EURASIP Journal on Applied Signal Processing 2003:6, 502-513
(© 2003 Hindawi Publishing Corporation

Designing BEE: A Hardware Emulation Engine
for Signal Processing in Low-Power

Wireless Applications

Kimmo Kuusilinna

Tampere University of Technology, Korkeakoulunkatu 1, P.O. Box. 553, FIN-33101, Tampere, Finland
University of California, Berkeley, Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94704, USA

Email: kimmo.kuusilinna@tut.fi

Chen Chang

University of California, Berkeley, Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94704, USA

Email: chenzh@eecs.berkeley.edu

M. Josephine Ammer

University of California, Berkeley, Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94704, USA

Email: mjammer@eecs.berkeley.edu

Brian C. Richards

University of California, Berkeley, Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94704, USA

Email: richards@eecs.berkeley.edu

Robert W. Brodersen

University of California, Berkeley, Berkeley Wireless Research Center, 2108 Allston Way, Berkeley, CA 94704, USA

Email: rb@eecs.berkeley.edu

Received 28 February 2002 and in revised form 10 October 2002

This paper describes the design of a large-scale emulation engine and an application example from the field of low-power wire-
less devices. The primary goal of the emulator is to support design space exploration of real-time algorithms. The emulator is
customized for dataflow dominant architectures, especially focusing on telecommunication-related applications. Due to its novel
routing architecture and application-specific nature, the emulator is capable of real-time execution of a class of algorithms in its
application space. Moreover, the dataflow structure facilitates the development of a highly abstracted design flow for the emula-
tor. Simulations and practical measurements on commercial development boards are used to verify that real-time emulation of a
low-power TDMA receiver is feasible at a clock speed of 25 MHz.

Keywords and phrases: rapid prototyping, FPGA, hardware emulation, low power, design flow.

1. INTRODUCTION

Hardware emulation is one of the most promising ap-
proaches to address the problem of constantly growing sim-
ulation execution times while simultaneously retaining high
confidence on the results. Accurate simulations of large sys-
tems can be extremely slow and the reduced reliability of
faster, more abstract simulation models cannot always be tol-
erated [1]. Especially logic-level development and verifica-
tion of systems-on-a-chip (SoC) designs require advanced
methods. The purpose of the Berkeley Emulation Engine

(BEE) project is to be able to emulate in real-time the digi-
tal portion of low-power communication chips and systems,
while providing a robust and flexible interface to analog ra-
dio front-ends.

Figure 1 depicts the BEE infrastructure. The actual emu-
lation is done with the BEE processing units (BPUs). Multiple
BPUs can be connected together to form a larger emulation
platform; a four-BPU BEE is shown in Figure 1. Each of the
BPUs has a separate connection to the host server through
the dedicated Ethernet. The main purpose of the server is
to allow remote access from client workstations to BEE. The

mailto:kimmo.kuusilinna@tut.fi
mailto:chenzh@eecs.berkeley.edu
mailto:mjammer@eecs.berkeley.edu
mailto:richards@eecs.berkeley.edu
mailto:rb@eecs.berkeley.edu

Designing the Berkeley Emulation Engine

| \
VTN

Analog front-end A

Cable interconnect

BEE BEE
processing unit processing unit

BEE BEE
processing unit processing unit

Dedicated Ethernet

Client Network

workstation

Hot server

Figure 1: BEE HW infrastructure.

server is also responsible for controlling BEE configuration
and data read back from the BPUs. Moreover, each BPU has
2400 external 1/0 signals, which can be connected to expan-
sion modules like a processor or other computation acceler-
ation cards. Figure 1 depicts a cable connection to the analog
front-end. Analog radios cannot be emulated on BPUs and,
therefore, the reusability of BEE is supported by the utiliza-
tion of external analog components.

Every BPU contains twenty FPGAs (field programma-
ble gate arrays), each with a capacity of 518,400 ASIC
(application-specific integrated circuit) gate equivalents
(2,541,952 FPGA gates), www.xilinx.com. The primary rea-
sons for such coarse grain granularity are maximizing appli-
cation speed, I/O resource utilization between functional el-
ements, and performance headroom within a unified config-
urable fabric that provides easy place and route for even large
designs. The configurable logic itself, being lookup table and
register-based, is relatively fine grain. Although approaches
that time-multiplex area [2] or interconnections [3] could
be utilized with BEE, the loss of performance associated with
these methods is deemed too great. Especially, when the real-
time operation of the algorithms is critical, slowing down the
whole system under test may cause unexpected integration
problems.

Specifically, BEE enables real-time emulation of a class of
wireless communication applications [4, 5, 6], hence provid-
ing real-time feedback of algorithm optimizations, includ-
ing bit length and quantization selection. Once the algorithm
has been defined, the same description can be used in an
ASIC design flow, while maintaining cycle-to-cycle and bit-
true equivalence.

This paper is organized as follows. Section 2 discusses
the basics of hardware emulation and rapid prototyping fo-
cusing on the emulation methodology. Section 3 describes
the BEE hardware architecture in detail focusing on the
multi-FPGA board routing architecture, which is one of
the primary distinguishing features in any multi-FPGA sys-
tem. The BEE-specific software flow, based on high-level
Simulink (www.mathworks.com) descriptions is explained
in Section 4. Section 5 is an application example of a base-
band TDMA receiver. Finally, Section 6 concludes the paper.

503
E g
1 System design ~ —> Behavior -
I s
: J '3
| K
E Behavioral synthesis —> RTL E ’Eo
: s
E Partition to N Emulator -2
! HW Emulator configuration ! _jé’
! =
: J L
| 9
1 . . Eb
| Logicsynthesis —> Gate-level Netlist 1,3

Technology N
mapping

FIGURE 2: Generic HW emulator design flow.

2. HARDWARE EMULATION AND RAPID
PROTOTYPING

Rapid prototyping is defined here as developing a physical sys-
tem that can implement the algorithm in a timely fashion.
Rapid prototyping leverages high-level design entry and an
automatic tool flow [7]. In the ideal case, the prototype oper-
ates at the same speed as the final product. Hardware emula-
tion is a method for achieving this goal using synthesis-based
design and configurable logic.

Hardware (HW) emulation addresses many of the most
crucial problems in prototype development. Namely, it is
possible to get working prototypes before the work is obso-
lete due to rapid technology changes or architectures becom-
ing outdated. In addition, HW emulators typically aid with
debugging, allowing more internal nodes to be observable.
However, typical HW emulators are not tools for detailed
gate-level timing analysis.

2.1. Design flow for HW emulation

HW emulators tend to follow the generic design flow de-
picted in Figure 2 [4, 7, 8, 9]. A typical design begins with
behavioral and algorithmic descriptions in addition to other
system specifications, which are converted to an RTL (regis-
ter transfer-level) representation. This conversion can be au-
tomatic, but often requires designer intervention.

Partitioning of heterogeneous resources is known to be a
hard problem. FPGA-centric approaches for this problem are
described, for example, in [10, 11]. The system-level routing
architecture has a heavy influence on this design phase, as
discussed in more detail in Section 3.

