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A 128(H) x 64(V) x RGB CMOS imager is integrated with region-of-interest selection, RGB-to-HSI transformation, HSI-based
pixel segmentation, (36bins X 12bits)-HSI histogramming, and sum-of-absolute-difference (SAD) template matching. Thirty-two
learned color templates are stored and compared to each image. The chip captures the R, G, and B images using in-pixel storage
before passing the pixel content to a multiplying digital-to-analog converter (DAC) for white balancing. The DAC can also be used
to pipe in images for a PC. The color processing uses a biologically inspired color opponent representation and an analog lookup
table to determine the Hue (H) of each pixel. Saturation (S) is computed using a loser-take-all circuit. Intensity (I) is given by the
sum of the color components. A histogram of the segments of the image, constructed by counting the number of pixels falling into
36 Hue intervals of 10 degrees, is stored on a chip and compared against the histograms of new segments using SAD comparisons.
We demonstrate color-based image segmentation and object recognition with this chip. Running at 30 fps, it uses I mW. To our
knowledge, this is the first chip that integrates imaging, color segmentation, and color-based object recognition at the focal plane.

Keywords and phrases: focal plane image processing, object recognition, color histogramming, CMOS image sensor, vision chip,

VLSI color image processor.

1. INTRODUCTION

CMOS-integrated circuits technology readily allows the in-
corporation of photodetector arrays and image processing
circuits on the same silicon die [1, 2, 3, 4, 5, 6]. This has
led to the recent proliferation in cheap and compact dig-
ital cameras [7], system-on-a-chip video processors [8, 9],
and many other cutting edge commercial and research imag-
ing products. The concept of using CMOS technology for
combining sensing and processing was not spearheaded by
the imaging community. It actually emerged in mid ’80s
from the neuromorphic engineering community developed
by Mead and collaborators [10, 11]. Mead’s motivation was
to mimic the information processing capabilities of biolog-

ical organisms; biology tends to optimize information ex-
traction by introducing processing at the sensing epithe-
lium [12]. This approach to sensory information processing,
which was later captured with terms such as “sensory pro-
cessing” and “computational sensors,” produced a myriad vi-
sion chips, whose functionality includes edge detection, mo-
tion detection, stereopsis, and many others (examples can be
found in [13, 14, 15, 16]).

The preponderance of the work on neuromorphic vi-
sion has focused on spatiotemporal processing on the in-
tensity of light (gray-scale images) because the intensity can
be readily transformed into a voltage or current using ba-
sic integrated circuit components: photodiodes, photogates,
and phototransistors. These devices are easily implemented
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in CMOS technologies using no additional lithography lay-
ers. On the other hand, color image processing has been lim-
ited primarily to the commercial camera arena because three
additional masks are required to implement R, G, and B fil-
ters [17]. The additional masks make fabrication of color-
sensitive photodetection arrays expensive and, therefore, not
readily available to researchers. Nonetheless, a large part of
human visual perception is based on color information pro-
cessing. Consequently, neuromorphic vision systems should
not ignore this obviously important cue for scene analysis
and understanding. This paper addresses this gap in the sili-
con vision literature by providing perhaps the only integrated
large array of color photodetectors and processing chip. Our
chip is designed for the recognition of objects based on their
color signature.

There has been a limited amount of previous work on
neuromorphic color processing. The vast majority of color
processing literature addresses standard digital image pro-
cessing techniques. That is, they consist of a camera that is
connected to a frame grabber that contains an analog-to-
digital converter (ADC). The ADC interfaces with a digital
computer, where software algorithms are executed. Of the
few biologically inspired hardware papers, there are clearly
two approaches. The first approach uses separate imaging
chips and processing chips [18], while the second approach
integrates a handful of photodetectors and analog process-
ing circuitry [19]. In the former example, standard cam-
eras are connected directly to analog VLSI chips that demul-
tiplex the video stream and store the pixel values as volt-
ages on arrays of capacitors. Arrays as large as 50 X 50 pix-
els have been realized to implement various algorithms for
color constancy [18]. As can be expected, the system is large
and clumsy, but real-time performance is possible. The sec-
ond set of chips investigate a particular biologically inspired
problem, such as RGB-to-HSI (Hue, saturation, and inten-
sity) conversion using biologically plausible color opponents
and HSI-based image segmentation using a very small num-
ber of photodetectors and integrated analog VLSI circuits
[19]. Clearly, the goal of the latter is to demonstrate a con-
cept and not to develop a practical system for useful im-
age sizes. Our approach follows the latter, however, we also
use an architecture and circuitry that allow high-resolution
imaging and processing on the same chip. In addition, we
include higher-level processing capabilities for image recog-
nition. Hence, our chip can be considered to be a func-
tional model of the early vision, such as the retina and vi-
sual area #1 (V1) of the cortex, and higher visual cortical
regions, such as the inferotemporal area (IT) of the cortex
[20, 21].

