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We describe a technique for estimating control parameters for a plucked string synthesis model using a genetic algorithm. The
model has been intensively used for sound synthesis of various string instruments but the fine tuning of the parameters has been
carried out with a semiautomatic method that requires some hand adjustment with human listening. An automated method for
extracting the parameters from recorded tones is described in this paper. The calculation of the fitness function utilizes knowledge
of the properties of human hearing.

Keywords and phrases: sound synthesis, physical modeling synthesis, plucked string synthesis, parameter estimation, genetic
algorithm.

1. INTRODUCTION

Model-based sound synthesis is a powerful tool for creating
natural sounding tones by simulating the sound production
mechanisms and physical behavior of real musical instru-
ments. These mechanisms are often too complex to simulate
in every detail, so simplified models are used for synthesis.
The aim is to generate a perceptually indistinguishable model
for real instruments.

One workable method for physical modelling synthesis is
based on digital waveguide theory proposed by Smith [1]. In
the case of the plucked string instruments, the method can
be extended to model also the plucking style and instrument
body [2, 3]. A synthesis model of this kind can be applied to
synthesize various plucked string instruments by changing
the control parameters and using different body and pluck-
ing models [4, 5]. A characteristic feature in string instru-
ment tones is the double decay and beating effect [6], which
can be implemented by using two slightly mistuned string
models in parallel to simulate the two polarizations of the
transversal vibratory motion of a real string [7].

Parameter estimation is an important and difficult chal-
lenge in sound synthesis. Usually, the natural parameter set-
tings are in great demand at the initial state of the synthesis.
When using these parameters with a model, we are able to
produce real-sounding instrument tones. Various methods
for adjusting the parameters to produce the desired sounds
have been proposed in the literature [4, 8, 9, 10, 11, 12].
An automated parameter calibration method for a plucked
string synthesis model has been proposed in [4, 8], and then
improved in [9]. It gives the estimates for the fundamental
frequency, the decay parameters, and the excitation signal
which is used in commuted synthesis.

Our interest in this paper is the parameter estimation of
the model proposed by Karjalainen et al. [7]. The parameters
of the model have earlier been calibrated automatically, but
the fine-tuning has required some hand adjustment. In this
work, we use recorded tones as a target sound with which the
synthesized tones are compared. All synthesized sounds are
then ranked according to their similarity with the recorded
tone. An accurate way to measure sound quality from the
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viewpoint of auditory perception would be to carry out lis-
tening tests with trained participants and rank the candidate
solutions according to the data obtained from the tests [13].
This method is extremely time consuming and, therefore, we
are forced to use analytical methods to calculate the quality of
the solutions. Various techniques to simulate human hearing
and calculate perceptual quality exist. Perceptual linear pre-
dictive (PLP) technique is widely used with speech signals
[14], and frequency-warped digital signal processing is used
to implement perceptually relevant audio applications [15].

In this work, we use an error function that simulates
the human hearing and calculates the perceptual error be-
tween the tones. Frequency masking behavior, frequency de-
pendence, and other limitations of human hearing are taken
into account. From the optimization point of view, the task
is to find the global minimum of the error function. The
variables of the function, that is, the parameters of the syn-
thesis model, span the parameter space where each point
corresponds to a set of parameters and thus to a synthe-
sized sound. When dealing with discrete parameter values,
the number of parameter sets is finite and given by the prod-
uct of the number of possible values of each parameter. Us-
ing nine control parameters with 100 possible values, a total
of 1018 combinations exist in the space and, therefore, an ex-
haustive search is obviously impossible.

Evolutionary algorithms have shown a good performance
in optimizing problems relating to the parameter estimation
of synthesis models. Vuori and Välimäki [16] tried a simu-
lated evolution algorithm for the flute model, and Horner et
al. [17] proposed an automated system for parameter estima-
tion of FM synthesizer using a genetic algorithm (GA). GAs
have been used for automatically designing sound synthesis
algorithms in [18, 19]. In this study, a GA is used to optimize
the perceptual error function.

This paper is sectioned as follows. The plucked string
synthesis model and the control parameters to be estimated
are described in Section 2. Parameter estimation problem
and methods for solving it are discussed in Section 3.
Section 4 concentrates on the calculation of the perceptual
error. In Section 5, we discretize the parameter space in a
perceptually reasonable manner. Implementation of the GA
and different schemes for selection, mutation, and crossover
used in our work are surveyed in Section 6. Experiments and
results are analyzed in Section 7 and conclusions are finally
drawn in Section 8.

2. PLUCKED STRING SYNTHESIS MODEL

The model proposed by Karjalainen et al. [7] is used for
plucked string synthesis in this study. The block diagram
of the model is presented in Figure 1. It is based on digital
waveguide synthesis theory [1] that is extended in accordance
with commuted waveguide synthesis approach [2, 3] to in-
clude also the body modes of the instrument in the string
synthesis model.

