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The Meddis inner hair cell model is a widely accepted, but computationally intensive computer model of mammalian inner hair
cell function. We have produced an analogue VLSI implementation of this model that operates in real time in the current domain
by using translinear and log-domain circuits. The circuit has been fabricated on a chip and tested against the Meddis model
for (a) rate level functions for onset and steady-state response, (b) recovery after masking, (c) additivity, (d) two-component
adaptation, (e) phase locking, (f) recovery of spontaneous activity, and (g) computational efficiency. The advantage of this circuit,
over other electronic inner hair cell models, is its nearly exact implementation of the Meddis model which can be tuned to behave
similarly to the biological inner hair cell. This has important implications on our ability to simulate the auditory system in real
time. Furthermore, the technique of mapping a mathematical model of first-order differential equations to a circuit of log-domain
filters allows us to implement real-time neuromorphic signal processors for a host of models using the same approach.
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1. INTRODUCTION

Inner hair cells (IHCs) are mechanical to neural transducers
located within the cochlea and play an important role in bio-
logical sound processing. Sound captured by the eardrum is
translated intomovement of the cochlear fluid, which in turn
causes the basilar membrane to vibrate (see Figure 1). This
vibration is converted into a neural signal by the IHCs and
results in the firing of the auditory nerve cells. The transduc-
tion of the sound signal by the IHC is nonlinear and exhibits
several time constants of adaptation. To mimic the IHC pro-
cessing, past silicon cochleae (see [1, 2]) have used nonlin-
ear lowpass filters to produce the adaptation characteristic of
the IHC. These IHC circuits responded favourably to a sim-
ple set of stimuli but failed with more complex stimuli [1].
We present measurement results of an analogue VLSI imple-
mentation of the Meddis IHC model [3], which is the most
descriptive computational model for the function of the IHC
[4].

In the circuit presented here, we use log-domain lowpass
filters [5] to map the differential equations of the Meddis
IHCmodel to circuits on a silicon chip. This technique allows
the Meddis model to run in real time. In our model, we have

furthermore increased the flexibility of the Meddis model by
maintaining control of all time constants while introducing
independent gain controls of the signals between the filters.
The circuit implements a more accurate electronic model of
the IHC function than any previous circuit. It can be shown
that it exhibits the correct time constants of adaptation over
a large range of stimulus conditions. Direct measurements
of real-time signals on a fabricated silicon chip confirm this
behaviour.

2. THEMEDDIS IHCMODEL

The IHC function is characterised in the Meddis model by
describing the dynamics of neurotransmitter at the hair cell
synapse (i.e., the membrane-cleft boundary, see Figure 1). In
themodel, transmitter is transferred between three reservoirs
in a reuptake and resynthesis process loop (see Figure 2).

The first reservoir is a transmitter factory that releases
neurotransmitter at the hair cell boundary and delivers it to
a second reservoir, the free transmitter pool. The amount of
neurotransmitter released from the pool into the cleft is con-
trolled by changes in the permeability of the cell membrane.
This fluctuates as a function of the intracellular voltage,
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Figure 1: Human ear and IHC.
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Figure 2: The Meddis IHC model.

which is directly related to the instantaneous mechanical
stimulus amplitude. Some transmitter is lost in the cleft
through diffusion and a further fraction is taken back up into
the cell. Some of the remaining transmitter in the cleft stimu-
lates the postsynaptic afferent fibre of an auditory nerve cell.

The level of transmitter in the cleft dictates the probabil-
ity of the nerve cell firing (spiking). The transmitter taken
back up into the cell is initially reprocessed and stored in a
third reservoir in preparation for delivery to the free trans-
mitter pool. Incorporation of this third reservoir enables the
model to display the type of two-component adaptation typ-
ical of real IHC.

The five equations representing the Meddis IHC model
are presented as follows.