2. COLOR SEGMENTATION AND PATTERN MATCHING

In general, color-based image segmentation, object identifi-
cation, and tracking have many applications in machine vi-
sion. Many targets can be easily segmented from their back-
grounds using color, and subsequently can be tracked from
frame to frame in a video stream. Furthermore, the tar-

gets can be recognized and tagged using their color signa-
ture. Clearly, in the latter case, the environment must be
configured such that it cooperates with the segmentation
process. That is, the targets can be colored in order to fa-
cilitate the recognition process because the recognition of
natural objects based solely on color is prone to false posi-
tives. Nonetheless, there are many situations where color seg-
mentation can be directly used on natural scenes. For ex-
ample, people tracking can be done by detecting the pres-
ence of skin in the scene. It is remarkable that skin, from
the darkest to the lightest individual, can be easily tracked
in HSI space, by constructing a model 2D histogram of
the Hue (H) and saturation (S) (intensity (I) can be ig-
nored) of skin tone in an image. Skin can be detected in
other parts of the image by matching the histograms of
these parts against the HS model. Figures 1 and 2 show an
example of a general skin tone identification task, imple-
mented in Matlab. Conversely, specific skin tones can be de-
tected in a scene if the histogram is constructed with specific
examples. The latter will be demonstrated later using our
chip.

Color imagers, however, provide an RGB color represen-
tation. For the above example, a conversion from RGB to HSI
is required. There are other benefits of this conversion. The
main advantage of the HSI representation stems from the ob-
servation that RGB vectors can be completely redirected un-
der additive or multiplicative transformations. Hence, color
recognition using RGB can fail under simple conditions such
as turning on the light (assume a white source; colored
sources manipulate the color components in a more pro-
found way). HS components, however, are invariant under
these transformations, and hence are more robust to vari-
ations in ambient intensity levels. Equation (1) shows how
HSI components are derived from RGB [19, 22]. Notice that
H and S are not affected if R — {R+a,aR},G - {G+a,a G},
and B — {B+a, aB}. In the equation, R, G, and B have been
normalized by the intensity, that is, R/I = r, G/I = g, and
B/I=1b:

B V3[g - b]
H = arctan (—2[(r—g) T r—b)] ), (la)
S=1-3[min(r,gb)], (1b)
I=R+G+B. (1c)

The conversion from RGB to HSI is, however, nonlinear and
can be difficult to realize in VLSI because nonlinear func-
tions, such as arctangent, cannot be easily realized with ana-
log circuits. Here, we present an approach for the conversion
that is both compact (uses small silicon area) and fast. It is
also worth noticing that the HSI conversion uses color op-
ponents (r—g, r—b, g—b). Although we have made no at-
tempt to mimic biological color vision exactly, it is worth
noticing that similar color opponents have been identified in
biological color processing, suggesting that an HSI represen-
tation may also be used by living organisms [19, 20, 21, 23].
Figure 3 shows the color opponent receptive fields of cells in
the visual cortex [23]. Figure 4 shows how we implemented
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FiGURE 1: (a) Examples of skin tones obtained from various individ-
uals with various complexions. (b) The HS histogram model con-
structed from picture in (a).
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FiGure 2: Skin tone segmentation using HS histogram model in
Figure 1. Black pixels have been identified.