Different plucking styles and body responses are stored as
wavetables in the memory and used to excite the two string
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Figure 1: The plucked string synthesis model.
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Figure 2: The basic string model.

models Sh(z) and Sv(z) that simulate the effect of the two
polarizations of the transversal vibratory motion. A single
string model S(z) in Figure 2 consists of a lowpass filterH(z)
that controls the decay rate of the harmonics, a delay line
z−LI , and a fractional delay filter F(z). The delay time around
the loop for a given fundamental frequency f0 is

Ld = fs
f0
, (1)

where fs is the sampling rate (in Hz). The loop delay Ld is
implemented by the delay line z−LI and the fractional de-
lay filter F(z). The delay line is used to control the integer
part LI of the string length while the coefficients of the filter
F(z) are adjusted to produce the fractional part L f [20]. The
fractional delay filter F(z) is implemented as a first-order all-
pass filter. Two string models are typically slightly mistuned
to produce a natural sounding beating effect.

A one-pole filter with transfer function

H(z) = g
1 + a

1 + az−1
(2)

is used as a loop filter in the model. Parameter 0 < g < 1 in
(2) determines the overall decay rate of the sound while pa-
rameter −1 < a < 0 controls the frequency-dependent decay.
The excitation signal is scaled by the mixing coefficients mp

and (1 − mp) before sending it to two string models. Co-
efficient gc enables coupling between the two polarizations.
Mixing coefficient mo defines the proportion of the two po-
larizations in the output sound. All parameters mp, gc, and
mo are chosen to have values between 0 and 1. The transfer
function of the entire model is written as

M(z) = mpmoSh(z) +
(
1−mp

)(
1−mo

)
Sv(z)

+mp
(
1−mo

)
gcSh(z)Sv(z),

(3)
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Table 1: Control parameters of the synthesis model.

Parameter Control

f0,h Fundamental frequency of the horizontal string model

f0,v Fundamental frequency of the vertical string model

gh Loop gain of the horizontal string model

ah Frequency-dependent gain of the horizontal string model

gv Loop gain of the vertical string model

av Frequency-dependent gain of the vertical string model

mp Input mixing coefficient

mo Output mixing coefficient

gc Coupling gain of the two polarizations

where the string models Sh(z) and Sv(z) for the two polariza-
tions can be written as an individual string model

S(z) = 1
1− z−LI F(z)H(z)

. (4)

Synthesis model of this kind has been intensively used for
sound synthesis of various plucked string instruments [5, 21,
22]. Different methods for estimating the parameters have
been used, but in consequence of interaction between the
parameters, systematic methods are at least troublesome but
probably impossible. The nine parameters that are used to
control the synthesis model are listed in Table 1.

3. ESTIMATIONOF THEMODEL PARAMETERS

Determination of the proper parameter values for sound syn-
thesis systems is an important problem and also depends on
the purpose of the synthesis. When the goal is to imitate the
sounds of real instruments, the aim of the estimation is un-
ambiguous: we wish to find a parameter set which gives the
sound output that is sufficiently similar to the natural one in
terms of human perception. These parameters are also feasi-
ble for virtual instruments at the initial stage after which the
limits of real instruments can be exceeded by adjusting the
parameters in more creative ways.

Parameters of a synthesis model correspond normally
to the physical characteristics of an instrument [7]. The
estimation procedure can then be seen as sound analysis
where the parameters are extracted from the sound or from
the measurements of physical behavior of an instrument
[23]. Usually, the model parameters have to be fine-tuned
by laborious trial and error experiments, in collaboration
with accomplished players [23]. Parameters for the synthe-
sis model in Figure 1 have earlier been estimated this way
and recently in a semiautomatic fashion, where some pa-
rameter values can be obtained with an estimation algo-
rithm while others must be guessed. Another approach is
to consider the parameter estimation problem as a non-
linear optimization process and take advantage of the gen-
eral searching methods. All possible parameter sets can then
be ranked according to their similarity with the desired
sound.

3.1. Calibrator

A brief overview of the calibration scheme, used earlier with
the model, is given here. The fundamental frequency f̂0 is
first estimated using the autocorrelation method. The fre-
quency estimate in samples from (1) is used to adjust the de-
lay line length LI and the coefficients of the fractional delay
filter F(z). The amplitude, frequency, and phase trajectories
for partials are analyzed using the short-time Fourier trans-
form (STFT), as in [4]. The estimates for loop filter parame-
ters g and a are then analyzed from the envelopes of individ-
ual partials. The excitation signal for the model is extracted
from the recorded tone by a method described in [24]. The
amplitude, frequency, and phase trajectories are first used to
synthesize the deterministic part of the original signal and
the residual is obtained by a time-domain subtraction. This
produces a signal which lacks the energy to excite the har-
monics when used with the synthesis model. This is avoided
by inverse filtering the deterministic signal and the residual
separately. The output signal of the model is finally fed to
the optimization routine which automatically fine-tunes the
model parameters by analyzing the time-domain envelope of
the signal.