After the resource assignment, the design needs to be im-
plemented with configurable logic or with software if pro-
cessors are available [12] inside the actual emulation HW
components, which is a hard problem on its own. However,
most FPGA vendors provide good tools for this purpose.

file:www.xilinx.com
file:www.mathworks.com

504

EURASIP Journal on Applied Signal Processing

The resulting configuration data is then downloaded to the
emulator.

Finally, an emulation run produces the emulation results.
These results can take a variety of forms as described in
Section 2.2. Typically, these results are the responses to test
vectors or an ASIC replacement in a larger system under test.

One of the important questions within the emulation
flow is what to do with critical paths. The basic approach is to
slow down the emulation speed to meet the timing require-
ments. However, during the various levels of synthesis and
HW mapping, it should be possible to optimize the back-
annotated critical paths. For those signals with high fanouts
and especially for signals crossing physical chip and PCB
boundaries, detailed and optional manual optimization can
become necessary to obtain the best results.

2.2. Classification of prototyping and HW emulation

Using the abstraction level of the design as the distinguish-
ing factor, three main classes of prototyping can be identi-
fied. Concept-oriented prototyping explores the design space
of requirements, specification, and feasibility. Architecture-
oriented prototyping deals with system design, subsystem
specifications, test development, and system-level verifica-
tion. Implementation-oriented prototyping involves module
design, in addition to RTL and even gate-level test and veri-
fication [13].

Concept-oriented prototyping typically means HW-
accelerated simulation or computation. Many of the current
signal processing algorithms are computationally expensive
but parallel in nature. The speedup from HW acceleration
can be crucial for the usability of these algorithms. An alter-
native to the simple dataflow paradigm for the implementa-
tion of these systems is described in [14], where FPGA lo-
cal memory is exploited as caches. This allows an efficient
construction of a DSP (digital signal processor) like com-
puting paradigm with multiple small processing units. Sim-
ulations can be accelerated with synthesizable test benches
and, of course, mapping the design itself onto the emulator
HW. Emulators usually have relatively large system memo-
ries which can store a large number of test vectors and the
corresponding responses. An alternative to this approach is
to map the simulation algorithm itself on the hardware, as
described in [15].

Rapid prototyping also facilitates the use of the proto-
type in the software development sense, enabling the demon-
stration of proposed product features and user interfaces.
The prototype can already have correct peripherals, execu-
tion speed, and system memory.

One of the most important applications for architecture-
oriented prototyping is to support hardware/software
(HW/SW) partitioning and cosimulation. Codevelopment of
SW can usually begin earlier if a logic emulator is available.
Simulations of complex composite HW/SW systems are of-
ten insufficient due to synchronization and performance is-
sues. If only small time intervals can be simulated, correcting
a detected error during the simulated period can cause other
undetected errors. The new errors are only uncovered after
the first error is corrected and the system run for a longer

time. The goals of the simulation and the simulation mod-
els themselves are often not described with precise mathe-
matical formulations, thus making simulations poorly suited
for design validation. In addition, finding the actual partition
between HW and SW is facilitated with the use of HW/SW
coemulation due to architecture exploration. Furthermore,
developing real physical test vectors without the prototype
may prove to be a problematic task. Real-time prototypes al-
low the designer to test and optimize more design parameters
in shorter time and in an environment resembling the target
system very closely [16].

Many HW emulators also allow cosimulation with
VHDL (VHSIC hardware description language) or Verilog
simulators running on workstations. This enables the use
of C-language models within the emulation, for example,
through the foreign language interfaces of the simulators (see
www.ikos.com, www.mentor.com, www.quickturn.com).

Implementation-oriented prototyping has several possi-
ble subtasks. Design changes during product development
favors configurable logic and other programmable elements
(processors) in the prototype. In addition, it is possible to
mix traditional prototyping and emulation by adding phys-
ical components from the target design to the emulation
system. This is sometimes called in-circuit verification. Real-
time tests for the HW are important for integration pur-
poses. For many multimedia applications, the operating fre-
quency affects the perceived quality of the product such
as video encoders and decoders. Some prototyping plat-
forms are built on top of programmable interconnections [4]
with the idea that the actual HW, utilized for the emula-
tion run, can be changed from prototype to prototype. Due
to the additional components in the emulator, this strat-
egy requires substantial I/O bandwidth and flexible clocking
options.

In the HW sense, a simpler option is to accelerate RTL or
gate-level designs. This is the primary model for testing de-
signs intended for ASIC implementation. Usually no exotic
accessories are required and the strategy is fully supported
by the emulator software. One of the advantages of this test-
ing method over testing the ASIC implementation itself is the
visibility of internal nodes.

A related activity is developing new IP (intellectual prop-
erty) blocks and smaller library elements. Verifying the op-
eration of these macros is typically a convenient operation
for HW emulation platforms [17]. Particularly important is
the need to verify the interfaces to other design components,
all the more critical if the IP cores are offered in binary or
encrypted form.

Some emulators offer special fault analysis capabilities
enabling the emulation of stuck-at faults at the pin and net
level (www.mentor.com). Moreover, an emulator can act as
a substitute system offering a temporary replacement for a
unique system or allowing testing on an otherwise unavail-
able environment.

3. BEE HARDWARE ARCHITECTURE

Rephrasing the earlier discussion and to list the design re-
quirements for the system, the primary goal of the BEE

file:www.ikos.com
file:www.mentor.com
file:www.quickturn.com
file:www.mentor.com

Designing the Berkeley Emulation Engine

505

project is to provide a large, unified, real-time emulation
platform for low-power dataflow designs. Plentiful resources
are required in a unified fabric to facilitate design with par-
allel structures, to ease the partitioning, and to avoid slow
off-board connections that can also result in system inte-
gration problems. These requirements support coarse board-
level granularity.

A driving requirement of the BEE project is the need to
thoroughly test analog RF (radio frequency) front-ends in
real time. This is feasible for a number of target applications
because many low-power designs use only moderate clock
speeds and have large I/O requirements. For example, an ul-
tra wideband (UWB) receiver, under development in a sepa-
rate project, requires approximately 150 relatively high-speed
(160 MHz) signals to be connected to BEE. This suggests that
the external I/0 should allow modular expansion of BEE.

In addition, real-time operation means that the system
needs to be able to optimize local routing on the board-level
to control the delay in the data flow. This requirement ex-
cludes the use of purely hierarchical networks due to the in-
serted latency. To this end, the number of hops, chip-to-chip
connections, to neighboring FPGAs must be minimized.

Low-power designs often encourage parallelism and con-
tain multiple clock domains and, therefore, BEE needs to
support this design style. Furthermore, to support the emu-
lation of run-time reconfiguration, each of the system FPGAs
is required to be individually configurable.

Each processing FPGA should have an external SRAM
(static random access memory) attached to it to allow ta-
ble lookup and data buffering. In addition, this memory can
function as a system memory and cache for processors if
needed. This memory should also provide a nonvolatile stor-
age during FPGA reconfigurations. In addition, HW emula-
tor design goals are discussed in [18, 19, 20].

