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A dynamic programming-based optimization strategy for a temporal decomposition (TD) model of speech and its application to
low-rate speech coding in storage and broadcasting is presented. In previous work with the spectral stability-based event localizing
(SBEL) TD algorithm, the event localization was performed based on a spectral stability criterion. Although this approach gave
reasonably good results, there was no assurance on the optimality of the event locations. In the present work, we have optimized
the event localizing task using a dynamic programming-based optimization strategy. Simulation results show that an improved
TD model accuracy can be achieved. A methodology of incorporating the optimized TD algorithm within the standard MELP
speech coder for the efficient compression of speech spectral information is also presented. The performance evaluation results
revealed that the proposed speech coding scheme achieves 50%–60% compression of speech spectral information with negligible
degradation in the decoded speech quality.
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1. INTRODUCTION

While practical issues such as delay, complexity, and fixed
rate of encoding are important for speech coding applica-
tions in telecommunications, they can be significantly re-
laxed for speech storage applications such as store-forward
messaging and broadcasting systems. In this context, it is
desirable to know what optimal compression performance
is achievable if associated constraints are relaxed. Various
techniques for compressing speech information exploiting
the delay domain, for applications where delay does not
need to be strictly constrained (in contrast to full-duplex
conversational communication), are found in the literature
[1, 2, 3, 4, 5]. However, only very few have addressed the
issue from an optimization perspective. Specifically, tempo-
ral decomposition (TD) [6, 7, 8, 9, 10, 11], which is very

effective in representing the temporal structure of speech and
for removing temporal redundancies, has not been given ad-
equate treatment for optimal performance to be achieved.
Such an optimized TD (OTD) algorithm would be useful for
speech coding applications such as voice store-forward mes-
saging systems, and multimedia voice-output systems, and
for broadcasting via the internet. Not only would it be use-
ful for speech coding in its own right, but research in this
direction would lead to a better understanding of the struc-
tural properties of the speech signal and the development of
improved speech models which, in turn, would result in im-
provement in audio processing systems in general.

TD of speech [6, 7, 8, 9, 10, 11] has recently emerged as
a promising technique for analyzing the temporal structure
of speech. TD is a technique of modelling the speech param-
eter trajectory in terms of a sequence of target parameters
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(event targets) and an associated set of interpolation func-
tions (event functions). TD can also be considered as an
effective technique of decorrelating the inherent interframe
correlations present in any frame-based parametric represen-
tation of speech. TD model parameters are normally eval-
uated over a buffered block of speech parameter frames,
with the block size generally limited by the computational
complexity of the TD analysis process over long blocks. Let
yi(n) be the ith speech parameter at the nth frame location.
The speech parameters can be any suitable parametric rep-
resentation of the speech spectrum such as reflection coeffi-
cients, log area ratios, and line spectral frequencies (LSFs).
It is assumed that the parameters have been evaluated at
close enough frame intervals to represent accurately even the
fastest of speech transitions. The index i varies from 1 to I ,
where I is the total number of parameters per frame. The in-
dex n varies from 1 to N , where n = 1 and n = N are the
indices of the first and last frames of the speech parameter
block buffered for TD analysis. In the TD model of speech,
each speech parameter trajectory, yi(n), is described as

ŷi(n) =
K∑
k=1

aikφk(n), 1 ≤ n ≤ N, 1 ≤ i ≤ I, (1)

where ŷi(n) is the approximation of yi(n) produced by the
TD model. The variable φk(n) is the amplitude of the kth
event function at the frame location n and aik is the contri-
bution of the kth event function to the ith speech parame-
ter. The value K is the total number of speech events within
the speech block with frame indices 1 ≤ n ≤ N . It should
be noted that the event functions φk(n)’s are common to all
speech parameter trajectories (yi(n), 1 ≤ i ≤ I) and therefore
provide a compact and approximate representation, that is, a
model, of speech. Equation (1) can be expressed in vector
notation as

ŷ(n) =
K∑
k=1

akφk(n), 1 ≤ n ≤ N, (2)

where

ak =
[
a1k a2k · · · aIk

]T
,

ŷ(n) =
[
ŷ1(n) ŷ2(n) · · · ŷI(n)