Off-center
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Figure 3: Color opponent receptive fields in the visual cortex.
Unipolar off- and on-cells of G — B and Y — B are used to construct
the HSI representation.

Imaging
array

FiGUure 4: Color opponent computation performed by the chip.
Bipolar R — B, R — G, and G — B are used to implement the HSI
representation in (1).

color opponents on our chip. Using these color opponents,
the RGB-to-HSI conversion is realized.

3. CHIP OVERVIEW

We have designed a 128(H) x 64(V) x RGB CMOS imager,
which is integrated with analog and digital signal process-
ing circuitry to realize focal plane region-of-interest selec-
tion, RGB-to-HSI transformation, HSI-based segmentation,
36-bin HSI histogramming, and sum-of-absolute-difference
(SAD) template matching for object recognition. This self-
contained color imaging and processing chip, designed as a
front-end for microrobotics, toys, and “seeing-eye” comput-
ers, learns the identity of objects through their color signa-
ture. The signature is composed of a (36bins X 12bits)-HSI
histogram template; a minimum intensity and minimum sat-
uration filter is employed before histogramming. The tem-
plate is stored at the focal plane during a learning step. Dur-
ing the recognition step, newly acquired images are com-
pared to 32 stored templates using the SAD computer. The
minimum SAD result indicates the closest match. In addi-
tion, the chip can be used to segment color images and iden-
tify regions in the scene having particular color characteris-
tics. The location of the matched regions can be used to track
objects in the environment. Figure 5 shows a block diagram
of the chip. Figure 6 shows a chip layout (the layout is shown
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F1GURE 5: Computational and physical architecture of the chip.

because the light shielding layer obscures the details). To our
knowledge, this is the first chip that integrates imaging, color
segmentation, and color-based object recognition at the focal
plane.

4. HARDWARE IMPLEMENTATION

4.1. CMOS imaging, white equalization,

and normalization

In the imager array, three current values, corresponding to
R, G, and B, are sampled and held for each pixel. By storing
the color components in this way, a color filter wheel can
be used instead of integrated color filters. This step allows
us to test the algorithms before migrating to an expensive
color CMOS process. When a color CMOS process is used,
the sample-and-hold circuit in Figure 7 will be removed. An
R, G, and B triplet per pixel, obtained from on-chip filters,

will then be provided directly to the processing circuit.
No change to the scanning or processing circuitry will be
required. To facilitate processing, a current mode imaging
approach is adopted. It should be noted, however, that
current mode imaging is typically noisy. For our targeted ap-
plication, the noisiness in the image does not pose a problem
and the ease of current mode processing is highly desirable.
Current mode imaging also provides more than 120dB of
dynamic range [10], allows RGB scaling for white correction
using a multiplying DAC and RGB normalization using a
translinear circuit [24]. The normalization guarantees that a
large dynamic range of RGB currents are resized for the HSI
transformer to operate correctly. However, it limits the speed
of operation to approximately 30 fps because the transistors
must operate in subthreshold.

For readout, the pixels can be grouped into blocks of 1 x 1
(single pixel) to 128 X 64 (entire array). The blocks can be ad-
vanced across the array in single or multiple pixel intervals.



A Vision Chip for Color Segmentation and Pattern Matching

707

Imager array

Image processing
Stored templates

1 v ) o v Y i B v o e o o

-
i
&
2]
[
[
B
kd
5|
[
B
B
d
P
st
i
o
i
it
a1t
it
Di
3

FiGgure 6: Chip layout (light shield layer obscures all details in mi-
crograph).

Vdd.d Sample R Sample_G Sample_B i
m
JJ_D— H O Y
40 ghp T i i
Row
é A N ,_l N select
I ‘1\1 ‘1\1 ‘1\1
Reset R G B
()
Vdd-m
\j =
+
Slan :
T
Scaled R Intensity g
)
e é
L l_—l— I_bias <> TI
Scaled G Scaled B g
IEr=n .
e 5me 5p
Scaled B

2

ﬁq@iégl

(b)

FIGURE 7: (a) Schematic of the pixel. (b) Schematic of the normal-
ization circuit.