3.1. Routing architecture basics

One of the key aspects of any multi-FPGA system is its rout-
ing architecture and this is especially true for HW emulators.
The basic architectures analyzed in the literature are mesh
[21, 22, 23], depicted in Figure 3a, and folded Clos network,
also called partial crossbar (Figure 3b) [9, 24, 25]. The per-
formances of these networks are compared in [26].

In the folded Clos network, all connections between FP-
GAs are made through crossbars. The FPGA device pins are
divided into subsets. The number of subsets equals the num-
ber of crossbars on that hierarchy level. In a hierarchical sys-
tem, the crossbars themselves are connected to other cross-
bars, which complete the interconnection. Traditionally, the
connections in a Clos network are point-to-point with dedi-
cated input and output switches. However, FPGA pads can be
configured to be inputs, outputs, or bidirectional, which can
be used to reduce the amount of required interconnection
resources. A more detailed discussion on FPGA implemen-
tation of Clos networks is given in [25].

A combination of complete-graph network and partial
crossbar, called hybrid complete graph and partial cross-
bar (HCGP), was introduced in [27, 28], and corroborating

I

— =
I

A -
I

— -
I

(a) 8-way mesh.

FPGA 1 FPGA 2 FPGA 3 FPGA 4

123 12 3|11 23

1 2 3

Xbar 1 Xbar 2 Xbar 3
[[[

(b) Partial crossbar.

FIGURE 3: (a) 6-FPGA 8-way mesh, (b) 4-FPGA partial crossbar.

Level 2

Ficure 4: 8-FPGA HCGP.

performance results for this interconnection strategy were
given in [29]. A hierarchical HCGP (HHCGP) is depicted in
Figure 4.

Figure 5 depicts four-by-four matrices of FPGAs, where
each square represents a single FPGA. Each lattice also has
an underlying communication architecture, namely, an 8-
way mesh, a folded Clos network, or a hierarchical HCGP
as indicated in the figure. The numbers indicate the num-
ber of hops necessary to reach other FPGAs in the lattice be-
ginning from the FPGA marked with 0. A number before a
slash indicates the hop distance using the mesh interconnect
or the complete graph. A number after the slash is the hop
distance traversing the partial crossbar. A dash “-” indicates
that the connection cannot be formed using that commu-
nication architecture. Analyzing Figure 5 and the discussion
in [28, 29] indicate that the HCGP has the superior routing
performance from these networks.

3.2. Designing the BEE routing architecture

This analysis is based on the general requirements and design
goals for the BEE from the beginning of this section, the work

506

EURASIP Journal on Applied Signal Processing

0 1/- | 2/- | 3/- /- | /- | - | 2/-
/- | 1/- | 2/-| 3/- 1/- 0 1/- | 2/-
2/- | 2/- | 2/- | 3/- V- | - | -] 2/-
3/- | 3/-| 3/-| 3/- 2/- | 2/- | 2/- | 2/-

(a) 8-way mesh.

0 -2 -4 -4 W20 -2 | <14 | -/4
W20 -2 | -4 | -4 -2 0 -4 | -/4
-4 | -4 | -4 | /4 -4 | -4 | -4 | /4
-4 | -4 | -4 | /4 -4 | -4 | -4 | -/4

(b) Folded Clos network.

0 172 | -14 | -/4 172 | 172 || -/4 | -/4
172 | 12| -/4 | -/4 1/2 0 -4 | -/4
-4 | -4 | -4 | -/4 -4 | -/4 -4 | -/4
-4 | -4 | -4 | -/4 -4 | -/4 -4 | -/4

(c) Hierarchical HCGP.

F1GURE 5: Hop matrices for various networks.

reported in the references above, and the following practical
assumptions. All the functional elements in the design are
FPGAs, that is, there are no chips dedicated solely for inter-
connects. This is because we want to support designs that
have computation as an integral part of their mapping to the
HW. Typical examples are the tree structures in certain neu-
ral network applications. In addition, it may be convenient
to place control structures in the routing components.

All devices have 512 available I/Os, which is consistent
with the Xilinx VirtexE 2000-FG680 (www.xilinx.com) chips
that are available for this design. Moreover, the minimum
useful connection width between elements is 36 signals since
that breaks down to three 12-bit buses. Needless to say, this
results in a large printed circuit board (PCB) which must be
routable in a reasonable number of layers. The practical size
requirement on the PCB also places a hard constraint on the
number of FPGAs on one board. Hence, we estimated that
one PCB could contain 16 processing FPGAs and their pro-
grammable interconnections.

Using the HHCGP as a starting point, several problems
are immediately evident. HHCGP offers low-latency inter-
connects, that is, the complete graph within a hierarchy seg-
ment, but all connections from one segment to another are

5_
3
3_
5—
Level 0

Level 1

Level 1

Level 0

FiGure 6: BEE two-layer mesh routing architecture. Only half of the
FPGAs and the 8-way mesh are shown.

0 1/2 | 2/3 | 3/3 172 | 1/2 | 1/3 | 2/3
172 | 1/2 | 2/3 | 3/3 1/2 0 1/3 | 2/3
2/3 1 2/3 | 2/3 | 3/3 173 | 1/3 1| 1/3 | 2/3
3/3 [3/3 || 3/3 | 3/3 2/3 [2/3 1| 2/3 | 2/3

Figure 7: BEE TLM network hop matrices.

through the partial crossbar network. Using nonhierarchical
HCGP would solve this problem, but this is not very practi-
cal. The PCB could have routing problems and only a small
number of signals are available for each interconnection due
to the large number of arcs in the graph. Therefore, the 8-way
mesh was selected as the local interconnection.

A large number of crossbar circuits are not desirable due
to PCB component spacing constraints. However, the cross-
bars on each segment can be collapsed into one big cross-
bar, thus leaving four crossbars on hierarchy level 1 and one
crossbar on level 2. Furthermore, the remaining crossbar on
level 2 is problematic. It adds a two-hop latency to the net-
work and the logical place for this component is in the mid-
dle of the PCB where routing is expected to be congested any-
way. Therefore, we decided to connect level 1 with a mesh
structure, effectively eliminating level 2. The advantage of
this arrangement is that the crossbar-to-crossbar latency is
only one hop. However, some routing generality was sacri-
ficed limiting the number of long-haul interconnections and
direct routing expansion through the level 2 crossbar. The re-
sulting routing architecture is depicted in Figure 6 and called
a two-layer mesh (TLM) network. Since only half the mesh
and the FPGAs are shown, the numbers on the connection
arcs indicate the number of links traversing off-network to
the other half of the mesh or to BEE external I/Os. The struc-
ture is relatively regular and maps well to a PCB, as seen later
in this section.

The hop lattice of the TLM network is depicted in
Figure 7. TLM has clearly an even better hop performance
than HHCGP. However, it still remains to be seen if a rea-
sonable number of signals can be assigned for each of the
connection arcs.

file:www.xilinx.com

Designing the Berkeley Emulation Engine

507

FiGure 8: The BEE processing unit and its chassis.

To keep the number of pins in the crossbars manageable,
the minimum number of signals (36) is assigned to pass be-
tween each of the FPGAs and the crossbars. Therefore, the
inter-crossbar links can be 96-bits wide.