]T
,

y(n) =
[
y1(n) y2(n) · · · yI(n)

]T
,

(3)

where ak is the kth event target vector, and ŷ(n) is the approx-
imation of y(n), the nth speech parameter vector, produced
by the TD model of speech. Note that φk(n) remains a scalar
since it is common to each of the individual parameter tra-
jectories. In matrix notation, (2) can be written as

Ŷ = AΦ, Ŷ ∈ RI×N , A ∈ RI×K , Φ ∈ RK×N , (4)

where the kth column of matrix A contains the kth event tar-
get vector, ak, and the nth column of the matrix Ŷ (approxi-
mation of Y) contains the nth speech parameter frame, ŷ(n),

produced by the TD model. Matrix Y contains the original
speech parameter block. In the matrix Φ, the kth row con-
tains the kth event function, φk(n). It is assumed that the
functions φk(n)s are ordered with respect to their locations
in time. That is, the function φk+1(n) occurs later than the
function φk(n). Each φk(n) is supposed to correspond to a
particular speech event. Since a speech event lasts for a short
time (temporal), each φk(n) should be nonzero only over a
small range of n. Event function overlapping normally oc-
curs between close by events in time, while events that are far
apart in time have no overlapping at all. These characteris-
tics ensure the matrix Φ to be a sparse matrix with number
of nonzero terms in the nth column indicating the number
of event functions overlapping at the nth frame location [6].
Thus, significant coding gains can be achieved by encoding
the information in the matrices A and Φ instead of the orig-
inal speech parameter matrix Y [6, 11, 12].

The results of the spectral stability-based event localiz-
ing (SBEL) TD [9, 10] and Atal’s original algorithm [6] for
TD analysis show that event function overlapping beyond
two adjacent event functions occurs very rarely, although in
the generalized TD model overlapping is allowed to any ex-
tent. Taking this into account, the proposed modified model
of TD imposes a natural limit to the length of the event
functions. We have shown that better performance can be
achieved through optimization of themodified TDmodel. In
previous TD algorithms such as SBEL TD [9, 10] and Atal’s
original algorithm [6], event locations are determined using
heuristic assumptions. In contrast, the proposed OTD anal-
ysis technique makes no a priori assumptions on event lo-
cations. All TD components are evaluated based on error-
minimizing criteria, using a joint optimization procedure.
Mixed excitation LPC vocoder model used in the standard
MELP coder was used as the baseline parametric representa-
tion of the speech signal. Application of OTD for efficient
compression of MELP spectral parameters is also investi-
gated with TD parameter quantization issues and effective
coupling between TD analysis and parameter quantization
stages. We propose a new OTD-based LPC vocoder with de-
tail coder performance evaluation, both in terms of objective
and subjective measures.

This paper is organized as follows. Section 2 introduces
the modified TD model. An optimal TD parameter evalu-
ation strategy based on the modified TD model is presented
in Section 3. Section 4 gives numerical results with OTD. The
details of the proposed OTD-based vocoder and its perfor-
mance evaluation results are reported in Sections 5 and 6,
respectively. The concluding remarks are given in Section 7.

2. MODIFIED TDMODEL OF SPEECH

The proposed modified TD model of speech restricts the
event function overlapping to only two adjacent event func-
tions as shown in Figure 1. This modified model of TD can
be described as

ŷ(n) = akφk(n) + ak+1φk+1(n), nk ≤ n < nk+1, (5)
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Figure 1: Modified temporal decomposition model of speech. The
speech parameter segment nk ≤ n < nk+1 is represented by a
weighted sum (with weights φk(n) and φk+1(n) forming the event
functions) of the two vectors ak and ak+1 (event targets). Vertical
lines depict the speech parameter vector sequence.

where nk and nk+1 are the locations of the kth and (k + 1)th
events, respectively. All speech parameter frames between
the consecutive event locations nk and nk+1 are described by
these two events. Equivalently, the modified TD model can
be expressed as

ŷ(n) =
K∑
k=1

akφk(n), 1 ≤ n ≤ N, (6)

where φk(n) = 0 for n < nk−1 and n ≥ nk+1. In the modified
TDmodel, each event function is allowed to be nonzero only
in the region between the centers of the proceeding and suc-
ceeding events. This eliminates the computational overhead
associated with achieving the time-limited property of events
in the previous TD algorithms [6, 9, 10].