Each block is a subimage for which an HSI histogram is con-
structed, and can be used as a learned template or a test tem-

plate. The organization of the pixels and the scanning meth-
ods are programmable by loading bit patterns in two scan-
ning registers, one for scanning pixels within blocks and the
other for scanning the blocks across the array.

Figure 7 shows the schematic of the pixel and a portion
of the RGB normalizer. The output currents of the pixel are
amplified using tilted mirrors, where Vdd_d < Vdd_m. In
light intensity for which this array is designed, a logarithmic
relationship is obtained between light intensity and output
current [25]. Logarithmic transfer functions have also been
observed in biological photoreceptors [26]. This relationship
has the additional benefit of providing wide dynamic range
response. A reset switch is included to accelerate the off-
transition of the pixel. Not shown in Figure 7b is the scaling
circuit that simply multiplies the RGB components by pro-
grammable integer coefficients from 1 to 16. The scaling is
used to white balance the image because silicon photodiodes
are more sensitive to red light than to blue.

The normalization circuit computes the ratio of each
color component to the sum of the three (i.e., intensity) using
the translinear circuit in Figure 7b. The circuit uses MOS-
FETs operating in subthreshold so that the relationship be-
tween the gate-to-source voltages and the currents through
the devices is logarithmic. Hence, the difference of these volt-
ages provides the logarithm of the ratio of currents. By using
the voltage difference as the gate-to-source voltage of another
transistor, a current is produced which is proportional to this
ratio (i.e., the anti-log is computed). This function is easily
implemented with the circuit in Figure 7b, however, because
all transistors must operate in subthreshold, that is, with very
small currents on the order of ~ 1 nA, the circuit can be slow.
Using larger transistors to allow larger bias currents is coun-
tered by the increased parasitic capacitance. With a parasitic
capacitance of ~ 2fF and a bias current of 1nA, a slew rate
of 2 us/V is obtained, while at 30 fps, the circuit needs a time
constant of ~ 3300/(128 X 64) = 4 us. This circuit limits the
speed of the system to a maximum speed of 30 frames per
second despite the relatively small size of the array. In fu-
ture designs, this speed problem will be corrected by using
an above threshold “normalization” circuit that may not be
as linear as the circuit depicted in Figure 7b.

4.2. RGB-to-HSI conversion

The RGB-to-HSI transformer uses an opponent color for-
mulation, reminiscent of biological color processing [19].
The intensity is obtained before normalization by summing
the RGB components (see Figure 7b). To compute the satu-
ration of the color, the function in (1b) must be evaluated for
each pixel. Since the minimum of the three normalized com-
ponents must be determined, an analog loser-take-all circuit
is used. It is often difficult to implement a loser-take-all, so a
winner-take-all is applied to 1—{r, g, b}. The circuit is shown
in Figure 8. The base winner-take-all circuit is a classical de-
sign presented in [27, 28].

For the determination of the Hue of the RGB values, the
function in (1a) must be computed. Since this computation
requires an arctangent function, it cannot be easily and com-
pactly implemented in VLSI. Hence, we used a mixed-signal
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FIGURE 8: (a) Loser-take-all used for the saturation (S) computa-
tion. Actually computes the winner of 1 — {r, g, b}. (b) The Hue (H)
mixed-signal lookup table.

lookup table. We use a hybrid circuit that simply correlates
the color opponents (g—b), (r—g), and (r—b) to indicate
Hue if the intensity and the saturation of the color are above
a minimum value. The (g—b) and (2r—g—b) components
are each quantized into 16 levels using a 4-bit thermome-
ter code analog-to-digital conversion. The lookup table maps
the 16 X 16 input combinations and the quadrant (as indi-
cated by the two additional sign bits for X and Y) into 36
Hue intervals, each having 10 degrees resolution, to cover
the 360 degrees of Hue space. The HSI computation is ap-
plied to each normalized RGB value scanned from the ar-
ray; color segmentation is realized by testing each pixel’s HSI
values against prescribed values, and the appropriate label
is applied to the pixel. Figure 8b shows the block diagram
of the Hue computation circuits. Figure 9 shows the mea-
sured normalized currents, rgb, and the color opponents
X = |2r—g—bl and Y = |g—b]|. The comparison between
theoretical and measured X and Y is also shown. The vari-
ations are expected, given the analog circuits implementa-
tion. Figure 10 shows the measured relationship between the
normalized rgb and the computed saturation. The deviation
from the theoretical curve has two components: the differ-
ence in slope is due to some nonlinearity in the normaliza-
tion circuit and a less than unity gain in the saturation cir-
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FIGURE 9: (a) shows the normalized rgb for various values of RGB.
(b) shows the color opponents X = 2R-G-Band Y = G- B.
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FIGURE 10: Measured saturation (S) as a function of rgb.