For the FPGAs, 62 signal lines are required to connect
the SRAMs to each FPGA and 13 pins are reserved for the
configuration and read-back bus, leaving 512 — (36 + 62 +
13) = 401 FPGA pins. Dividing 401 by 8 indicates that 50
signal lines for each connection are available to form the 8-
way mesh. However, using 48 signals for this purpose, (4x12-
bit bus) leaves a few signals for user I/O and HW debugging.
This arrangement fulfills the original requirement of no less
than 36 signal lines per connection. In addition, it slightly
favors the fast local interconnects, which is consistent with
the dataflow paradigm.

Moreover, the emphasis on local interconnects supports
our methodology for designing low-power circuits. Local
wiring dominates when designing with direct-mapped com-
ponents and highly parallel structures. These properties al-
low designs to be run at lower clock frequencies, and subde-
signs to have long inactive periods, which can be exploited
for power optimization.

3.3. System overview

Most HW emulators are designed to maximize reusability by
using modular components that each individually possesses
limited design capacity, while the integrated system cumu-
latively has the desired large design capacity. However, each
BEE processing unit (BPU) is individually large enough to
emulate systems up to 10 million ASIC equivalent gates. This
is sufficient to emulate many of the contemporary DSP and
communication applications.

Depicted in Figure 8, the core component of a BPU is the
main processing board (MPB) which provides the basic em-
ulation and computation capabilities for the system. Eight
riser I/O cards (RICs) are vertically mounted to allow 2400
external connections off the BPU. A Strong ARM-based sin-
gle board computer (SBC) is utilized to establish a connec-
tion between the BPU and the host server through a 10 base-
T Ethernet link. A separate power board (PB), not shown in

Oth level local mesh-48-bit buses

CH T

Legend

Inter-board
connectors

| & SRAM

Inter-board connectors

FPGA || Xbar

1st level mesh-96-bit inter-Xbar buses

Ficure 9: MPB interconnect structure.

the figure, along with two modular AC/DC converters, is ca-
pable of supplying the MPB and the SBC with up to 600 W.

3.4. Main processing board

Utilizing the described architecture, the MPB is a 26-layer
PCB, with 20 Xilinx VirtexE 2000 chips, 16 ZBT (zero bus
turnaround) SRAMs, and 8 VHDM-HSD (very high-density
modular high-speed differential) I/O connectors. The con-
ceptual layout of this board is shown in Figure 9.

The effectiveness of the external interconnects directly af-
fects the system clock speed and the algorithm mapping ca-
pability of the emulator. The FPGAs on the periphery of the
board have either 3 or 5 neighboring FPGAs, thus the rest
of the links in the 8-way mesh are routed to the nearby off-
board connectors (see also Figure 6).

Although using low-voltage TTL (LVTTL) signaling stan-
dard is adequate for on board interconnects, off-board con-
nections have much higher speed and reliability require-
ments. The connection between the analog front-end and
the BPU can require high data rates over several meters of
cable. Therefore, low-voltage differential signaling (LVDS) is
used for BPU external links. The targeted external link speed
is 160 Mbps per LVDS pair over 6 feet of twisted-pair cable.
LVDS is not without its own problems. Mainly, LVDS sig-
nals are inherently asymmetrical. The driver has no termi-
nation, while the receiver requires a 100 Q differential termi-
nation. This means that the direction of a link is directly re-
lated to the physical characteristics of the signal traces. Both
LVDS and LVTTL signaling standards can be used on the
riser cards, but the links are physically dedicated to imple-
ment one standard at a time.

Figure 10 depicts the MPB PCB layout image. The board
dimensions are 58 X 53 cm. Table 1 tabulates statistics from
the MPB PCB. Out of the total of 3400 components, approx-
imately 2400 are bypass capacitors. Most of the signal traces
are matched to 50 Q) and the minimum trace width is 5 Mils.

Since the longest connection on board is below 40
cm, between Xbars, interconnect speed of 50 MHz can be

508

EURASIP Journal on Applied Signal Processing

Figure 10: MPB PCB layout image, seen from the top.

TaBLE 1: MPB PCB statistics.

Component count 3,400
Total pin count 28,611
Layout area (in?) 427

Number of nets 8,493
Number of connections 19,877
Manhattan distance (in) 45,950
Etch length (in) 51,804
Number of vias 32,334

practically achieved with LVTTL. This was verified through
simulations with trace parameters extracted from the PCB
layout. External LVTTL signaling and LVDS were tested us-
ing a commercial demonstration board.

3.5. Control flow and debugging

The use of an integrated single-board computer from In-
trinsic in each BPU removes the requirement of an exter-
nal controlling workstation. Control and configurations are
provided through the SBC Ethernet interface. The SBC con-
sists of a 206-MHz Intel Strong ARM processor, 32 Mbytes
of SDRAM, 16 Mbytes of Flash ROM, 10 base-T Ethernet
controller, and a compact flash slot for expansion. The SBC
runs a Linux, kernel 2.4.9, operating system, an Apache web
server, and other servicing programs. With the compact flash
slot, additional storage, such as a microdrive or compact flash
memory, can further expand the capabilities of the SBC.

Figure 11 depicts the information flow between the host
server and the BEE system. First, the user generates the nec-
essary design files using the BEE design flow. Second, the
design files are sent to each BPU through the Ethernet and
stored in memory or the hard disk of the SBC. Finally, the
user issues commands to the SBC, instructing it to either
configure the MPB or read back information. The Apache
web server interface is used for common operations and sta-
tus displays for additional convenience, while more complex
operations are conducted through server daemons and shell
commands.

The SBC is connected to the 20 FPGAs on an MPB
through a configuration FPGA, which mainly serves as a

S y 1% iﬁicatetd Single board
erver/user erne computer (SBC)
Dedicated
Configuration signal lines
Processing bus Configuration
FPGAs & Xbars JTAG FPGA
Primary clock / Power on/off
Dedicated
Voltage control signal lines Temperature
on power board control

FiGure 11: BEE configuration diagram.

bidirectional signal multiplexer between the 16 general-
purpose I/O lines from the SBC to over 100 control signals
on an MPB. In addition, the off-board main power supply
system is controllable through this link. All control functions
on a BPU can be controlled from the SBC. The functions are
divided into the following categories: programming of the
processing FPGAs, data read back from the processing FP-
GAs, clock domain control, power management, and thermal
management.

Processing FPGAs can be programmed by the SBC using
either the Xilinx select-map mode or the JTAG (joint test ac-
tion group) mode. The JTAG daisy chain originates from the
configuration FPGA, it loops through all 20 processing FP-
GAs and back to the configuration FPGA. Although the JTAG
interface is necessary for configuring the FPGAs and the read
back, the speed through this connection is very limited. Pro-
gramming the entire board through the JTAG cable can take
up to 10 minutes. Therefore, the select map mode is used for
fast programming. The 12-bit configuration bus originates
from the configuration FPGA and snakes through all 20 FP-
GAs. According to simulations, it can be driven by the SBC at
2 MHz. Hence, the programming time for the whole board is
reduced to 20 seconds. Read back of the FPGA signal states
can be achieved using both the JTAG interface and the user
bus mode.

