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Sparse Spectrotemporal Coding of Sounds

David J. Klein

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Email: djklein@ini.phys.ethz.ch

Peter Konig

Institute of Neuroinformatics, University of Zurich and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Email: peterk@ini.phys.ethz.ch

Konrad P. Kérding

Institute of Neurology, University College London, Queen square, London, WCIN 3BG, UK

Email: konrad@koerding.de

Received 1 May 2002 and in revised form 28 January 2003

Recent studies of biological auditory processing have revealed that sophisticated spectrotemporal analyses are performed by central
auditory systems of various animals. The analysis is typically well matched with the statistics of relevant natural sounds, suggest-
ing that it produces an optimal representation of the animal’s acoustic biotope. We address this topic using simulated neurons
that learn an optimal representation of a speech corpus. As input, the neurons receive a spectrographic representation of sound
produced by a peripheral auditory model. The output representation is deemed optimal when the responses of the neurons are
maximally sparse. Following optimization, the simulated neurons are similar to real neurons in many respects. Most notably, a
given neuron only analyzes the input over a localized region of time and frequency. In addition, multiple subregions either excite
or inhibit the neuron, together producing selectivity to spectral and temporal modulation patterns. This suggests that the brain’s
solution is particularly well suited for coding natural sound; therefore, it may prove useful in the design of new computational
methods for processing speech.
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1. INTRODUCTION should exhibit sparse activity over time such that their ac-

The brain evolves both overindividual and overevolutionary
timescales embedded into the properties of the real world. It
thus seems that the properties of any sensory system should
be matched with the statistics of the natural stimuli it is typi-
cally operating on [1]. This would suggest that the function-
ality of sensory neurons can be understood in terms of cod-
ing optimally for natural stimuli.

This line of inquiry has been fruitful in the visual modal-
ity. Many properties of the mammalian visual system can be
explained as leading to optimally sparse neural responses in
response to pictures of natural scenes. Within this paradigm,
it is possible to reproduce the properties of neurons in the
lateral geniculate nucleus (LGN) [2] and of simple cells
in the primary visual cortex [3, 4, 5]. The term “sparse
representation” is often used in these studies to address
one of two distinct albeit related meanings: (1) neurons of
the population should have significantly distinct function-
ality in order to avoid redundancy, and (2) the neurons

tivity level is often close to zero, but is occasionally very
high.

A large number of independent component analysis
(ICA) (cf. [6, 7]) studies also effectively use this principle and
demonstrate the computational advantages of such a repre-
sentation.

It has recently been shown that the spectrotemporal pro-
cessing exhibited by neurons in the central auditory system,
as captured by the spectrotemporal receptive field (STRF)
(8,9, 10], shares properties with the spatiotemporal process-
ing of the visual system. In particular, neurons in the primary
auditory cortex (AI) can also be understood as linear filters
acting upon a spectrally and temporally local extent of a pe-
ripherally encoded input. In this paper, we demonstrate that
these characteristics of the auditory system can also be un-
derstood in terms of sparse activity in response to natural in-
put, which in this case is approximated by speech data. Rep-
resentations that efficiently code for speech data, adequately
represented by spectrograms, are also of obvious technical
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interest since the right type of sound representation might
be a key to improved recognition of natural language, speech
denoising, or speech generation.

2. METHODS

Inputs

Narratives from 29 distinct languages, taken from the lan-
guage illustrations in part 2 of the handbook of the Interna-
tional Phonetic Association (IPA) (available at http://www?2.
arts.gla.ac.uk/IPA/sndfiles.html), were preprocessed by sim-
ulated peripheral auditory neurons [11, 12] using the “NSL
Tools” Matlab package (courtesy of the Neural Systems Lab-
oratory, University of Maryland, College Park, available at
http://www.isr.umd.edu/CAAR/pubs.html). This peripheral
analysis employs constant-Q bandpass frequency analysis
similar to that of the mammalian cochlea including high-
frequency preemphasis (first-order highpass, corner fre-
quency of 300 Hz), followed by nonlinear (sigmoidal) trans-
duction, and half-wave rectification and smoothing (first-
order lowpass, corner frequency of 100 Hz) for envelope ex-
traction. As a comparison, we obtained a second dataset
by recording audio data from one voluntary human sub-
ject (KPK) reading German-language texts, using a standard
microphone (Escom) and Cool Edit Pro software (Syntril-
lium Software, Phoenix, USA) recording mono at 44 kbit, 16
bits precision (Figure 1a). The resulting data can be viewed
as spectrograms, which represent the time-dependent spec-
tral energy of sound. An example is shown in Figures 1a and
1b, which show, respectively, the input and output of the pe-
ripheral model to the utterance “Komm sofort nach Hause”
(“come home right away” in German).