cuit’s output mirror, while the offset on the right side of the
saturation curve is caused by a layout property that reduced
Vdd for one part of the circuit. Consequently, the satura-
tion current is higher than expected when the r component
is minimum.
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FiGgure 11: Hue (H) bin assignment for various RGB combinations.
The color band shows the input.

Figure 11 shows the measured relationship between in-
put Hue angle and bin allocation. The plot is obtained by
presenting known values of RGB (i.e., Hue angle) to the
chip and recording the Hue bins that are triggered. The
presentation is done by using the DAC properties of the
RGB scaler circuit (see Figure 5) with input currents fixed.
This same strategy is used to present the processing core
of the chip with images from a PC, as will be shown be-
low. There are some overlaps in the response ranges of the
individual Hue bins because of imprecision in creating the
Hue table’s input addresses. These addresses are created us-
ing a simple current ADC that depends on transistor size,
gain, and threshold voltage matching. Despite using com-
mon centroid layout techniques, we found that the ADC
was monotonic but not completely linear. Notice, however,
that the overlaps are desirably restricted to the nearest neigh-
bor bins. The invariance of the Hue computation to inten-
sity and saturation variations is shown in Figure 12. The ef-
fects of impression in the Hue lookup are again visible in
the figure. Nonetheless, this plot shows that the Hue com-
putation is insensitive to multiplicative (here intensity varia-
tions) and additive shifts (here saturation variations), as de-
signed.

Next, we tested the color segmentation properties of the
chip using real images piped in from a PC. As indicated
above, these images are presented by using the RGB scaler
circuit as a current DAC. The image of the Rubik’s cube in
Figure 13 demonstrates the effectiveness of our chip on an
image containing varying levels of lighting. That is, the fore-
ground is well lit, while the background is in the shadows.
Furthermore, it shows some of the limitations of “wide” Hue
interval assigned to every bin. It shows that portions of the
image that are highly desaturated or have low intensity can
also have similar Hues to other highly saturated and well-lit
parts of the image. Using programmable Hue intervals per
bin, the transformation lookup table can easily be modified
to have finer resolution in targeted portions of the Hue space
so that these “similar” Hues can be disambiguated. The next
design of this chip will have this capability.

[ —

(b)

FIGURE 12: (a) Measured RGB to Hue transformation as a function
of intensity (multiplicative shift). (b) Measured RGB to Hue trans-
formation as a function of saturation (additive shift).

(D) (E) (F)

F1Gure 13: Color segmentation on real images. (a) Input image. (b)
Complete Hue image. (c) Yellow segment. (d) Cyan segment. (e)
Blue segment. (f) One of the red segments.

5. HSIHISTOGRAMMING AND TEMPLATE MATCHING

The HSI histogramming step is performed using 36- and 12-
bit counters to measure the number of pixels that fall within
each prescribed HSI interval. Here the HSI interval is defined
as a minimum intensity value, minimum saturation value,
and one of 36 Hue values. In this chip, we count only pixels
that pass the intensity and saturation tests. In future versions,
we will also count the number of pixels that do not pass the
test. Figure 14 shows a block diagram of the histogramming
step. After scanning the imager, the counters hold the color
signature of the scene or a portion of the scene (based on
the block selection circuit described in Section 4.1). During
the learning phase, the signature is transferred to one of the
32 on-chip SRAM template cells of 432-bits each. During the
matching phase, the newly acquired signatures are compared
to the stored templates, using 8 serial presentations of 4 par-
allel templates. Four parallel SAD cells perform the match-
ing computation. The resultant error for each template is
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Learned Templates