The difference in the length of the delay lines can be es-
timated based on the beating of a recorded tone. In [25],
the beating frequency is extracted from the first harmonic
of a recorded string instrument tone by fitting a sine wave
using the least squares method. Another procedure for ex-
tracting beating and two-stage decay from the string tones is
described by Bank in [26]. In practice, the automatical cal-
ibrator algorithm is first used to find decent values for the
control parameters of one string model. These values are also
used for another string model. The mistuning between the
two string models has then been found by ear [5] and the
differences in the decay parameters are set by trial and error.
Our method automatically extracts the nine control param-
eter values from recorded tones.

3.2. Optimization

Instead of extracting the parameters from audio measure-
ments, our approach here is to find the parameter set that
produces a tone that is perceptually indistinguishable from
the target one. Each parameter set can be assigned with a
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quality value which denotes how good is the candidate so-
lution. This performance metric is usually called a fitness
function, or inversely, an error function. A parameter set is
fed into the fitness function which calculates the error be-
tween the corresponding synthesized tone and the desired
sound. The smaller the error, the better the parameter set and
the higher the fitness value. These functions give a numeri-
cal grade to each solution, by means of which we are able to
classify all possible parameter sets.

4. FITNESS CALCULATION

Human hearing analyzes sound both in the frequency and
time domain. Since spectra of all musical sounds vary with
time, it is appropriate to calculate the spectral similarity
in short time segments. A common method is to measure
the least squared error of the short-time spectra of the two
sounds [17, 18]. The STFT of signal y(n) is a sequence of
discrete Fourier transforms (DFT)

Y(m, k) =
N−1∑
n=0

w(n)y(n +mH)e− jwkn, m = 0, 1, 2, . . . ,

(5)

with

wk = 2πk
N

, k = 0, 1, 2, . . . , N − 1, (6)

whereN is the length of the DFT, w(n) is a window function,
andH is the hop size or time advance (in samples) per frame.
Integers m and k refer to the frame index and frequency bin,
respectively. When N is a power of two, for example, 1024,
each DFT can be computed efficiently with the FFT algo-
rithm. If o(n) is the output sound of the synthesis model and
t(n) is the target sound, then the error (inverse of the fitness)
of the candidate solution is calculated as follows:

E = 1
F
= 1

L

L−1∑
m=0

N−1∑
k=0

(∣∣O(m, k)
∣∣− ∣∣T(m, k)

∣∣)2, (7)

where O(m, k) and T(m, k) are the STFT sequences of o(n)
and t(n) and L is the length of the sequences.

4.1. Perceptual quality

The analytical error calculated from (7) is a raw simplifica-
tion from the viewpoint of auditory perception. Therefore,
an auditory model is required. One possibility would be to
include the frequency masking properties of human hearing
by applying a narrow band masking curve [27] for each par-
tial. This method has been used to speed up additive syn-
thesis [28] and perceptual wavetable matching for synthesis
of musical instrument tones [29]. One disadvantage of the
method is that it requires peak tracking of partials, which
is a time-consuming procedure. We use here a technique
which determines the threshold of masking from the STFT
sequences. The frequency components below that threshold
are inaudible, therefore, they are unnecessary when calculat-
ing the perceptual similarity. This technique proposed in [30]

has been successfully applied in audio coding and perceptual
error calculation [18].

4.2. Calculating the threshold ofmasking

The threshold of masking is calculated in several steps:

(1) windowing the signal and calculating STFT,
(2) calculating the power spectrum for each DFT,
(3) mapping the frequency scale into the Bark domain and

calculating the energy per critical band,
(4) applying the spreading function to the critical band

energy spectrum,
(5) calculating the spread masking threshold,
(6) calculating the tonality-dependent masking threshold,
(7) normalizing the raw masking threshold and calculat-

ing the absolute threshold of masking.

The frequency power spectrum is translated into the Bark
scale by using the approximation [27]

ν = 13 arctan
(
0.76 f
kHz

)
+ 3.5 arctan

(
f

7.5 kHz

)2
, (8)

where f is the frequency in Hertz and ν is the mapped fre-
quency in Bark units. The energy in each critical band is cal-
culated by summing the frequency components in the critical
band. The number of critical bands depends on the sampling
rate and is 25 for the sample rate of 44.1 kHz. The discrete
representation of fixed critical bands is a close approxima-
tion and, in reality, each band builds up around a narrow
band excitation. A power spectrum P(k) and energy per crit-
ical band Z(ν) for a 12 milliseconds excerpt from a guitar
tone are shown in Figure 3a.