A total of 13 different clock sources are available to each
MPB. The primary clock provides a single synchronous clock
domain throughout the entire board. The source of the pri-
mary clock is a digitally configurable PLL (phase-locked
loop) clock driver. The output frequency can be digitally pro-
grammed between 1 MHz and 200 MHz by the SBC with
an accuracy of under 5ppm. The secondary clock consists
of four independent clock domains throughout the MPB,
one for each quadrant. A quadrant is a collection of four
FPGAs and an Xbar. Each quadrant clock can be indepen-
dently driven from an external SMA connector. The rest of
the clock signals are provided through the external VHDM-
HSD connectors to the quadrants. Half of these signals use
the LVDS and the other half the LVTTL signaling. With this
three-tier clock structure, a single global clock can be dis-
tributed to every FPGA with a maximum skew of 300 pico

Designing the Berkeley Emulation Engine

seconds and the quadrant clocks can deliver additional clocks
to the board facilitating designs with multiple clock domains.
The internal delay-locked loops (DLLs) in the FPGAs provide
further clocking options.

At run time, each FPGA can consume up to 20 W and
even unconfigured FPGAs draw some power. Therefore, to
save energy, the main 600-W power supply is turned off by
the SBC when the BPU is not in use. A separate 150-W power
supply provides the always on power for the SBC and the
configuration FPGA as well as the chassis fan system. In addi-
tion, the I/O voltages delivered to the MPB can be configured
by the SBC to be either 3.3V for LVTTL or 2.5V for LVDS
standard.

Although high-quality passive heat sinks and high air-
flow chassis fans are used to cool the BPU, all FPGAs are
continuously monitored by the configuration FPGA for ther-
mal problems. A total of five remote sensor chips are utilized,
each monitoring four FPGAs. The sensors are programmed
at boot time to alert the configuration FPGA when junc-
tion temperature in any of the FPGAs exceeds 80°C. If nec-
essary, the configuration FPGA automatically shuts off the
main power and alerts the user through the SBC.

On the MPB, less than 2% of the total signals on the
board are directly accessible through probing headers. Us-
ing FPGA programming, internal signals could be routed to
these headers for direct probing with a logic analyzer. How-
ever, this is not enough for practical HW debugging. There-
fore, a software-based digital logic analyzer solution is used
as the primary debugging tools for the MPBs.

Using Xilinx ChipScope Integrated Logic Analyzer (ILA),
www.xilinx.com, small synchronous logic analyzer cores can
be inserted into the design, acting as tiny logic analyzers at
run time. The ILA records the values of the monitored sig-
nals and transmits these through the JTAG interface back to
the host workstation. The ChipScope software collects data
from different ILA cores, which can reside on different FP-
GAs, and combines them onto a signal waveform display.
However, due to the long JTAG chain on the MPB, the JTAG
interface can only read-back signals with a data rate of less
than 56 kbits per second.

In addition to the ILA cores, which use the on-chip block
RAM as data storage, the external SRAM could be used for
synchronous signal recording. Since the SRAM has a capacity
of 1 Mbyte and supports 32-bit wide accesses at 133 MHz,
high bandwidth data can be stored in the SRAM. The read
back can occur at the end of the emulation run.

From the application perspective, the control flow allows
the reprogramming of any FPGA at runtime. This property
could be used, for example, to emulate multistandard sys-
tems that time-multiplex HW.

4. BEESW TOOL FLOW

The primary requirement for the BEE design flow is to en-
hance designer productivity. It should not be necessary to re-
enter designs when the designer proceeds from one abstrac-
tion level to another. This means a streamlined flow through
high-level synthesis, logic synthesis, partitioning, technol-

509
—
o - =
Simulink K—
Parameterized blocks
J/ ﬁ:—/ =
2P
MDL é
J/ Synopsys e
module compiler =
=
BCC “eb
¥ £
J/ Synopsys design
EDIF/VHDL databases (DB)
¢ v,
Logic synthesis 2 é
framework Standard cell libraries |: 3 ‘i
I w
WV
Design Netlist Design Netlist
(Xilinx EDIF) (ASIC EDIF, DB) &p
=
Xilinx ISE ASIC placement =
& route 9
=)
) 2 £
3
BEE FPGA bit files ASIC layout =

FiGure 12: BEE rapid prototyping design flow.

ogy mapping, and finally the emulation run. In addition, the
model should expose the typical designer as little as possible
to the actual HW. Moreover, the flow should support the use
of commercial SW where adequate tools are available. How-
ever, the flow must be flexible enough to allow point tools to
be developed wherever the performance of commercial tools
is deemed unacceptable.

Figure 12 depicts the rapid prototyping flow for BEE de-
signs. Another very similar flow, based on Xilinx System
Generator software, is used for designs intended solely for
emulation. This “design for emulation” flow attempts to
achieve the maximum performance from BEE in terms of
area and operation speed. However, the rapid prototyping
flow described in this paper approximates the target ASIC
architecture as closely as possible. Hence, the emulation per-
formance may be compromised to favor a greater confidence
in gate-level verification results. In accordance with the rapid
prototyping paradigm, the flow supports high abstraction
level design entry from Simulink (www.mathworks.com).
The flow facilitates early verification through cycle-accurate
Simulink simulations, thus speeding up the normal proto-
type development process.

The parts of this flow leading to ASIC implementations
and especially a telecom-centric block library have been de-
veloped in a separate project called SSHAFT (Simulink-to-
Silicon Hierarchical Automated Flow Tool) [30]. The blocks
were first characterized and implemented using Synopsys
module compiler (www.synopsys.com). In addition, a cor-
responding block library was created for Simulink. Design
entry uses these blocks and the design is stored in Simulink

file:www.xilinx.com
file:www.mathworks.com
file:www.synopsys.com

510 EURASIP Journal on Applied Signal Processing
8% 14 3%14
Streams Mux
124
3x14
3
Rotate and correlate
Coarse timing | = Frequency offset (current stream and l
acquisition &3 estimation and fine carly/late) 1 PLL
PN _pilot q timing acquisition
FETTTT | TETTTTT TTETTT] (<] 7T
= 0 - k]
B -7 e 28
L Py I L
Controller LPF |

Control

FIGURE 13: Low-power TDMA receiver.

storage format (MDL). This phase may also contain user
specified implementation hints like partition information. A
program called BCC (Berkeley Cross Compiler) interprets
the design and outputs EDIF (electronic design interchange
format). Finite state machines are translated into VHDL de-
scriptions.

For ASIC design, the logic synthesis framework (Synop-
sys synthesis tools) is primarily used for scan-chain insertion
and synthesizing the control. For emulation, the tools allow
the translation of gate-level ASIC designs to the FPGA tech-
nology. Moreover, synthesis can be used to optimize designs.
Since the flow does not currently offer automatic partition-
ing to BEE, this design phase is carried out using scripting in
Synopsys Design Compiler.

The resulting netlist is fed to a technology-dependent
backend tool flow. The ASIC backend flow is typically heav-
ily dependent on silicon vendor specific files and operations.
However, the BEE side of the flow proceeds through the Xil-
inx ISE (integrated synthesis environment) flow and pro-
duces separate bitstreams for each of the FPGAs actually in
use. The BEE Configurator Program is responsible for pro-
gramming the FPGAs on the BPUs.