The spectrograms have 64 points along the tonotopic
(spectral) axis, covering a frequency range from 185 to
7246 Hz. This corresponds to a spectral resolution of approx-
imately 12 channels per octave. Temporally, the data is ar-
ranged into overlapping blocks of 25 points, each covering
250 milliseconds. One block of data is taken per 10 millisec-
onds. The data is subjected to a principal component anal-
ysis (PCA), and the first 200 components are set to have
unit variance (called whitening) and are subsequently used
as input vectors I(¢) of length 200 to the optimization al-
gorithm. Thirty thousand subsequent samples are used as
input.

Neuron model

Hundred neurons are simulated, each of which has a weight
vector W; of length 200. The activities A; of the neurons are
defined as follows:

Ai(t) = 9(I()Wy), (1)

where 9 is the heavyside function: 9(x) = x for x > 0,
9 = 0 otherwise. The neurons are thus characterized by linear
threshold properties. The parameters of the simulated neu-
rons are optimized by a fast optimization algorithm, called
resilient backprop [13], to maximize the following objective

function:

\PCauchy = z <108 (1 + Alz) >all sounds’ (2)

where (*) denotes the average over all stimuli and A; is
the activity of the neuron. The simulated neurons, further-
more, should not all have the same properties; they should
be decorrelated. We thus add a second term

->'CCl(anaj) — > (1-std @), (3)

i,j i

\{'ldecorr =

where CC denotes the coefficient of covariation and std is
the standard deviation. The first term biases the neurons to
have distinct activity patterns, while the latter term effectively
normalizes the standard deviation. The optimization is per-
formed in principal component space (cf. [14]) for the sake
of faster computation. This transformation is done using the
Matlab princomp routine.

Analysis

The optimized spectrotemporal analysis performed by the
neurons is characterized by the corresponding STRF accord-
ing to the learned set of optimal weights. Properties of that
STRFs are measured in a manner similar to that used in
neurophysiological studies. The best frequency (BF) and best
time (BT) are defined as the spectral and temporal locations,
respectively, of the maximum weight. The —10 dB excitatory-
tuning bandwidth and duration are defined as the spectral
and temporal extent of the portion of the STRF within 1/,/10
of the peak value.

In addition, properties of the two-dimensional Fourier
transform of the STRFs are measured. Here, the spectral and
temporal filtering of the input signal is quantified by the peak
and cutoff (—10dB) frequencies of the Fourier transform,
along both the spectral and temporal axes. In addition, the
extent to which an STRF encodes frequency modulation of
a given direction is quantified by a directionality index. This
index is computed as the relative power difference of the first
two quadrants of the Fourier transform, which lies between
—land I

It is illuminating to compare the properties of the op-
timized network with the statistics of the employed stim-
ulus ensemble. The output of the peripheral auditory pro-
cessing was thus subjected to a multiscale two-dimensional
wavelet (second-derivative Gaussian) analysis [15], from
which the energy distribution of temporal and spectral mod-
ulations, as a function of tonotopic position, was com-
puted.

3. RESULTS
3.1. Data properties

The first several principal components of the speech data are
shown in Figure 1c. It is evident that those components that
represent much of the variance change slowly in spectrum
and in time. Thus, using only the first principal components
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FIGURE 1: Methods. (a) Recorded speech data are shown as raw waveforms. (b) This data is input to a model of the auditory system’s
early stages resulting in a spectrogram, where the strength of the activity is color-coded. These spectrograms are subsequently cut into
overlapping pieces of length 250 milliseconds for each. The principal components of this PCA are shown in (¢), color-coded in a scale where

blue represents small values and red represents large values.

for learning effectively low-passes the stimuli; however, the
first 200 components that are used for learning account for
more than 90% of the total variance of the data. We previ-
ously reported that the form of the lowest components is also
robust to changes of the spectrotemporal resolution of the
peripheral auditory model [16].