The effect of masking of each narrow band excitation
spreads across all critical bands. This is described by a spread-
ing function given in [31]

10 log10 B(ν) = 15.91 + 7.5(ν + 0.474)

− 17.5
√
1 + (ν + 0.474)2 dB.

(9)

The spreading function is presented in Figure 3b. The
spreading effect is applied by convolving the critical band en-
ergy function Z(ν) with the spreading function B(ν) [30].
The spread energy per critical band SP(ν) is shown in
Figure 3c.

The masking threshold depends on the characteristics of
the masker and masked tone. Two different thresholds are
detailed and used in [30]. For the tone masking noise, the
threshold is estimated as 14.5 + νdB below the SP . For noise
masking, the tone it is estimated as 5.5dB below the SP . A
spectral flatness measure is used to determine the noiselike
or tonelike characteristics of the masker. The spectral flatness
measure V is defined in [30] as the ratio of the geometric
to the arithmetic mean of the power spectrum. The tonality
factor α is defined as follows:

α = min
(

V

Vmax
, 1
)
, (10)
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(c) Power spectrum (solid line) and spread energy per critical
band (dashed line).
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Figure 3: Determining the threshold of masking for a 12 milliseconds excerpt from a recorded guitar tone. Fundamental frequency of the
tone is 331Hz.

where Vmax = −60dB. That is to say that if the masker sig-
nal is entirely tonelike, then α = 1, and if the signal is pure
noise, then α = 0. The tonality factor is used to geometri-
cally weight the two thresholds mentioned above to form the
masking energy offset U(ν) for a critical band

U(ν) = α(14.5 + ν) + 5.5(1− α). (11)

The offset is then subtracted from the spread spectrum to
estimate the raw masking threshold

R(ν) = 10log10(SP(ν))−U(ν)/10. (12)

Convolution of the spreading function and the critical band

energy function increases the energy level in each band. The
normalization procedure used in [30] takes this into account
and divides each component of R(ν) by the number of points
in the corresponding band

Q(ν) = R(ν)
Np

, (13)

where Np is the number of points in the particular criti-
cal band. The final threshold of masking for a frequency
spectrum W(k) is calculated by comparing the normalized
threshold to the absolute threshold of hearing and map-
ping from Bark to the frequency scale. The most sensitive
area in human hearing is around 4 kHz. If the normalized
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energy Q(ν) in any critical band is lower than the energy in
a 4 kHz sinusoidal tone with one bit of dynamic range, it is
changed to the absolute threshold of hearing. This is a sim-
plified method to set the absolute levels since in reality the
absolute threshold of hearing varies with the frequency.

An example of the final threshold of masking is shown
in Figure 3d. It is seen that many of the high partials and
the background noise at the high frequencies are below the
threshold and thus inaudible.

4.3. Calculating the perceptual error

Perceptual error is calculated in [18] by weighting the error
from (7) with two matrices

G(m, k) =


1 if T(m, k) ≥W(m, k),

0 otherwise,

H(m, k)

=


1 if O(m, k) ≥W(m, k), T(m, k) < W(m, k),

0 otherwise,
(14)

where m and k refer to the frame index and frequency bin,
as defined previously. Matrices are defined such that the full
error is calculated for spectral components which are audible
in a recorded tone t(n) (that is above the threshold of mask-
ing). The matrix G(m, k) is used to account for these compo-
nents. For the components which are inaudible in a recorded
tone but audible in the sound output of the model o(n), the
error between the sound output and the threshold of mask-
ing is calculated. The matrix H(m, k) is used to weight these
components.

Perceptual error Ep is a sum of these two cases. No error
is calculated for the components which are below the thresh-
old of masking in both sounds. Finally, the perceptual error
function is evaluated as

Ep = 1
Fp

= 1
L

N−1∑
k=0

Ws(k)
L−1∑
m=0

[(∣∣O(m, k)
∣∣−∣∣T(m, k)

∣∣)2G(m, k)
]

+
[(∣∣O(m, k)

∣∣− ∣∣T(m, k)
∣∣)2H(m, k)

]
,

(15)

where Ws(k) is an inverted equal loudness curve at sound
pressure level of 60 dB shown in Figure 4 that is used to
weight the error and imitate the frequency-dependent sen-
sitivity of human hearing.