There are several goals for the emulation system tool-
flow. One goal is to minimize the number of required FP-
GAs, which also tends to minimize the inter-FPGA signals
lines. This is important to avoid a possible design bottleneck.
Another goal is to define the interfaces between FPGAs, a task
that requires special care. In particular, the timing character-
istics of these signals are important and good design practices
like pipelining, registered outputs, and restricting the logic
depth are typically necessary for off-chip signals [4].

5. BEE APPLICATION EXAMPLE

To illustrate HW utilization and the details of the design
flow, a baseband TDMA (time division multiple access) re-
ceiver is used as an application example. The receiver, docu-
mented in [31], was developed using SSHAFT. A block dia-

gram of the low-power, spread-spectrum receiver is depicted
in Figure 13. The design is intended to be a part of an ex-
tremely low-power wireless sensor network.

The receiver uses a direct-sequence code with a length
of 31 bits to spread the spectrum and to provide resistance
to narrowband fading. The symbol rate is 806 kHz, which
translates to 1.6 Mb/s data rate with QPSK (quadrature phase
shift keying) modulation. In-phase and quadrature (Iand Q)
samples from an A/D converter are fed into the design as 8-
bit streams of 100 MHz (64 pins). They are interpolated on-
chip to produce 7-bit streams at 200 MHz, corresponding to
8 samples per chip, each offset by 1/8 of a chip. The primary
function of the receiver is to provide coherent timing recov-
ery for the input stream.

The coarse timing acquisition block uses a feedforward,
non-data-aided algorithm based on a matched filter to es-
timate timing within 3/8 of a chip. Three of the eight
streams are correlated with the known spreading code un-
til one of them passes a threshold. The frequency estima-
tion and fine-timing block utilizes this stream and its two
nearest neighbors to estimate the frequency and to further
estimate the timing to the best of the three streams. The
method utilized is a joint estimation feedforward, data-aided
algorithm synthesized directly from maximum likelihood
equations.

The rotate and correlate block uses the frequency esti-
mate to correct any frequency mismatch, the block corre-
lates each stream with the spreading code and also tracks
timing offset, which may necessitate changing the current
stream. The PLL block gets the best stream and performs
phase correction and tracks frequency and phase offsets. In
addition, the PLL block produces the output symbols. Do-
ing a course rotation and correlation outside the PLL allows
a simple second-order PLL design operating at a low clock
speed. The accuracy of the coarse rotation guarantees that
this hybrid solution is less than 1dB from the ideal, where
correlation is performed inside the PLL. The PLL initially op-
erates in a data-aided acquisition mode for 19 symbols and

Designing the Berkeley Emulation Engine

511

70 :F Out

FPGA 1 42| FpGA2
77 Controller,
7= coarse timing, 2| Frequency
In MUX estimation
7
3
5 20
i Xbar 1 10
42 20 \
K3 —
FPGA 3 FPGA 4
Rotate and
correlate, PLL

FIGURE 14: A TDMA receiver mapped to a BEE quadrant.

then uses a decision-directed algorithm to track phase offset
error throughout the remainder of the packet.

The ASIC implementation of this design has approxi-
mately 700,000 transistors covering an area of 2.4 mm?. Alto-
gether the design has 147 external I/O signals. The same de-
sign maps to several FPGAs in a BEE quadrant, as shown in
Figure 14, which also depicts the external I/Os and the num-
ber of signals between the chips.

The control logic is located in FPGA 1 since it shares pilot
codes (64 bits) with the coarse timing function. In terms of
routing, it would be expensive to separate these two blocks.
The logical position for the control would have been in the
Xbar 1 because it needs to access and control all the blocks
in the design. However, this partitioning does not affect the
functionality or the real-time performance of the design.
Aside from the controller, FPGA 1 is basically a large multi-
plexer. FPGA 1 feeds the selected three streams to frequency
estimation (FPGA 2) and to rotate and correlate (FPGA 3).
Moreover, FPGA 3 encompasses the digital PLL block and
produces the outputs. To facilitate testing of the target ASIC,
the symbol outputs in the ASIC design are routed off-chip
along the test outputs. These test outputs happen to reside
on FPGA 1 and, therefore, the symbol outputs are routed off-
BEE from FPGA 1 as well.

The design was manually partitioned in Synopsys Design
Compiler using a synthesis script. The unmodified gate-level
descriptions of the subsystems from the ASIC design were
utilized in this mapping. The high-level design in Simulink
provided the necessary structural information to connect
these subdesigns. In addition, this phase was used to auto-
matically translate the design into a Xilinx FPGA specific
netlist.

Each of the partitioned designs was then fed to the Xil-
inx ISE flow, which produced the bitstreams. As mentioned
earlier, this design flow produces an emulation that is a very
close match to the ASIC implementation and the design for
emulation requires little effort. However, it does not fully

TABLE 2: Key statistics for the BEE implementation of the receiver.

FPGA1 FPGA2 FPGA 3 Xbarl
Ext. I/O 147 0 0 0
Int. I/O 121 61 80 60
Max. Clk (MHz) 28.8 25.0 26.1 10.3ns
Slices 9,466 2,961 5,395 0
Block RAM 4 4 4 0

exploit FPGA specific features, therefore making the emu-
lation slow. A method for speeding up the emulation run
through substituting critical blocks with FPGA specific de-
signs and discussion on the advantages and disadvantages of
the respective methods are documented in [5].

Despite the apparent disadvantages of the FPGA and
ASIC technology mismatch, the emulator architecture com-
bined with the tool flow overcomes these limitations for
the target applications. For example, the real-time opera-
tion requirement for the ASIC design is a clock frequency
of 25 MHz. The synthesis tools, after placement and route
to the FPGAs, indicate a maximum operating frequency of
25.0 MHz for the BEE implementation. Therefore, the real-
time requirement is satisfied. The primary statistics for the
FPGAs are tabulated in Table 2. The external I/Os are off-
BEE connections and the internal I/Os connect with other
components inside the BEE.

The slices in Table 2 indicate the utilized area on the
FPGA chip. Each of the FPGAs contains 19,200 slices mak-
ing FPGA 1 the most populated chip with 49% area utiliza-
tion. The slice counts include the overhead induced by the
Xilinx ChipScope architecture and the ChipScope exclusively
utilizes the block rams in this design.

The slowest chip is FPGA 2 with a maximum clock fre-
quency of 25.0 MHz. FPGA 3 had an approximately 100
nanoseconds combinatorial path from its registered outputs
to an internal cordic block. However, this is a multicycle path
that can afford to take 31 clock cycles to complete. Therefore,
the maximum clock frequency for this chip was obtained
with the multicycle path designated as a false path.

Since Xbar 1 does not contain any sequential logic, its op-
erating speed is characterized as the maximum routing delay
through the chip (10.3 ns). Based on simulations using trace
models extracted from the PCB and IBIS driver models for
the FPGAs, the maximum delay introduced by a hop is below
5ns. Therefore, the worst-case estimate for 2-hop inter-chip
critical routing is 2 X 5 4+ 10.3 = 20.3 ns. This is well below
the 40-ns cycle time imposed by the real-time requirement.