The modified TD model can be considered as a hybrid
between the original TD concept [6] and the speech segment
representation techniques proposed in [1]. In [1], a speech
parameter segment between two locations nk and nk+1 is sim-
ply represented by a constant vector (centroid of the seg-
ment) or by a first-order (linear) approximation. A constant
vector approximation of the form

ŷ(n) =
nk+1−1∑
n=nk

y(n)(
nk+1 − nk

) , for nk ≤ n < nk+1, (7)

provides a single vector representation for a whole speech
segment. However, this representation requires the segments
to be short in length in order to achieve a good speech pa-
rameter representation accuracy. A linear approximation of
the form ŷ(n) = na + b requires two vectors (a and b) to
represent a segment of speech parameters. This segment rep-
resentation technique captures the linearly varying speech
segments well and is similar to the linear interpolation tech-
nique report in [13]. The proposed modified model of TD
in (5) provides a further extension to speech segment rep-
resentation, where each speech parameter vector y(n) is de-
scribed as the weighted sum of two vectors ak and ak+1, for
nk ≤ n < nk+1. The weights φk(n) and φk+1(n) for the nth
speech parameter frame form the event functions of the tra-
ditional TD model [6]. It is shown that the simplicity of the
proposed modified TD model allows the optimal evaluation
of themodel parameters, thus resulting in an improvedmod-
elling accuracy.

Speech parameter
sequence

Parameter
buffering

Buffered block of
speech parameters

TD
analysis

TD
parameters

Figure 2: Buffering of speech parameters into blocks is a prepro-
cessing stage required for TD analysis. TD analysis is performed on
block-by-block basis with TD parameters calculated for each block
separately and independently.

1 n1 n2 nk N

Block

Figure 3: A block of speech parameter vectors, {y(n) | 1 ≤ n ≤ N},
buffered for TD analysis.

3. OPTIMAL ANALYSIS STRATEGY

This section describes the details of the optimization proce-
dure involved with the evaluation of the TD model parame-
ters based on the proposed modified model of TD described
in Section 2.

3.1. Speech parameter buffering

TD is a speech analysis modelling technique, which can take
advantage of the relaxation in the delay constraint for speech
signal coding. TD generally requires speech parameters to
be buffered over long blocks for processing, as shown in
Figure 2. Although the block length is not fundamentally
limited by the speech storage application under considera-
tion, the computational complexity associated with process-
ing long speech parameter blocks imposes a practical limit on
the block size, N . The total set of speech parameters, y(n),
where 1 ≤ n ≤ N , buffered for TD analysis is termed a
block (see Figures 3). The series of speech parameters, y(n),
where nk ≤ n < nk+1, is termed a segment. TD analysis is
normally performed on a block-by-block basis, and for each
block, the event locations, event targets, and event functions
are optimally evaluated. For optimal performance, a buffer-
ing technique with overlapping blocks is required to ensure a
smooth transition of events at the block boundaries. Sections
3.2 through 3.5 give the details of the proposed optimization
strategy for a single block analysis. Details of the overlapping
buffering technique for improved performance are given in
Section 3.6.

3.2. Event function evaluation

The proposed optimization strategy for the modified TD
model of speech has the key feature of determining the op-
timum event locations from all possible event locations. This
guarantees the optimality of the technique with respect to
the modified TD model. Given a candidate set of locations,
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{n1, n2, . . . , nK}, for the events, event functions are deter-
mined using an analytical optimization procedure. Since the
modified TD model of speech considered for optimization
places an inherent limit on event function length, the event
functions can be evaluated in a piece-wise manner. In other
words, the parts of event functions between the centers of
consecutive events can be calculated separately as described
below. The remainder of this section describes the computa-
tional details of this optimum event function evaluation task.