5. DISCRETIZING THE PARAMETER SPACE

The number of data points in the parameter space can be
reduced by discretizing the individual parameters in a per-
ceptually reasonable manner. The range of parameters can be
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Figure 4: The frequency-dependent weighting function, which is
the inverse of the equal loudness curve at the SPL of 60 dB.

reduced to cover only all the possible musical tones and devi-
ation steps can be kept just below the discrimination thresh-
old.

5.1. Decay parameters

The audibility of variations in decay of the single string
model in Figure 2 have been studied in [32]. Time constant
τ of the overall decay was used to describe the loop gain
parameter g while the frequency-dependent decay was con-
trolled directly by parameter a. Values of τ and a were varied
and relatively large deviations in parameters were claimed to
be inaudible. Järveläinen and Tolonen [32] proposed that a
variation of the time constant between 75% and 140% of the
reference value can be allowed in most cases. An inaudible
variation for the parameter a was between 83% and 116% of
the reference value.

The discrimination thresholds were determined with two
different tone durations 0.6 second and 2.0 seconds. In our
study, the judgement of similarity between two tones is done
by comparing the entire signals and, therefore, the results
from [32] cannot be directly used for the parametrization
of a and g. The tolerances are slightly smaller because the
judgement is made based on not only the decay but also the
duration of a tone. Based on our informal listening test and
including amargin of certainty, we have defined the variation
to be 10% for the τ and 7% for the parameter a. The parame-
ters are bounded so that all the playable musical sounds from
tightly damped picks to very slowly decaying notes are pos-
sible to produce with the model. This results in 62 discrete
nonuniformly distributed values for g and 75 values for a, as
shown in Figures 5a and 5b. The corresponding amplitude
envelopes of tones with different g parameter are shown in
Figure 5c. Loop filter magnitude responses for varying pa-
rameter a with g = 1 are shown in Figure 5d.

5.2. Fundamental frequency and beating parameters

The fundamental frequency estimate f̂0 from the calibrator
is used as an initial value for both polarizations. When the
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Figure 5: Discretizing the parameters g and a.

fundamental frequencies of two polarizations differ, the fre-
quency estimate settles in the middle of the frequencies, as
shown in Figure 6. Frequency discrimination thresholds as
a function of frequency have been proposed in [33]. Also
the audibility of beating and amplitude modulation has been
studied in [27]. These results do not give us directly the dis-
crimination thresholds for the difference in the fundamental
frequencies of the two-polarization stringmodel, because the
fluctuation strength in an output sound depends on the fun-
damental frequencies and the decay parameters g and a.

The sensitivity of parameters can be examined when a
synthesized tone with known parameter values is used as a
target tone with which another synthesized tone is compared.
Varying one parameter after another and freezing the oth-
ers, we obtain the error as a function of the parameters. In
Figure 7, the target values of f0,v and f0,h are 331 and 330Hz.
The solid line shows the error when f0,v is linearly swept from
327 to 344Hz. The global minimum is obviously found when

f0,v = 331Hz. Interestingly, another nonzero local minimum
is found when f0,v = 329Hz, that is, when the beating is sim-
ilar. The dashed line shows the error when both f0,v and f0,h
are varied but the difference in the fundamental frequencies
is kept constant. It can be seen that the difference is more
dominant than the absolute frequency value and have to be
therefore discretized with higher resolution. Instead of op-
erating the fundamental frequency parameters directly, we
optimize the difference d f = | f0,v − f0,h| and the mean fre-
quency f ′0 = | f0,v + f0,h|/2 individually. Combining previous
results from [27, 33] with our informal listening test, we have
discretized d f with 100 discrete values and f ′0 with 20. The
range of variation is set as follows:

rp = ±
(
f̂0
10

)1/3
, (16)

which is shown in Figure 8.
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Figure 6: Three autocorrelation functions. Dashed and solid lines
show functions for two single-polarization guitar tones with funda-
mental frequencies of 80 and 84Hz. Dash-dotted line corresponds
to a dual-polarization guitar tone with fundamental frequencies of
80 and 84Hz.

5.3. Other parameters

The tolerances for themixing coefficientsmp,mo, and gc have
not been studied and the parameters have been earlier ad-
justed by trial and error [5]. Therefore, no initial guesses are
made for these parameters. The sensitivities of themixing co-
efficients are examined in an example case in Figure 9, where
mp = 0.5, mp = 0.5, and mp = 0.1. It can be seen that the
parameters mp and mo are most sensitive near the bound-
aries and the parameter gc is most sensitive near zero. Ranges
for mp and mo are discretized with 40 values according to
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Figure 7: Error as a function of the fundamental frequencies. The
target values of f0,v and f0,h are 331 and 330Hz. The solid line shows
the error when f0,h = 330 and f0,v is linearly swept from 327 to
334Hz. The dashed line shows the error when both frequencies are
varied simultaneously while the difference remains similar.