6. CONCLUSIONS

A novel architecture for the emulation and rapid prototyp-
ing of dataflow and low-power oriented hardware designs is
introduced in this paper. The architecture is shown to have
good local routing properties. However, the global routing is
somewhat penalized compared to known HW emulator ar-
chitectures. This is acceptable due to the application-specific

512

EURASIP Journal on Applied Signal Processing

nature of the BEE emulator. The architecture is also shown
to be practically implementable on a PCB.

Mapping an existing design to BEE, in this case, a low-
power TDMA receiver verifies in part that the architecture is
suitable for emulating data flow centric designs and that BEE
emulations are compatible with the existing hierarchical and
automated design flow. Simulations suggest that the design
can be emulated in real time using a primary clock frequency
of 25 MHz.

Physically, a BEE processing board is a 26-layer PCB con-
taining 3400 components. The system was designed to han-
dle signaling speeds of 50 MHz between any two chips on
the board. Overall, a BPU has the emulation capability of
approximately 10 million ASIC gate equivalents. Thus, we
see BEE as an excellent specification and architecture explo-
ration environment for full DSP systems. BEE offers real-
time HW, and secondarily software prototyping and emula-
tion, the possibility to prototype during all levels in the de-
sign trajectory, and a transparent SW flow.

The future work in this project involves the finaliza-
tion of the HW infrastructure and building additional ana-
log front-ends for ultra wideband (UWB) and multicarrier
multiantenna (MCMA) applications. Moreover, we intend to
streamline the SW flow and include multichip support while
primarily using the Xilinx System Generator tool flow. Espe-
cially, the critical path back annotation problem, mentioned
in Section 2.1, must be studied further.

ACKNOWLEDGMENTS

Dr. Kuusilinna’s work was supported by the Technology De-
velopment Center of Finland (TEKES), Jenny and Antti Wi-
huri Foundation, and the Finnish Cultural Foundation. This
work was funded by DARPA (under the PAC/C program; SIA
GSRC), the US Army Research Office, and the Berkeley Wire-
less Research Center supporting companies. In addition, we
would like to thank Xilinx for donating the FPGA chips and
the software tools.

REFERENCES

[1] R. Turner, “System-level verification—a comparison of ap-
proaches,” in Proc. 10th International Workshop on Rapid Sys-
tem Prototyping (RSP ’99), pp. 154-159, Clearwater, Fla, USA,
June 1999.

[2] K. M. G. Purna and D. Bhatia, “Emulating large designs
on small reconfigurable hardware,” in Proc. 9th International
Workshop on Rapid System Prototyping (RSP °98), pp. 58-63,
Leuven, Belgium, June 1998.

[3] J. Babb, R. Tessier, and A. Agarwal, “Virtual wires: Overcom-
ing pin limitations in FPGA-based logic emulators,” in Proc.
Ist IEEE Workshop on FPGAs for Custom Computing Machines
(FCCM ’93), pp. 142151, Napa, Calif, USA, April 1993.

[4] M. Courtoy, “Rapid prototyping for communications design
validation,” in Southcon Conference Record, pp. 49-54, Or-
lando, Fla, USA, June 1996.

[5] H. Krupnova, D. D. A. Vu, G. Saucier, and M. Boubal, “Real
time prototyping method and a case study,” in Proc. 9th Inter-
national Workshop on Rapid System Prototyping (RSP 98), pp.
13-18, Leuven, Belgium, June 1998.

(6]

(10]

[11]

[12]

(13]

(14]

(15]

(16

[17]

(18]

[19]

[20]

M. Vasilko, L. Machacek, M. Matej, P. Stepien, and S. Hol-
loway, “A rapid prototyping methodology and platform for
seamless communication systems,” in Proc. 12th International
Workshop on Rapid System Prototyping (RSP °01), pp. 70-76,
Monterey, Calif, USA, June 2001.

G. Doncev, M. Leeser, and S. Tarafdar, “Truly rapid prototyp-
ing requires high level synthesis,” in Proc. 9th International
Workshop on Rapid System Prototyping (RSP ’98), pp. 101—
106, Leuven, Belgium, June 1998.

E Slomka, M. Dorfel, R. Munzenberger, and R. Hofmann,
“Hardware/software codesign and rapid prototyping of em-
bedded systems,” IEEE Design & Test of Computers, vol. 17,
no. 2, pp. 28-38, 2000.

J. Varghese, M. Butts, and J. Batcheller, “An efficient logic em-
ulation system,” IEEE Transactions Very Large Scale Integration
(VLSI) Systems, vol. 1, no. 2, pp. 171-174, 1993.

H. Krupnova, C. Rabedaoro, and G. Saucier, “FPGA parti-
tioning for rapid prototyping: A 1 million gate design case
study,” in Proc. International Workshop on Rapid System Pro-
totyping (RSP ’99), pp. 128-133, Clearwater, Fla, USA, June
1999.

W. Y. Lo, C. S. Choy, and C. E. Chan, “Hardware emulation
board based on FPGAs and programmable interconnections,”
in Proc. 5th International Workshop on Rapid System Prototyp-
ing (RSP ’94), Shortening the Path from Specification to Pro-
totype, pp. 126-130, The Chinese University of Hong Kong,
Shatin, N.T., Hong Kong, June 1994.

J. Madrenas, J. M. Moreno, E. Canto, et al., “Rapid proto-
typing of electronic systems using FIPSOC,” in Proc. 7th IEEE
International Conference on Emerging Technologies and Factory
Automation (ETFA °99), pp. 287-296, Barcelona, Spain, Octo-
ber 1999.

B. Spitzer, M. Kiihl, and K. D. Miiller-Glaser, “A methodology
for architecture-oriented rapid prototyping,” in Proc. 12th In-
ternational Workshop on Rapid System Prototyping (RSP 01),
pp- 200-205, Monterey, Calif, USA, June 2001.

J.-P. David and J.-D. Legat, “A data-flow oriented co-design
for reconfigurable systems,” in Proc. 9th International Work-
shop on Rapid System Prototyping (RSP ’98), pp. 207-211, Leu-
ven, Belgium, June 1998.

P. Sabet and L. Vuillemin, “An approach to mapping the tim-
ing behavior of VLSI circuits on emulators,” in Proc. 12th In-
ternational Workshop on Rapid System Prototyping (RSP 01),
pp- 168-173, Monterey, Calif, USA, June 2001.

S. Cardelli, M. Chiodo, P. Giusto, A. Jurecska, L. Lavagno, and
A. Sangiovanni-Vincentelli, “Rapid-prototyping of embed-
ded systems via reprogrammable devices,” in Proc. 7th Inter-
national Workshop on Rapid System Prototyping (RSP ’96), pp.
133-138, Porto Carras, Thessaloniki, Greece, June 1996.

H. Hakkarainen and J. Isoaho, “VHDL macro library testing
using BOAR emulation tool,” in Proc. 8th Annual IEEE In-
ternational ASIC Conference and Exhibit (ASIC °95), pp. 105—
108, Tampere University of Technology, Finland, September
1995.