(a) In equation (1), the permeability of the cell mem-
brane is represented by k(t) and A, B, and g are constants
of the model. In the absence of sound, k(t) = gA/(A +
B) which represents the spontaneous response of hair cells

at rest:

k(t) = g
[
s(t) + A

]
s(t) +A + B

for s(t) + A > 0,

k(t) = 0 for s(t) +A ≤ 0.
(1)

(b) The level of available transmitter in the pool q(t)
depends on the rate at which transmitter is manufactured
y[1− q(t)], the rate at which it is reprocessed xw(t), and the
rate at which it is lost to the cleft k(t)q(t):

dq

dt
= y

[
1− q(t)

]
+ xw(t)− k(t)q(t). (2)

(c) The cleft receives neurotransmitter at a rate k(t)q(t),
where some of it is lost through diffusion at a rate lc(t) and
some is actively returned to the reprocessing store at a rate
rc(t):

dc

dt
= k(t)q(t)− lc(t)− rc(t). (3)

(d) The reprocessing store receives transmitter at a rate
rc(t) and returns it to the free transmitter pool at a rate
xw(t):

dw

dt
= rc(t)− xw(t). (4)

(e) The remaining level of transmitter in the cleft c(t)dt
determines the probability of the afferent nerve firing. The
constant h is used to scale the output for comparison with
empirical data:

prop(event) = hc(t)dt. (5)
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3. CURRENTMODE DESCRIPTION

In order to implement the Meddis IHC model on an inte-
grated circuit, themodel equations need to be written as elec-
trical equations. We have mapped the equations of the Med-
dis model to electric currents to allow the use of log-domain
filters for the implementation of the differential equations
(see Figure 3). Each of the signals k(t), q(t), c(t), and w(t)
is now represented by currents and written as Ik, Iq, Ic, and
Iw, respectively. A voltage Vs is used to represent the stimulus
s(t).

The first equation of the Meddis model can be approxi-
mated by a half-wave rectification (HWR) function that ex-
hibits the spontaneous bias of the IHC and saturates at some
maximum value. In our implementation, a differential pair
of transistors is used to create a sigmoid function with a
shape similar to (1)

Ik = Ibias
1 + e(Vref−Vs)/nUT

− Ishi, (6)

where n is the slope factor and UT = kT/q is the thermal
voltage parameter of the MOS transistor.

The three differential equations (2), (3), and (4) are
rewritten as difference equations by taking the Laplace trans-
form. The resulting equations are given as follows:

(
sτy + 1

)
Iq = Io − ga

Ik × Iq
Imax

+ gb × Iw, (7)

(sτc + 1)Ic = gc
Ik × Iq
Imax

, (8)

(
sτx + 1

)
Iw = gd × Ic, (9)

where

τy = 1
y
, τc = 1

l + r
, τx = 1

x
, τg = 1

g
, (10)

ga =
τy
τg
, gb =

τy
τx
, gc = τc

τg
, gd = τx

τr
. (11)

Each constant of the model is represented by a time con-
stant with the two constants l and r combined into a single
time constant tc (see (10)). The model was further simplified

Iin Ix Iτ Iout

M1+ +
M2 M3+ +

M4

− − Vc
− −

Vref 2Iτ C

Figure 4: The log-domain lowpass filter.

by replacing time constant ratios with dimensionless gains
(see (11)). This step makes the model easier to manipulate
and time constants can now be changed without affecting
the gains and vice versa. The product Ik × Iq is normalised
by a constant current Imax to ensure that the currents remain
within the same order of magnitude.

4. THE CIRCUITS

4.1. Log-domain filters

Log-domain circuits are dynamic translinear circuits [6] that
use the exponential transconductance of devices such as
bipolar and weak inversionMOS transistors to compress and
expand current mode signals. The relationship between in-
put and output currents is linear while a logarithmic (com-
pressive) voltage-current relationship provides these filters
with high dynamic range. We use a first-order log-domain
filter, first investigated by Frey [5], implemented with MOS
transistors operating in the weak inversion mode (Figure 4).

This circuit can be analysed using the translinear princi-
ple. The product of drain currents of transistors facing clock-
wise (M1 and M3) is equal to the product of drain currents
of transistors facing anticlockwise (M2 andM4) [6]. For the
circuit of Figure 4, this gives

IoutIx = IinIτ . (12)

The summation of currents at node Vc also defines

Iout

(
C
dVc

dt
+ 2Iτ − Iτ

)
= IinIτ . (13)

Furthermore, the drain currents ofM3 andM4 are related by

Iout = Iτe
(Vc−Vref )/UT . (14)

Differentiating (14) gives

dIout
dt

= dIout
dVc

dVc

dt
= Iout

UT

dVc

dt
(15)
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or

dVc

dt
= UT

Iout

dIout
dt

. (16)

Substituting (16) into (13) then gives us

Iout

(
CUT

Iout

dIout
dt

+ Iτ

)
= IinIτ (17)

or

τ
dIout
dt

= Iin − Iout, (18)

where τ = CUT/Iτ . This circuit thus implements a first-order
lowpass filter with a time constant determined by the value
of the capacitor C, the thermal voltage UT , and a current Iτ ,
which can be used to control the time constant after fabrica-
tion.