125 250 500 1k

Frequency estimate f̂0 (Hz)

4

5

6

7

8

9

10

rp
+
−r

p −
(H

z)
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Figure 10. This method is applied to the parameter gc, the
range of which is limited to 0–0.5.

Discretizing the nine parameters this way results in 2.77×
1015 combinations in total for a single tone. For an acous-
tic guitar, about 120 tones with different dynamic levels and
playing styles have to be analyzed. It is obvious that an ex-
haustive search is out of question.

6. GENETIC ALGORITHM

GAs mimic the evolution of nature and take advantage of
the principle of survival of the fittest [34]. These algorithms
operate on a population of potential solutions improving
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Figure 10: Discrete values for the parametersmp andmo.

characteristics of the individuals from generation to gener-
ation. Each individual, called a chromosome, is made up of
an array of genes that contain, in our case, the actual param-
eters to be estimated.

In the original algorithm design, the chromosomes were
represented with binary numbers [35]. Michalewicz [36]
showed that representing the chromosomes with floating-
point numbers results in faster, more consistent, higher pre-
cision, and more intuitive solution of the algorithm. We
use a GA with the floating-point representation, although
the parameter space is discrete, as discussed in Section 5.
We have also experimented with the binary-number repre-
sentation, but the execution time of the iteration becomes
slow. Nonuniformly graduated parameter space is trans-
formed into the uniform scales where the GA operates on.
The floating-point numbers are rounded to the nearest dis-

crete parameter value. The original floating-point operators
are discussed in [36], where the characteristics of the oper-
ators are also described. Few modifications to the original
mutation operators in step 5 have been made to improve the
operation of the algorithm with the discrete grid.

The algorithm we use is implemented as follows.

(1) Analyze the recorded tone to be resynthesized using
the analysis methods discussed in Section 3. The range
of the parameter f ′0 is chosen and the excitation sig-
nal is produced according to these results. Calculate
the threshold of masking (Section 4) and the discrete
scales for the parameters (Section 5).

(2) Initialization: create a population of Sp individuals
(chromosomes). Each chromosome is represented as
a vector array �x, with nine components (genes), which
contains the actual parameters. The initial parameter
values are randomly assigned.

(3) Fitness calculation: calculate the perceptual fitness of
each individual in the current population according to
(15).

(4) Selection of individuals: select individuals from the
current population to produce the next generation
based upon the individual’s fitness. We use the nor-
malized geometric selection scheme [37], where the
individuals are first ranked according to their fitness
values. The probability of selecting the ith individual
to the next generation is then calculated by

Pi = q′(1− q)r−1, (17)

where

q′ = q

1− (1− q)Sp
, (18)

q is the user-defined parameter which denotes the
probability of selecting the best individual, and r is the
rank of the individual, where 1 is the best and Sp is the
worst. Decreasing the value of q slows the convergence.

(5) Crossover: randomly pick a specified number of par-
ents from selected individuals. An offspring is pro-
duced by crossing the parents with a simple, arithmeti-
cal, and heuristic crossover scheme. Simple crossover
creates two new individuals by splitting the parents in
a random point and swapping the parts. Arithmeti-
cal crossover produces two linear combinations of the
parents with a random weighting. Heuristic crossover
produces a single offspring �xo which is a linear extrap-
olation of the two parents �xp,1 and �xp,2 as follows:

�xo = h
(
�xp,2 −�xp,1

)
+�xp,2, (19)

where 0 ≤ h ≤ 1 is a random number and the parent
�xp,2 is not worse than �xp,1. Nonfeasible solutions are
possible and if no solution is found after w attempts,
the operator gives no offspring. Heuristic crossover
contributes to the precision of the final solution.
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(6) Mutation: randomly pick a specified number of in-
dividuals for mutation. Uniform, nonuniform, multi-
nonuniform, and boundary mutation schemes are
used. Mutation works with a single individual at a
time. Uniform mutation sets a randomly selected pa-
rameter (gene) to a uniform random number between
the boundaries. Nonuniform mutation operates uni-
formly at early stage and more locally as the current
generation approaches the maximum generation. We
have defined the scheme to operate in such a way that
the change is always at least one discrete step. The de-
gree of nonuniformity is controlled with the param-
eter b. Nonuniformity is important for fine-tuning.
Multi-nonuniform mutation changes all of the pa-
rameters in the current individual. Boundary muta-
tion sets a parameter to one of its boundaries and is
useful if the optimal solution is supposed to lie near
the boundaries of the parameter space. The bound-
ary mutation is used in special cases, such as staccato
tones.

(7) Replace the current population with the new one.
(8) Repeat steps 3, 4, 5, 6, and 7 until termination.