Particularly conspicuous are the fine-scale spectral fea-
tures that are often evident at lower frequencies. These arise
from the low-frequency harmonics that are important for
conveying the pitch of voiced speech. At frequencies higher
than 1-2 kHz, comparatively broader-scale spectral features,
corresponding primarily to speech formants, are evident.
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FIGURE 2: Results from optimising sparseness. Representative color-
coded STRFs of the neurons are shown. The same STRF is often seen
at different delays. In this case only the one with most energy in the
middle of the STRF is shown.

3.2. Receptive field properties

The employed IPA speech database contains both male and
female speakers from a variety of languages. Representative-
learned filters for optimal spectrotemporal encoding of this
dataset are illustrated in Figure 2. Here, STRFs of linear-
threshold neurons were obtained by optimizing the sparse-
ness of the neurons’ stimulus-evoked activity.

A number of important properties can be observed
for these STRFs. First of all, the STRFs are typically well-
localized in time and in spectrum. Secondly, many of the
STRFs exhibit multiple peaks and troughs in the form of
dampened oscillations along the spectral and temporal axes.
Finally, a range of frequency modulations are seen in the
STRFs; these are evidenced by oblique orientations of the
STREFs (e.g., see neurons B1 and E4). It should be noted that
all these three properties are also exhibited in STRFs obtained
from neurophysiological experiments.

The specific manifestation of these three properties how-
ever varies from neuron to neuron. For instance, different
STRFs are centered on different regions of the spectrotem-
poral plane and have different spectral and temporal extents.
The distribution of the position and shape parameters for the

entire population of STRFs is shown in Figure 3a. For clarity,
the sizes of the iconified STRFs have been reduced to 1/8 of
their actual values.

In addition, the frequency of the spectral and temporal
oscillations exhibited in the STRFs and the amount of damp-
ening varies across the population, as shown in Figures 3b
and 3c. In the Fourier domain, these two properties conspire
to produce selectivity for specific modulations along the tem-
poral or the spectral axis. Figure 3b quantifies this selectivity
for the spectral domain and shows how the spectral charac-
teristics of the Fourier transform vary as a function of the
tonotopic position of the STRE. For about half of the STRFs,
the peak of the Fourier transform lies between about 0 and 1
cycle per octave (c/0), and the upper cutofflies between 1 and
3 c/o. A radically different strategy is seen at low frequencies.
Here, many neurons pass significantly higher spectral mod-
ulations, ranging from 2 to 6 c/o. This is most likely due to
the presence of low-frequency high-scale harmonic patterns
in the speech input. Indeed, Figure 3d shows that the stimu-
lus itself contains a high proportion of high-scale energy at
low frequencies.

The situation is somewhat different in the temporal do-
main. In general, the STRFs are highly damped in the tem-
poral direction, producing temporal modulation selectivity
that is generally lowpass. This fact is evident in Figure 3e
which shows that the peak of the Fourier transform never
rises above 2 Hz; furthermore, the cutoff frequency is in-
versely correlated with the temporal width of the STRF and
never rises above 10 Hz. Nevertheless, the range of tempo-
ral frequencies present in the STRFs is largely consistent
with the average temporal composition of the speech input
which has a majority of its power concentrated below 10 Hz
(Figure 3f).

Finally, different STRFs exhibit different degrees of fre-
quency modulation, as quantified by the direction selectiv-
ity index (Figure 3g). This index is —1 if an STRF exhibits
solely positive-going frequency modulations, is 1 for solely
negative-going frequency modulations, and is 0 for equal
amounts of positive and negative frequency modulation. The
population distribution is unimodal and peaks at an index of
0, which is similar to that obtained from neurophysiological
experiments [8].