4.2. Translinearmultiplier/divider

The translinear circuit shown in Figure 5 functions as a one-
quadrant multiplier/divider is used to generate the product
of Iq and Ik normalised by Imax (see (7) and (8)). The inputs
to the circuit are Ik, Iq, and Imax and the output is Id. The
transistors M1, M2, M3, and M4 form the translinear loop
andM5 is an adaptive bias transistor that actively biases M2
andM3.

4.3. The IHC circuit

Three log-domain lowpass filters and the multiplier circuit
are used in our IHC implementation (Figure 6). Variable
gain current mirrors connect these stages to provide off-chip
control of the gains ga, gb, gc, and gd.

The HWR block in Figure 6 implements (6) of the cur-
rent domain model. This provides conversion from voltage
(the output of the silicon cochlea described in [7]) to cur-
rent and HWR. The MULT circuit implements the genera-
tion of (Ik × Iq)/Imax. The three lowpass filters, CLEFT LPF,

STORE LPF, and POOL LPF, implement (7), (8), and (9), re-
spectively.

Mismatch analysis of these circuits [8] has revealed that
they are susceptible to mismatch in the threshold voltage pa-
rameter vth. By using cascoded mirrors, their mismatch can
be reduced. Section 5 shows that this mismatch may be over-
come by adjusting the gain and time constant parameters and
does not prevent the model from working.

5. RESULTS

Our aim here is to show that the Meddis IHC model [3] has
been implemented on an analogue chip. To achieve this, we
must find a similar parameter set to that used in Meddis’
own tests. The parameters given in [9] were used in the cur-
rent mode model. However, as the permeability function is
slightly different (compare (1) with (6)), some parameters
had to be adjusted. Although this was very time intensive
in simulation, the chip could be tuned in a “hands-on” ap-
proach by controlling the parameters using off-chip voltages,
while having a real-time response seen on the oscilloscope.
The hands on approach proved to be a very fast way to find a
close parameter set.

The chip was tested against seven tests proposed by Med-
dis [10] for mammalian IHC function:

(i) rate intensity functions,
(ii) recovery after masking,
(iii) additivity,
(iv) two-component adaptation,
(v) phase locking,
(vi) recovery of spontaneous activity,
(vii) computational efficiency.

The first six tests are a subset of well-reported auditory nerve
properties in response to tone-burst stimuli for which elec-
trophysiological data exists. In [10], Meddis tests eight com-
putational models of mammalian IHC function and finds
that none replicates the IHC in all tests. The Meddis IHC
model is favoured due to its good agreement with physio-
logical data and its computational efficiency.

The soundcard output of a PC was used to create a volt-
age signal that represents the tone-burst inputs to the Med-
dis model. All tones were 1 kHz sine waves except where
stated otherwise. These tones correspond to the pattern of
vibration at a particular point along the cochlear parti-
tion. The output of the chip and the Meddis model rep-
resents the instantaneous probability of a spike event in a
postsynaptic auditory nerve fibre, and thus are indepen-
dent of any postsynaptic effects. The chip-output signal was
a current below 100 nA that was amplified using a cur-
rent sense amplifier to a voltage which was measured on an
oscilloscope.

5.1. Sources of error

It should be noted that there are various sources of error in
the results. These errors may explain discrepancies between
the original model and the chip response.
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Figure 7: Plot of rate intensity functions.

An estimation of the results reported by Meddis is taken
from graphs presented in journal papers that were consider-
ably small and hard to read values from.

Voltage measurements taken from the oscilloscope are
subject to various forms of noise. This noise was removed
as far as possible by eliminating ground loops using electro-
magnetic shielding and decoupling capacitors.