D. M. Lewis, D. R. Galloway, M. Van Ierssel, J. Rose, and
P. Chow, “The transmogrifier-2: A 1 million gate rapid proto-
typing system,” IEEE Transactions Very Large Scale Integration
(VLSI) Systems, vol. 6, no. 2, pp. 188-198, 1998.

S. Note, P. van Lierop, and J. van Ginderdeuren, “Rapid proto-
typing of DSP systems: requirements and solutions,” in Proc.
6th International Workshop on Rapid System Prototyping (RSP
’95), pp. 88-96, Chapel Hill, NC, USA, June 1995.

D. E. Van den Bout, J. N. Morris, D. Thomae, S. Labrozzi,
S. Wingo, and D. Hallman, “AnyBoard: an FPGA-based, re-
configurable system,” IEEE Design ¢ Test of Computers, vol. 9,
no. 3, pp. 21-30, 1992.

Designing the Berkeley Emulation Engine

513

[21] S.Hauck, G. Borriello, and C. Ebeling, “Mesh routing topolo-
gies for multi-FPGA systems,” IEEE Transactions Very Large
Scale Integration (VLSI) Systems, vol. 6, no. 3, pp. 400-408,
1998.

[22] C.Kim and H. Shin, “A performance-driven logic emulation
system: FPGA network design and performance-driven parti-
tioning,” IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, vol. 15, no. 5, pp. 560-568, 1996.

[23] S. Walters, “Computer-aided prototyping for ASIC-based sys-
tems,” IEEE Design ¢ Test of Computers, vol. 8, no. 2, pp. 4-10,
1991.

[24] M. Butts, J. Batcheller, and J. Varghese, “An efficient logic em-
ulation system,” in IEEE International Conference on Com-
puter Design: VLSI in Computer & Processors (ICCD-92), pp.
138-141, Cambridge, Mass, USA, October 1992.

[25] P. K. Chan and M. D. E Schlag, “Architectural tradeoffs
in field-programmable-device-based computing systems,” in
Proc. IEEE Workshop on FPGAs for Custom Computing Ma-
chines (FCCM °93), pp. 152-161, Napa, Calif, USA, April
1993.

[26] M. A.S.Khalid and J. Rose, “Experimental evaluation of mesh
and partial crossbar routing architectures for multi-FPGA sys-
tems,” in Proc. 6th IFIP International Workshop on Logic and
Architecture Synthesis (IWLAS ’97), pp. 119-127, Grenoble,
France, December 1997.

[27] M. A.S.Khalid and J. Rose, “A hybrid complete-graph partial-
crossbar routing architecture for multi-FPGA systems,” in
Proc. ACM/SIGDA International Symposium on Field Pro-
grammable Gate Arrays (FPGA °98), pp. 45-54, Monterey,
Calif, USA, February 1998.

[28] M. A. S. Khalid and J. Rose, “A novel and efficient routing
architecture for multi-FPGA systems,” IEEE Transactions Very
Large Scale Integration (VLSI) Systems, vol. 8, no. 1, pp. 30-39,
2000.

[29] S. C. Jain, S. Kumar, and A. Kumar, “Evaluation of various
routing architectures for multi-FPGA boards,” in Proc. 13th
CSI/IEEE International Conference on VLSI Design, pp. 262—
267, Calcutta, India, January 2000.

[30] W. R. Davis, N. Zhang, K. Camera, et al., “A design environ-
ment for high-throughput, low-power dedicated signal pro-
cessing systems,” IEEE Journal of Solid-State Circuits, vol. 37,
no. 3, pp. 420-431, 2002.

[31] W. R. Davis, N. Zhang, K. Camera, et al., “An automated
design flow for low-power, high-throughput, dedicated sig-
nal processing systems,” in Proc. 35th Asilomar Conference on
Signals, Systems and Computers (Asilomar °01), pp. 475-480,
Pacific Grove, Calif, USA, November 2001.

Kimmo Kuusilinna received his Ph.D. de-
gree from the Department of Information
Technology at Tampere University of Tech-
nology (TUT), Finland, in 2001. His main
research interests include hardware emula-
tion, computer networks, system-on-a-chip
design, and parallel memories. Currently,
he is working as a Senior Research Scien-
tist in the Institute of Digital and Computer
Systems at TUT. He was a Visiting Postdoc-
toral Researcher at the University of California, Berkeley, Berkeley
Wireless Research Center.

Chen Chang received the B.S. degree in
electrical engineering and computer sci-
ence, B.A. degree in physics, and M.S. de-
gree in electrical engineering and com-
puter science from the University of Cali-
fornia, Berkeley, in 2000 and 2002, respec-
tively. He is currently working toward the
Ph.D. degree at the University of Califor-
nia at Berkeley studying with Professor R.
W. Brodersen. His research interests include
very large-scale digital system design automation and FPGA-based
reconfigurable computing.

M. Josephine Ammer received the B.S. and
M.E. degrees in electrical engineering and
computer science from the Massachusetts
Institute of Technology (MIT), Cambridge,
in 1997 and 1999, respectively. She is cur-
rently working toward the Ph.D. degree
at the University of California at Berkeley,
studying with Professor J. Rabaey. Her re-
search interests include low-power digital
integrated circuits for wireless communica-
tion. She received the Robert M. Fano UROP (Undergraduate Re-
search) Award in 1997 and the Ernst A. Guillemin Masters Thesis
Award, First Prize, in 1999, while she was at MIT.

Brian C. Richards was born in Seattle,
Washington on August 20, 1961. He re-
ceived the B.S. degree in electrical engineer-
ing from the California Institute of Tech-
nology in 1983, and the M.S. degree in
electrical engineering and computer science
from the University of California, Berkeley,
in 1986. From 1986, he joined the research
staff at the University of California, Berke-
ley. He is maintaining and continuing the
development of several ASIC and FPGA system design CAD tools.
Current projects include supporting various research efforts related
to prototyping and implementing wireless systems at the Berkeley
Wireless Research Center.

Robert W. Brodersen is a Scientific Codi-
rector of the Berkeley Wireless Research
Center and John R. Whinnery Chair Profes-
sor at the Electrical Engineering and Com-
puter Science Department. A pioneer in
the field of analog MOS circuit design and
implementation of signal processing sys-
tems. He received his Ph.D. degree from
MIT in 1976, and was associated with the
Central Research Laboratory, Texas Instru-
ments, until 1976 when he joined the EECS faculty at University of
California, Berkeley. He is a member of the National Academy of
Engineering. His research interests include RF and digital wireless
communications design, signal processing applications, and design
methodologies.

	1. INTRODUCTION
	2. HARDWARE EMULATION AND RAPID PROTOTYPING
	2.1. Design flow for HW emulation
	2.2. Classification of prototyping and HW emulation

	3. BEE HARDWARE ARCHITECTURE
	3.1. Routing architecture basics
	3.2. Designing the BEE routing architecture
	3.3. System overview
	3.4. Main processing board
	3.5. Control flow and debugging

	4. BEE SWTOOL FLOW
	5. BEE APPLICATION EXAMPLE
	6. CONCLUSIONS
	ACKNOWLEDGMENTS
	REFERENCES