Assume the locations nk and nk+1 of two consecutive
events are known. Then, the right half of the kth event func-
tion and the left half of the (k + 1)th event function can be
optimally evaluated by using ak = y(nk) and ak+1 = y(nk+1)
as initial approximations for the event targets. The initial ap-
proximations of event targets are later on iteratively refined
as described in Section 3.5. The reconstruction error, E(n),
for the nth speech parameter frame is given by

E(n) = ∥∥y(n)− ŷ(n)
∥∥2

= ∥∥y(n)− akφk(n)− ak+1φk+1(n)
∥∥2, (8)

where nk ≤ n < nk+1. By minimizing E(n) against φk(n) and
φk+1(n), we obtain

∂E(n)
∂φk(n)

= ∂E(n)
∂φk+1(n)

= 0,

(
φk(n)
φk+1(n)

)
=
(

aTk ak aTk ak+1
aTk ak+1 aTk+1ak+1

)−1(
aTk y(n)

aTk+1y(n)

)
,

(9)

where nk ≤ n < nk+1. Therefore, the modelling error,
E(n), for each spectral parameter, y(n), in a segment can
be evaluated by using (5) and (6). Total accumulated error,
Eseg(nk, nk+1), for a segment becomes

Eseg
(
nk, nk+1

) = nk+1−1∑
n=nk

E(n). (10)

Therefore, given the event locations n1, n2, . . . , nK for a pa-
rameter block, 1 ≤ n ≤ N , the total accumulated error for
the block can be calculated as

Eblock
(
n1, n2, . . . , nK

) = N∑
n=1

E(n) =
K∑
k=0

Eseg
(
nk, nk+1

)
, (11)

where n0 = 0, nK+1 = N +1, and E(0) = 0. The first segment,
1 ≤ n < n1, and the last segment, nK ≤ n < N , of a speech
parameter block, 1 ≤ n ≤ N , should be specifically analyzed
taking into account the fact that these two segments are de-
scribed by only one event, that is, first andKth events, respec-
tively. This is achieved by introducing two dummy events lo-
cated at n0 = 0 and nK+1 = N + 1, with target vectors a0 and
aK+1 set to zero, in the process of evaluating Eseg(1, n1) and
Eseg(nK ,N), respectively.

3.3. Optimization of event localization task

The previous subsection described the computational pro-
cedure for evaluating the optimum event functions, {φ1(n),

φ2(n), . . . , φK (n)}, and the corresponding accumulated
modelling error for a block of speech parameters,
Eblock(n1, n2, . . . , nK ), for a given candidate set of event
locations, {n1, n2, . . . , nK}. The procedure relies on the
initial approximation of {y(n1), y(n2), . . . , y(nK )} for the
event target set {a1, a2, . . . , aK}. Section 3.4 will describe a
method of refining this initial approximation of the event
target set to obtain an optimum result in terms of the speech
parameter reconstruction accuracy of the TD model. With
the above knowledge, the optimum event localizing task
could be formulated as follows. Given a block of speech
parameter frames, y(n), where 1 ≤ n ≤ N , and the number
of events, K , allocated to the block (this determines the
resolution, event/s, of the TD analysis), we need to find the
optimum locations of the events, {n∗1 , n∗2 , . . . , n∗K}, such that
Eblock(n1, n2, . . . , nK ) is minimized, where nk ∈ {1, 2, . . . , N}
for 1 ≤ k ≤ K and n1 < n2 < · · · < nK . The minimum
accumulated error for a block can be given as

E∗block = Eblock
(
n∗1 , n

∗
2 , . . . , n

∗
K

)
. (12)

It should be noted that E∗block versus K/N describes the rate-
distortion performance of the TD model.

3.4. Dynamic programming formulation

A dynamic programming-based solution [14] for the opti-
mum event localizing task can be formulated as follows. We
defineD(nk) as the accumulated error from the first frame of
the parameter block up to the kth event location, nk,

D
(
nk
) = nk−1∑

n=1
E(n). (13)

Also note that

D
(
nK+1

) = D(N + 1) = Eblock
(
n1, n2, . . . , nK

)
. (14)

The minimum of the accumulated error, E∗block, can be calcu-
lated using the following recursive formula:

