT SAMPLE SIZES WITH INITIAL SAMPLE DELAYS
	7. EXPERIMENT
	8. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