The number of measurements taken was increased using
the averaging mode of the oscilloscope. This function dis-
plays the average of the last 16 waveforms.While this removes
random noise in the chip and measurement circuit, it hides
the true noise performance of the IHC circuit.

Change in response to temperature variations was not
measured though there may have been some error intro-
duced in the results due to variation in temperature during
the experiments. This was reduced to a minimal level by leav-
ing the chip turned on continuously over the days that the
experiments were performed.

5.2. Rate-intensity functions

Rate-intensity functions are plots of firing rate response ver-
sus stimulus intensity and indicate the dynamic range of the
model. The method of Smith and Zwislocki [11] is used to
find the rate-intensity functions. Firstly, a stimulus level is
found where the onset and steady-state rates are zero. This

zero-dB level is the reference level. Responses are recorded
for 300ms tone bursts in steps of 10 dB to 40 dB above the
reference. The rise time of the signal and the duration of the
recording interval are the same as those used by Meddis, as
these parameters affect the shape of the onset rate-intensity
function [10].

Three rates are identified in the response, shown in
Figure 7. The spontaneous rate represents the fibre response
in the absence of stimuli. The onset rate is the firing rate av-
eraged over the first 1ms while the steady-state rate is the
response averaged over the last 30ms of a 200ms tone burst.
The rates, plotted against stimulus level, were measured di-
rectly from the oscilloscope traces using a constant gain h
to convert the output voltage to a rate value for comparison
with biological data (Figure 8). The onset rate is seen to in-
crease monotonically with stimulus level and shows little or
no sign of saturation. The steady-state rate is independent of
stimulus level (straight line). These results agree with those
reported by Meddis and with physiological results.

Recovery after masking

Tone bursts can be masked by preceding tones, depending
on how the hair cell recovers after adapting to the mask-
ing tone. It has been established that auditory nerve recov-
ery from masking stimuli follows a single exponential curve,
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where the response at stimulus onset recovers at a faster rate
than the total response [12, 13].

The method of Westerman [14] is used in this test with
43 dB tone bursts at 1 kHz. Firstly, an unadapted response

is measured in the absence of a masking tone. Then the re-
sponse to a probe following a masking tone is measured as
a decrement from the unadapted response (Figure 9). This
is repeated for probes with increasing time delay. The onset
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rate is measured within the first 1ms and the steady-state
rate after 20ms. The masker has duration of 300ms and the
probe 30ms. The time delay is varied between 0 and 200ms.
Figure 9 shows the chip replicating the response of the Med-
dis model in forward masking.

Additivity

A model is additive if changes in the firing rate caused by in-
creases or decreases in stimulus levels are independent of the
state of adaptation. Short-term and rapid adaptations have
been shown to be additive in the IHC [11, 15].

This test uses the method by Smith [12] which is de-
signed to emphasize the properties of rapid adaptation. This
method uses short (SW) and long (LW) analysis windows as
shown in Figure 10. Increments and decrements of 6 dB are
applied at various delays, ∆t from the start of the pedestal.
The control response is a pedestal with no increment nor
decrement. For each window, the increase or decrease in fir-
ing rate from the control response is measured. Smith found
that adaptation was additive in the short term (Large win-
dows of 20ms) for both increments and decrements. Rapid
adaptation (small windows of 1ms) was found to be additive
for level increments, while decrements decreased the short-
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Figure 12: Decrement response to additivity.
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term firing rate with increasing time delay, and in proportion
to the decrease in firing rate.

Figure 11 shows that in the Meddis model, and hence
in the chip, increments in the short term are not addi-
tive. This error is thought to be due to the small number
of reservoirs used in the Meddis model [10]. Models that
use multiple-reservoir sites were shown to report adapta-
tion trends correctly, with the penalty of decreased computa-
tional efficiency. Multiple reservoir models (e.g., [16]) con-
tain multiple release sites that are spatially ordered by in-
creasing threshold. This attribute gives these models a time-
independent response to time-varying stimuli. However, the
results from rapid increments agree with the findings of
Smith. Furthermore, the measurements of rapid and short-
term decrements (Figure 12) also agree with Smith’s findings.