D
(
nk
) = min

nk−1∈Rk−1

[
D
(
nk−1

)
+ Eseg

(
nk−1, nk

)]
, (15)

for k = 1, 2, . . . , K+1, whereD(n0) = 0. And the correspond-
ing optimum event locations can be found using

nk−1 = arg min
nk−1∈Rk−1

[
D
(
nk−1

)
+ Eseg

(
nk−1, nk

)]
, (16)

for k = 1, 2, . . . , K + 1, where Rk−1 is the search range for
the (k − 1)th event location, nk−1. Figure 4 illustrates the dy-
namic programming formulation. For a full search assuring
the global optimum, the search range Rk−1 will be the inter-
val between nk−2 and nk:

Rk−1 =
{
n | nk−2 < n < nk

}
. (17)

The recursive formula in (15) can be solved in the increasing
values of k, starting with k = 1. Substitution of k = 1 in
(15) gives D(n1) = Eseg(n0, n1), where n0 = 0. Thus, values
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Eseg(nk−1, nk)

D(nk−1)

1 nk−1 nk N

D(nk)

Figure 4: Dynamic programming formulation.

of D(n1) for all possible n1 can be calculated. Substitution of
k = 2 in (15) gives

D
(
n2
) = min

n1∈R1

[
D
(
n1
)
+ Eseg

(
n1, n2

)]
, (18)

where R1 = {n | n0 < n < n2}. Using (18), D(n2) can
be calculated for all possible n1 and n2 combinations. This
procedure (Viterbi algorithm [15]) can be repeated to ob-
tain D(nk) sequentially for k = 1, 2, . . . , K + 1. The final step
with k = K +1 gives D(nK+1) = Eblock(n1, n2, . . . , nK ) and the
corresponding optimal locations for n1, n2, . . . , nK (as given
by (14)). Also, by decreasing the search range Rk−1 in (17), a
desired performance versus computational cost trade-off can
be achieved for the event localizing task. However, results re-
ported in this paper are based on full search range, thus guar-
antee the optimum event locations.

3.5. Refinement of event targets

The optimization procedure described in Sections 3.2
through 3.4 determines the optimum set of event functions,
{φ1(n), φ2(n), . . . , φK (n)}, and the optimum set of event lo-
cations, {n1, n2, . . . , nK}, based on the initial approxima-
tion of {y(n1), y(n2), . . . , y(nK )}, for the event target set,
{a1, a2, . . . , aK}. We refine the initial set of event target to fur-
ther improve the modelling accuracy of the TDmodel. Event
target vectors, ak’s, can be refined by reevaluating them to
minimize the reconstruction error for the speech parameters.
This refinement process is based on the set of event functions
determined in Section 3.4. Consider the modelling error Ei,
for the ith speech parameter trajectory within a block, given
by

Ei =
N∑
n=1

(
yi(n)−

K∑
k=1

akiφk(n)

)2

, 1 ≤ i ≤ I, (19)

where yi(n) and aki are the ith element of the speech param-
eter vector, y(n), and the event target vector, ak, respectively.
The partial derivative of Ei with respect to ari can be calcu-
lated as

∂Ei
∂ari

=
N∑
n=1

(
yi(n)−

K∑
k=1

akiφk(n)

)(− 2φr(n)
)

=
N∑
n=1

yi(n)φr(n)−
K∑
k=1

aki

N∑
n=1

φk(n)φr(n).

(20)

First frame of the next block

Block 3

Block 2

Block 1
Last target of the present block

Figure 5: The block overlapping technique.

Therefore, setting the above partial derivative to zero, we ob-
tain

K∑
k=1

aki

N∑
n=1

φk(n)φr(n) =
N∑
n=1

yi(n)φr(n), (21)

where 1 ≤ r ≤ K and 1 ≤ i ≤ I . Equation (21) gives I sets of
K simultaneous equations with K unknowns, which can be
solved to determine the elements of the event target vectors,
aki’s. This refined set of event targets can be iteratively used
to further optimize the event functions and event locations
using the dynamic programming formulation described in
Section 3.4.