Our algorithm is terminated when a specified number of
generations is produced. The number of generations defines
the maximum duration of the algorithm. In our case, the
time spent with the GA operations is negligible compared to
the synthesis and fitness calculation. Synthesis of a tone with
candidate parameter values takes approximately 0.5 second,
while the duration of the error calculation is 1.2 second. This
makes 1.7 second in total for a single parameter set.

7. EXPERIMENTATION AND RESULTS

To study the efficiency of the proposed method, we first tried
to estimate the parameters for the sound produced by the
synthesis model itself. First, the same excitation signal ex-
tracted from a recorded tone by the method described in
[24] was used for target and output sounds. A more realis-
tic case is simulated when the excitation for resynthesis is ex-
tracted from the target sound. The system was implemented
with Matlab software and all runs were performed on an In-
tel Pentium III computer. We used the following parameters
for all experiments: population size Sp = 60, number of gen-
erations = 400, probability of selecting the best individual
q = 0.08, degree of nonuniformity b = 3, retries w = 3,
number of crossovers = 18, and number of mutations = 18.

The pitch synchronous Fourier transform scheme, where
the window length Lw is synchronized with the period length
of the signal such that Lw = 4 fs/ f0, is utilized in this work.
The overlap of the used hanning windows is 50%, implying
that hop size H = Lw/2. The sampling rate is fs = 44100Hz
and the length of FFT is N = 2048.

The original and the estimated parameters for three ex-
periments are shown in Table 2. In experiment 1 the origi-
nal excitation is used for the resynthesis. The exact param-
eters are estimated for the difference d f and for the decay

parameters gh, gv, and av. The adjacent point in the dis-
crete grid is estimated for the decay parameter ah. As can
be seen in Figure 7, the sensitivity of the mean frequency
is negligible compared to the difference d f , which might be
the cause of deviations in mean frequency. Differences in the
mixing parameters mo, mp, and the coupling coefficient gc
can be noticed. When running the algorithm multiple times,
no explicit optima for mixing and coupling parameters were
found. However, synthesized tones produced by correspond-
ing parameter values are indistinguishable. That is to say that
the parameters mp, mo, and gc are not orthogonal, which is
clearly a problem with the model and also impairs the effi-
ciency of our parameter estimation algorithm.

To overcome the nonorthogonality problem, we have run
the algorithm with constant values of mp = mo = 0.5 in ex-
periment 2. If the target parameters are set according to dis-
crete grid, the exact parameters with zero error are estimated.
The convergence of the parameters and the error of such case
is shown in Figure 11. Apart from the fact that the parameter
values are estimated precisely, the convergence of the algo-
rithm is very fast. Zero error is already found in generation
87.

A similar behavior is noticed in experiment 3 where an
extracted excitation is used for resynthesis. The difference
and the decay parameters gh and gv are again estimated pre-
cisely. Parameters mp, mo, and gc drift as in previous exper-
iment. Interestingly, mp = 1, which means that the straight
path to vertical polarization is totally closed. The model is, in
a manner of speaking, rearranged in such a way that the indi-
vidual string models are in series as opposed to the original
construction where the polarization are arranged in paral-
lel.

Unlike in experiments 1 and 2, the exact parameter val-
ues are not so relevant since different excitation signals are
used for the target and estimated tones. Rather than look-
ing into the parameter values, it is better to analyze the tones
produced with the parameters. In Figure 12, the overall tem-
poral envelopes and the envelopes of the first eight partials
for the target and for the estimated tone are presented. As
can be seen, the overall temporal envelopes are almost iden-
tical and the partial envelopes match well. Only the beating
amplitude differs slightly but it is inaudible. This indicates
that the parametrization of the model itself is not the best
possible since similar tones can be synthesized with various
parameter sets.

Our estimation method is designed to be used with real
recorded tones. Time and frequency analysis for such case
is shown in Figure 13. As can be seen, the overall tempo-
ral envelopes and the partial envelopes for a recorded tone
are very similar to those that are analyzed from a tone that
uses estimated parameter values. Appraisal of the perceptual
quality of synthesized tones is left as a future project, but
our informal listening indicates that the quality is compa-
rable with or better than our previous methods and it does
not require any hand tuning after the estimation procedure.
Sound clips demonstrating these experiments are available at
http://www.acoustics.hut.fi/publications/papers/jasp-ga.

http://www.acoustics.hut.fi/publications/papers/jasp-ga
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Figure 11: Convergence of the seven parameters and the error for experiment 2 in Table 2. Mixing coefficients are frozen asmp = mo = 0.5 to
overcome the nonorthogonality problem. One hundred and fifty generations are shown and the original excitation is used for the resynthesis.
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Table 2: Original and estimated parameters when a synthesized tone with known parameter values are used as a target tone. The original
excitation is used for resynthesis in experiments 1 and 2 and the extracted excitation is used for the resynthesis in experiment 3. In experiment
2 the mixing coefficients are frozen asmp = mo = 0.5.