FIGURE 17: Skin tone identification revisited (using the processing
core of the chip). The unimodal Hue distribution of skin leads to
some misclassifications.

presented off-chip, where they are sorted using a simple mi-
crocontroller such as a PIC, to find the best match template.
Figure 15 shows the whole chip in action, showing the image
acquired by the array and blocks identified as templates for
“coke” and “pepsi.” Color signatures histograms of the tem-
plates constructed, the histograms are stored in the mem-
ory and, subsequently, “coke” and “pepsi” are localized in
the scene containing multiple cans. The learned segment is
15 X 15; during matching, the image is scanned in blocks of
15 x 15, shifted by 8 pixels, for a total of 128 subimages. No
scanned block matches the learned block exactly. A plot of
the SAD error is shown in Figure 16. Match threshold is set
to 155. Notice that the “coke” template also matches part of
a pepsi can. This is easily explained by noting that the “coke”
only template contains red and white pixels. Hence it matches
the part of the pepsi can. On the other hand, the “pepsi” tem-
plate contains red, white, and blue pixels. Hence it is not well
matched to the other cans and only identifies the pepsi cans.

To further illustrate this point, Figures 17 and 18 show
matching using templates with varying color content. In
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FIGURE 18: Fruit identification (using the processing core of the
chip). The multimodal distribution of the pineapple eliminates mis-
classifications.

both figures, the images were piped through the process-
ing core of the chip using the RGB scaler circuit as a DAC.
In Figure 17, the task is to identify different skin tones
by “learning” templates of various complexions. In all the
cases, however, the Hue histogram is a unimodal distribu-
tion, similar to Figure 1b for constant saturation. Conse-
quently, the template matching process misclassifies cloth-
ing for skin because the Hue distributions are similar. This
misclassifications also happens for single-colored fruits, as
seen in Figure 18. The plums and apples are matched, as
are oranges and peaches. On the other hand, the pineap-
ple contains at least two or three bumps in the Hue dis-
tribution (blue, green, and yellow). Hence, it can be eas-
ily identified and no misclassifications are made. Hence, we
can conclude that this method of color-based object iden-
tification is more effective when the target is multicolored.
This conclusion will be exploited in the applications of this
chip. Table 1 gives a summary of the characteristics of this
chip.

6. CONCLUSION

The prototype demonstrates that a real-time color segmen-
tation and recognition system can be implemented in VLSI
using a small silicon area and small power budget. We also
demonstrate that the HSI representation used in this chip is
robust under multiplicative and additive shift in the origi-
nal RGB components. We demonstrate color segmentation
and template matching. Template matching is most effective
when the target is composed of multiple colors. This proto-
type was tested using a color filter wheel, where R, G, and
B images are sequentially stored in the pixels array. By us-
ing a fabrication technology with RGB filters, the entire sys-
tem can be realized with a tiny footprint for compact imag-
ing/processing applications.
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TaBLE 1: Summary of performance.

Technology 0.5 ym 3M1P CMOS
Array size (R, G, B) 128 (H) x 64 (V)
Chip area 4.25mm X 4.25 mm
Pixel size 24.85pum X 24.85 ym
Fill factor 20%

FPN ~ 5%

Dynamic range

> 120 db (current mode)

Region-of-interest size

1x1to128 x 64

Color current scaling

4 bits

Hue bins 36, each 10 degree wide
Saturation Analog (~ 5 bits) one threshold
Intensity Analog (~ 5 bits) one threshold

Histogram bin counts

12 bits/bin

Template size

432 bits (12 X 36 bits)

No. stored template

32 (13.8 kbits SRAM)

Template matching

4 parallel SAD, 18 bits results

Frame rate

Array scan: ~ 2k fps

HSI comp: ~ 30 fps

~ 1mW at 30 fps on 3.3V
supplies

Power consumption
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testing.
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