3.6. Overlapping buffering technique

If no overlapping is allowed between adjacent blocks, spec-
tral error will tend to be relatively high for the frames near the
block boundaries. This is due to the fact that first and last seg-
ments, 1 ≤ n ≤ n1 and nK ≤ n ≤ N , are only described by a
single event target instead of two, as described in Section 3.2.
The block overlapping technique effectively overcomes this
problem by forcing each transmitted block to start and end
at an event location. During analysis, the block length N is
kept fixed. Overlapping is introduced so that the location of
the first frame of the next block coincides with the location
of the last event of the present block, as shown in Figure 5.
This makes each transmitted block length slightly less than
N , but their starting and end frames now coincide with an
event location. Block length N determines the algorithmic
delay introduced in analyzing continuous speech.

4. NUMERICAL RESULTSWITH OTD

4.1. Speech data and performancemeasure

A speech data set consisting of 16 phonetically diverse sen-
tences from the TIMIT1 speech database was used to evaluate
the modelling performance of OTD. MELP [16] spectral pa-
rameters, that is, LSFs, calculated at 22.5-millisecond frame
intervals were used as the speech parameters for TD analysis.

1The TIMIT acoustic-phonetic continuous speech corpus has been de-
signed to provide speech data for the acquisition of acoustic-phonetic
knowledge, and for the development and evaluation of speech processing
systems in general.
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The block size was set to N = 20 frames (450 milliseconds).
The number of iterations was set to 5 as further iteration only
achieves negligible (less than 0.01 dB) improvement in TD
model accuracy. Spectral distortion (SD) [13] was used as
the objective performance measure. The spectral distortion,
Dn, for the nth frame is defined in dB as

Dn

=
√

1
2π

∫ π

−π

[
10 log

(
Sn
(
e jω
))−10 log(Ŝn(e jω))]2dω dB,

(22)

where Sn(e jω) and Ŝn(e jω) are the LPC power spectra corre-
sponding to the original spectral parameters y(n) and the TD
model (i.e., reconstructed) spectral parameters ŷ(n), respec-
tively.

4.2. Performance evaluation

One important feature of the OTD algorithm is its ability to
freely select an arbitrary number of events per block, that is,
average number of events per second (event rate). This was
not the case in previous TD algorithms [9, 10, 11], where the
number of events was limited by constraints such as spectral
stability. Average event rate, also called the TD resolution,
determines the reconstruction error (distortion) of the TD
model. The event rate, erate, can be given as

erate =
(
K

N

)
× frate, (23)

where frate is the base frame rate of the speech parameters.
Lower distortion can be expected for higher TD resolution
and vice versa. But higher resolution implies a lower com-
pression efficiency from an application point of view. This
rate-distortion characteristic of the OTD algorithm is quite
important for coding applications, and simulations were car-
ried out to determine it. Average SD was evaluated for the
event rates of 4, 8, 12, 16, 20, and 24 event/s. Figure 6 shows
an example of event functions obtained for a block of speech.
Figure 7 shows the average SD versus event rate graph. The
base frame rate point, that is, 44.4 frame/s, is also shown
for reference. The significance of the frame rate is that if
the event rate is made equal to the frame rate (in this case
44.44 event/s), theoretically the average SD should become
zero. This is the maximum possible TD resolution and cor-
responds to a situation where all event functions become unit
impulses spaced at frame intervals and event target values ex-
actly equal the original spectral parameter frames. As can be
seen, an average event rate of more than 12 event/s is required
if the OTDmodel is to achieve an SD less than 1 dB. It should
be noted that at this stage, TD parameters are unquantized,
and therefore, only modelling error accounts for the average
SD.

4.3. Performance comparisonwith SBEL-TD

In SBEL-TD algorithm [10], event localization is performed
based on the a priori assumption of spectral stability and

Frame number (n)

30 35 40 45 50 55 60

φ
k
(n
)

0

0.5

1

1.5

Speech waveform

Figure 6: Bottom: an example of event functions obtained for a
block of spectral parameters. Triangles indicate the event locations.
Top: the corresponding speech waveform.
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Figure 7: Average SD (dB) versus TD resolution (event/s) charac-
teristic of the OTD algorithm. Average SD was evaluated for the
event rates of 4, 8, 12, 16, 20, and 24 event/s. The base frame rate
point, that is, 44.4 frame/s, is also shown for reference.

does not guarantee the optimal event locations. Also, SBEL-
TD incorporates an adaptive iterative technique to achieve
the temporal nature (short duration of existence) of the event
functions. In contrast, the OTD algorithm uses the modified
model of TD (temporal nature of the event functions is an
inherent property of the model) and also uses the optimum
locations for the events. In this section, the objective perfor-
mance of the OTD algorithm is compared with that of the
SBEL-TD algorithm [10] in terms of speech parameter mod-
elling accuracy.