Parameter Target parameter Experiment 1 Experiment 2 Experiment 3

f ′0 330.5409 331.000850 330.5409 330.00085

d f 0.8987 0.8987 0.8987 0.8987

gh 0.9873 0.9873 0.9873 0.9873

ah −0.2905 −0.3108 −0.2905 −0.2071
gv 0.9907 0.9907 0.9907 0.9907

av −0.1936 −0.1936 −0.1936 −0.1290
mp 0.5 0.2603 (0.5) 1.000

mo 0.5 0.6971 (0.5) 0.8715

gc 0.1013 0.2628 0.1013 0.2450

Error — 0.0464 0 0.4131
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Figure 12: Time and frequency analysis for experiment 3 in Table 2. The synthesized target tone is produced with known parameter values
and the synthesized tone uses estimated parameter values. Extracted excitation is used for the resynthesis.
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Figure 13: Time and frequency analysis for a recorded tone and for a synthesized tone that uses estimated parameter values. Extracted
excitation is used for the resynthesis. Estimated parameter values are f ′0 = 331.1044, d f = 1.1558, gh = 0.9762, ah = −0.4991, gv = 0.9925,
av = 0.0751,mp = 0.1865,mo = 0.7397, and gc = 0.1250.

8. CONCLUSIONS AND FUTUREWORK

A parameter estimation scheme based on a GAwith a percep-
tual fitness function was designed and tested for a plucked
string synthesis algorithm. The synthesis algorithm is used
for natural-sounding synthesis of various string instruments.
For this purpose, automatic parameter estimation is needed.
Previously, the parameter values have been extracted from
recordings using more traditional signal processing tech-
niques, such as short-term Fourier transform, linear regres-
sion, and linear digital filter design. Some of the parameters
could not have been reliably estimated from the recorded
sound signal, but they have had to be fine-tuned manually
by an expert user.

In this work, we presented a fully automatic parameter
extraction method for string synthesis. The fitness function
we use employs knowledge of properties of the human au-
ditory system, such as frequency-dependent sensitivity and
frequency masking. In addition, a discrete parameter space

has been designed for the synthesizer parameters. The range,
the nonuniformity of the sampling grid, and the number of
allowed values for each parameter were chosen based on for-
mer research results, experiments on parameter sensitivity,
and informal listening.

The system was tested with both synthetic and real tones.
The signals produced with the synthesis model itself are con-
sidered a particularly useful class of test signals because there
will always be a parameter set that exactly reproduces the an-
alyzed signal (although discretization of the parameter space
may limit the accuracy in practice). Synthetic signals offered
an excellent tool to evaluate the parameter estimation pro-
cedure, which was found to be accurate with two choices of
excitation signal to the synthesis model. The quality of resyn-
thesis of real recordings is more difficult to measure as there
are no known correct parameter values. As high-quality syn-
thesis of several plucked string instrument sounds has been
possible in the past with the same synthesis algorithm, we
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expected to hear good results using the GA-based method,
which was also the case.

Appraisal of synthetic tones that use parameter values
from the proposed GA-based method is left as a future
project. Listening tests similar to those used for evaluating
high-quality audio coding algorithms may be useful for this
task.
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[15] A. Härmä, M. Karjalainen, L. Savioja, V. Välimäki, U. Laine,
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[16] J. Vuori and V. Välimäki, “Parameter estimation of non-linear
physical models by simulated evolution—application to the
flute model,” in Proc. International Computer Music Confer-
ence (ICMC ’93), pp. 402–404, Tokyo, Japan, September 1993.

[17] A. Horner, J. Beauchamp, and L. Haken, “Machine tongues
XVI: Genetic algorithms and their application to FM match-
ing synthesis,” Computer Music Journal, vol. 17, no. 4, pp. 17–
29, 1993.

[18] R. Garcia, “Automatic generation of sound synthesis tech-
niques,” M.S. thesis, Massachusetts Institute of Technology,
Cambridge, Mass, USA, 2001.

[19] C. Johnson, “Exploring the sound-space of synthesis algo-
rithms using interactive genetic algorithms,” in Proc. AISB
Workshop on Artificial Intelligence and Musical Creativity, pp.
20–27, Edinburgh, Scotland, April 1999.

[20] D. Jaffe and J. O. Smith, “Extensions of the Karplus-Strong
plucked-string algorithm,” Computer Music Journal, vol. 7,
no. 2, pp. 56–69, 1983.

[21] C. Erkut, M. Laurson, M. Kuuskankare, and V. Välimäki,
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