A number of important properties are shared between
these STRFs and those of real neurons. The extent of tem-
poral localization (100-200 milliseconds) and spectral local-
ization (0.5-3 octaves) of the learned STRFs are highly com-
parable to real STRFs obtained from primary auditory cor-
tex of mammals. This applies also to the range of spectral
(< 2 c¢/o) and temporal (< 10 Hz) modulations represented
by the simulated STRFs. There are two notable differences
between the simulated and actual STRFs obtained from ani-
mals. First, most biological STRFs exhibit bandpass temporal
processing, whereas the simulated STRFs are primarily low-
pass. Secondly, there exists a large group of artificial neurons
that directly encode the fine-scale, multiple-peaked spectral
features of pitch; such STRFs have not yet been observed in
the auditory system of animals.
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FIGURE 3: Quantitative properties. (a) The time-frequency tiling properties of the neurons are shown. The center of each ellipse represents
the BF and BT of a neuron. The vertical and horizontal extent of the ellipse represents 1/8 of the width of the STRF in the direction of time
and spectrum. The factor of 1/8 was introduced to improve visibility of the data. (b) Both the peak (blue) and the high-frequency cutoff
(red) of the frequency of spectral modulation are plotted as a function of the best frequency of the neuron. (c) The spectral width of the
STREF (red) of the excitatory subregion (blue) is plotted as a function of the BF of the neuron. (d) The IPA stimuli are analyzed in the Fourier
domain. The mean of the absolute values of the wavelet transforms of spectrograms taken from the IPA database are shown. (e) Both the
peak (blue) and the high-frequency cutoff (red) of the frequency of temporal modulation are plotted as a function of the temporal width of
the neuron. (f) The normalized power is shown as a function of the temporal modulation frequency. (g) The index for direction selectivity
is calculated and its histogram is shown.

3.3. Dependence on the neuron model rons. We used such properties to mimic the properties of
The current study has so far focused upon STRFs which  real neurons that cannot exhibit negative firing rates. Most
produce optimally sparse activity in linear-threshold neu-  ICA studies, however, use purely linear neurons as we did
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in previous simulations [16]. In order to compare the re-
sults, we repeated the current simulation using purely lin-
ear neurons. Representative results are shown in Figure 4a.
Qualitatively speaking, the major features of the neurons’
STRFs remain conserved. However, the spectral and tem-
poral extents of the STRFs are typically somewhat larger,
and, furthermore, the presence of negative deflections is
somewhat reduced. The combination of these two prop-
erties produce a spectrotemporal analysis that is more re-
stricted to low spectral and temporal modulation frequen-
cies.

3.4. Dependence on the dataset

For the sake of comparison, the simulations with linear-
threshold neurons were repeated with a different speech in-
put, this time obtained from a single speaker (see Section 2).
Sparseness requires that the neurons should occasionally
have very high activity while having small activities most
of the time. If we only have one speaker, they can thus be
expected to distinguish specific elements of the speaker’s
speech rather than distinguishing utterances from different
speakers. The results are likely not to generalize well to ut-
terances of other speakers while being optimal for utter-
ances of the speaker. Figure 4b shows the learned recep-
tive fields. Far more of the neurons code for changes of
the pitch of the sounds. A number of them even code for
compound features (e.g., neuron D4) where some frequen-
cies rise while others fall. Thus the dataset used clearly in-
fluences the data and, therefore, must be carefully consid-
ered.

3.5. Dependence on the number of principal
components used

The number of principal components used to encode the in-
put potentially has some influence on the resulting receptive
fields. Low-order principal components tend to be of lower
frequency than higher frequency components, and so using
fewer principal components has an effect similar to selec-
tively reducing the resolution of the peripheral spectrotem-
poral analysis. To test the influence of this effective smooth-
ing, the simulations were repeated using reduced numbers of
principal components. Even if only 25 components are used
(Figure 5), the typical STRF properties described above still
apply. This includes even the encoding of low-frequency fine-
scale spectral features due to voice pitch. Thus the number of
principal components only has a limited influence on the re-
sulting STRFs.