OTD analysis was performed on the speech data set de-
scribed in Section 4.1, with the event rate set to 12 event/s
(N = 20 and K = 5). SBEL-TD analysis was also performed
on the same spectral parameter set with the event rate ap-
proximately set to the value of 12 event/s (for a valid compar-
ison between the two TD algorithms, the same value of event
rate should be selected). Spectral parameter reconstruction
accuracy was calculated using SD measure for the two al-
gorithms. Table 1 shows the average SD and the percentage
number of outlier frames for the two algorithms. As can be
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Table 1: Average SD (dB) and the percentage number of outliers for
the SBEL-TD and OTD algorithms evaluated over the same speech
data set. Event rate is set approximately to 12 event/s in both cases.

Algorithm Average SD (dB) ≤ 2dB 2–4 dB > 4 dB

SBEL-TD 1.82 72% 25% 3%

OTD 0.98 97% 3% 0%

seen from the results in Table 1, the OTD algorithm achieved
a significant improvement in terms of the speech parameter
modelling accuracy. Also, the percentage number of outlier
frames has been reduced significantly in the OTD case. These
improvements of the OTD algorithm are critically important
for speech coding applications. As reported in [12], SBEL-
TD fails to realize good-quality synthesized speech because
the TD parameter quantization error increases the postquan-
tized average SD and the number of outliers to unacceptable
levels. With a significant improvement in speech parameter
modelling accuracy, OTD has a greater margin to accommo-
date the TD parameter quantization error, resulting in good-
quality synthesized speech in coding applications. Sections
5 and 6 give the details of the proposed OTD-based speech
coding scheme and the coder performance evaluation, re-
spectively.

5. PROPOSED TD-BASED LPC VOCODER

5.1. Coder schematics

The mixed excitation LPC model [17] incorporated by the
MELP coding standard [16] achieves good-quality synthe-
sized speech at the bit rate of 2.4 kbit/s. The coder is based on
a parametric model of speech operating at 22.5-millisecond
speech frames. The MELP model parameters can be broadly
categorized into the two groups of

(1) excitation parameters that model the excitation, that
is, LPC residual, to the LPC synthesis filter and consist
of Fourier magnitudes, gain, pitch, bandpass voicing
strengths, and aperiodic flag;

(2) spectral parameters that represent the LPC filter coef-
ficients and consist of the 10th-order LSFs.

With the above classification of MELP parameters, the
MELP encoder can be represented as shown in Figure 8. The
proposed OTD-based LPC vocoder uses the LPC excitation
modelling and parameter quantization stages of the MELP
coder, but uses block-based (i.e., delayed) OTD analysis and
OTD parameter quantization for the spectral parameter en-
coding instead of themultistage vector quantization (MSVQ)
[15] stage of the standardMELP coder. This proposed speech
encoding scheme is shown in Figure 9. The underlying con-
cept of the speech coder shown in Figure 9 is that it exploits
the short-term redundancies (interframe and intraframe cor-
relations) present in the spectral parameter frame sequence
(line spectral frequencies), using TD modelling, for efficient
encoding of spectral information at very low bit rates. The
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Quantized excitation
parameters
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excitation
modelling

LPC excitation
parameter
quantization

Input speech
LPC

analysis

Spectral
parameters
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VQ

Quantized spectral
parameters

Figure 8: Standard MELP speech encoder block diagram.
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Figure 9: Proposed speech encoder block diagram.

OTD algorithm was incorporated. The frame-based MSVQ
stage of Figure 8 only accounts for the redundancies present
within spectral frames (intraframe correlations), while the
TD analysis quantization stage of Figure 9 accounts for both
interframe and intraframe redundancies present in spectral
parameter sequence, and therefore, is capable of achieving
significantly higher compression ratios. It should be noted
that the concept of TD can be used to exploit the short-term
redundancies present in some of the LPC excitation parame-
ters also using block mode TD analysis. However, some pre-
liminary results of applying OTD to LPC excitation parame-
ters showed that the achievable coding gain is not significant
compared to that for the LPC spectral parameters.