Two-component adaptation

The adaptation curve was characterised by Smith and West-
erman [14] as the sum of two exponentially decaying com-
ponents (tr and tst) (Figure 13):

y(t) = Are
−t/tr + Aste

−t/tst +Ass, (19)

where tr is the decay time constant of rapid adaptation and
tst is the decay time constant of short-term adaptation. The
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magnitudes of the two components are given by Ar and Ast,
respectively, and Ass is the steady-state response.

In the Meddis model, tr is largely determined by the time
constant parameters τc = 1/(l+r) associated with the cleft fil-
ter (model parameter = 2ms). In the literature, it is reported
to be between 1 and 10ms and decreases with increases in
stimulus level [14, 17]. The decay time constant of short-
term adaptation tst is largely determined by the time constant
τy = 1/y associated with the transmitter factory (model pa-
rameter = 50–200ms). In the literature, it is reported to be
between 20–100ms and is independent of tone level [11, 14].
The third time constant of the Meddis model is the time con-
stant of the store reservoir (model parameter = 1ms) and it
represents a lowpass filter of around 1 kHz [18], which was
found to be related to phase locking which is seen in the next
test.

The time constants were derived from the model re-
sponse to 100ms tone bursts varying in amplitude from
10 dB to 40 dB. For the rapid time constant, points at 1ms
and 2ms were measured and for the short-term time con-
stant, points at 40ms and 80ms were measured on the re-
sponse. The steady-state response Ass was also measured as
the level towards the end of adaptation at 95ms. The time
constants were calculated from this data using the straight
line approximation technique reported in [9]. Again the re-
sults of the chip compare well to that of the Meddis model
and the data of Westerman. The rapid adaptation compo-
nent is independent of the stimulus level whereas the short-
term adaptation component decreases with stimulus level
(Figure 14).

Low-frequency phase locking

At low frequencies the auditory nerve response synchronises
or “phase locks” with the positive half cycle of the stimulus
tone. This is shown by the high magnitude AC (alternating
current) component in the output that resembles the stimu-
lus signal phase characteristics (Figure 15a). At frequencies
above 1 kHz there is no longer a phase lock and the AC
component is removed (Figure 15b). This corresponds to the
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Figure 15: Low frequency phase locking.
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store filter in the Meddis model which has a time constant
τw of 1ms. The synchronization index (SI) used by Meddis
is not used here as it shows that the model has a first-order
lowpass filter response above 1 kHz and this filter has already
been identified [18]. (The graphs in [10] show that the SI or
the gain drops by 5 dB in half a decade.)

Recovery of spontaneous activity & computational efficiency

After a tone burst, the auditory nerve firing rate ceases be-
fore recovering to the spontaneous rate (Figure 16). An expo-
nential with a time constant between 20ms and 100ms de-
scribes the recovery function [12, 13, 14]. The measurements
from the chip showed a recovery rate that compares well to
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Table 1: Recovery time constant and computational efficiency.

Model Recovery time constant Time to process a 1 s tone

Meddis, 1986 30.4ms 4.0 s

Current mode (Matlab) 52ms 5.0 s

Current mode (Spice) 57ms 20.0 s

Circuit Measurement 40ms Real time

Cooke, 1986 8.1ms 2.1 s

Chinchilla (+20 dB) 37ms 1ms

Gerbil 47ms 1ms

that reported by Meddis and physiological data (Table 1). In-
deed, the result is better than that found in simulation, which
suggests that a closer parameter set was found using the
chip.

Computational efficiency is determined by the time to
process a 1 second tone. As IHCmodels become increasingly
popular in speech processing systems, the computational ef-
ficiency is an important metric. While the computational
models typically took 2–5 seconds to simulate on a computer,
the chip was able to respond in real time as a real IHC would.
This improvement in response time enabled a better param-
eter set to be found quickly. The speed of this model will be
useful for physiological investigators in understanding more
about the auditory systems and in the construction of sensors
based on auditory physiology.

6. CONCLUSIONS

An improved analogue VLSI implementation of the IHC
is presented, utilising the Meddis model, a widely accepted
and computationally convenient model. This model is trans-
ferred to the current domain and is constructed using
translinear and log-domain circuits. A chip was fabricated
and was successfully tested against seven different models of
IHC functions. The chip was seen to be faster than the com-
puter simulation (i.e., it worked in real time). As a result, it
was easier to find a parameter set due to the hands on tuning
provided by this analogue chip.
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