4. DISCUSSION

When analyzing the computational properties of neural sys-
tems, it is of central importance to have a thorough under-
standing of the input representation. A number of other the-
oretical studies of optimal auditory processing have used raw
acoustic-pressure waveforms as input representation. For ex-
ample, Bell [17] studied the learning of auditory temporal
filters using ICA, and Lewicki and Sejnowski [18] showed
that using overcomplete representations can significantly
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Figure 5: Dependence on the number of principal components.
The representative STRFs are shown for a simulation where a
smaller number of principal components were used. (a) shows the
results from using 25 components and (b) shows the results from
using 100 components.

improve the model quality. Using a balanced dataset taken
from various sound sources, it was possible to approximately
reproduce the spectral analysis performed by the peripheral
auditory system [19].

How do central auditory neurons combine the features
already encoded by more peripheral neurons? Recent neu-
rophysiological studies in various species have shown that
the central auditory system jointly processes the spectral and
temporal characteristics of sound in a dazzling variety of
ways [8, 9, 20, 21, 22]. The current study strives to pro-
vide a method for speculation on the functionality of such
processes. In doing so, the raw waveforms are first prepro-
cessed using an auditory peripheral model. This produces
a spectrogram-like representation of sound, which is bet-
ter suited for describing the information-bearing elements of
natural sounds such as speech [23]. Furthermore, since cen-
tral auditory neurons display largely linear processing of the
spectrotemporal envelope of sound [8, 24], it increases the
likelihood that this style of inquiry will be fruitful. In fact,
the results obtained from spectrogram inputs exhibit many
of the rich properties of real auditory neurons.

We used PCA to preprocess the spectrogram before feed-
ing it into the sparse coding algorithm. The resulting com-
ponents capture prominent statistical properties of the data.
For example, their banded structure at low frequencies re-
flects the dominant influence of voice pitch. It is possible
that this preprocessing will strongly influence the resulting
STRFs. However, one can argue against this likelihood on
analytical grounds. Assume the number of principal com-
ponents used is identical to the number of input samples in
each spectrogram. The transformation to the principal com-
ponent space is then an orthonormal matrix of full rank. Be-
cause this matrix can be inverted, each local optimum of the
method in PCA space is also an optimum to the method in
input space. The chosen principal components can thus be
expected to be of minor influence on the resulting STRFs—
provided that enough principal components are used. Our
simulations showed that 100 components, or perhaps even
fewer, are enough. Note also that it is possible (albeit nu-
merically very expensive) to perform the simulations with-
out PCA preprocessing, and doing so results in similar STRFs
(data not shown).

STRFs in the auditory system show some functional sim-
ilarity to spatiotemporal receptive fields in the visual system.
Many properties of visual neurons have been successfully
learned by maximizing sparseness [25]; it has even been pos-
sible to quantitatively compare the properties of the visual
system with the properties of simulated neurons, (e.g., [4]).
This study extends such methods to auditory data. How-
ever, while our simulations are able to qualitatively repro-
duce many important properties of neurons in Al, a thor-
ough quantitative comparison of properties remains an im-
portant problem for further research. In doing so, it will
first be necessary to assemble a rich database of sounds
that accurately represents an animal’s acoustic biotope. One
must then devise a compact learning mechanism that leads
to neuronal properties that closely correspond to those ob-
served experimentally. This might even necessitate the devel-
opment of novel algorithms for learning nonlinear neuronal
properties.

Along with the assumption that the brain learns to
sparsely code for natural sounds comes an experimental
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prediction. During an animal’s development, one should be
able to manipulate the sparseness statistics of the acous-
tic environment, such that the neurophysiological proper-
ties of neurons are altered. For example, raising an animal
in an auditory environment where a certain frequency band
is sparser than another should enhance the neural repre-
sentation of the sparse frequencies. Furthermore, one might
facilitate auditory learning by making the underlying audi-
tory features more sparse. In fact, the training procedures
for children demonstrated in [26] can be interpreted in this
framework.

In the visual modality, the sparse representation of im-
ages enabled new computational approaches which lead to
powerful algorithms for image denoising [7], image com-
pression [27], and preprocessing for image recognition. This
suggests that using sparse coding on spectrotemporal data
might well lead to better algorithms for the denoising of
speech, for the compression of auditory data, and for the
recognition of natural language.
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