Figure 10 gives the detail schematic of the TD modelling
and quantization stage shown in Figure 9. The first stage is to
buffer the spectral parameter vector sequence using a block
size of N = 20 (20 × 22.5 = 450milliseconds). This in-
troduces a 450-millisecond processing delay at the encoder.
OTD is performed on the buffered block of spectral pa-
rameters to obtain the TD parameters (event targets and
event functions). The number of events calculated per block
(N = 20) is set to K = 5 resulting in an average event rate
of 12 event/s. The event target and event function quanti-
zation techniques are described in Section 5.2. The quanti-
zation code-book indices are transmitted to the speech de-
coder. Improved performance in terms of spectral parameter
reconstruction accuracy can be achieved by coupling the TD
analysis and TD parameter quantization stages as shown in
Figure 10. The event targets from the TD analysis stage are
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Figure 10: Proposed spectral parameter encoding scheme based on the OTD. For improved performance, coupling between the TD analysis
and the quantization stage is incorporated.

refined using the quantized version of the event functions in
order to optimize the overall performance of the TD analysis
and TD parameter quantization stages.

5.2. OTD parameter quantization

5.2.1. Event function quantization

One choice for quantization of the event function set,

{�φ1, �φ2, . . . , �φK}, for each block is to use vector quantiza-

tion (VQ) [15] on individual event functions, �φk’s, in or-
der to exploit any dependencies in event function shapes.

However, the event functions are of variable length (�φk ex-
tending from nk−1 to nk+1) and therefore require normal-
ization to a fixed length before VQ. Investigations showed
that the process of normalization-denormalization itself in-
troduces a considerable error which gets added to the quan-
tization error. Therefore, we incorporated a frame-based 2-
dimensional VQ for event functions which proved to be sim-
ple and effective. This was possible only because the mod-
ified TD model allows only two event functions to overlap
at any frame location. Vectors

[
φk(n) φk+1(n)

]
were quan-

tized individually. The distribution of the 2-dimensional vec-
tor points of

[
φk(n) φk+1(n)

]
showed significant clustering,

and this dependency was effectively exploited through the
frame-level VQ of the event functions. Sixty-two phonetically
diverse sentences from TIMIT database resulting in 8428 LSF
frames were used as the training set to generate the code
books of sizes 5, 6, 7, 8, and 9 bit using the LBG k-means
algorithm [15].

5.2.2. Event target quantization

Quantization of the event target set, {a1, a2, . . . , aK}, for each
block was performed by vector quantizing each target vec-
tor, ak, separately. Event targets are 10-dimensional LSFs, but
they differ from the original LSFs due to the iterative refine-
ment of the event targets incorporated in the TD analysis
stage. VQ code books of sizes 6, 7, 8, and 9 bit were generated
using the same training data set described in Section 5.2.1
using the LBG k-means algorithm [15].

6. CODER PERFORMANCE EVALUATION

6.1. Objective quality evaluation

Spectral parameters can be synthesized from the quantized
event targets, âk’s, and quantized event functions, φ̂k’s, for
each speech block as

ˆ̂y(n) =
K∑
k=1

âkφ̂k(n), 1 ≤ n ≤ N, (24)

where ˆ̂y(n) is the nth synthesized spectral parameter vector
at the decoder, synthesized using the quantized TD param-
eters. Note that double-hat notation is used here for spec-
tral parameters as the single-hat notation is already used
in (5) to denote the spectral parameters synthesized using
the unquantized TD parameters. The average error between
the original spectral parameters, y(n)’s, and the synthesized
spectral parameters, ˆ̂y(n)’s, calculated in terms of average SD
(dB) was used to evaluate the objective quality of the coder.
The final bit rate requirement for spectral parameters of the
proposed compression scheme can be expressed in number
of bit per frame as

B = n1 + n2
K

N
+ n3

K

N
bit/frame, (25)

where n1 and n2 are the sizes (in bit) of the code books for
the event function quantization and event target quantiza-
tion, respectively. The parameter n3 denotes the number of
bit required to code each event location within a given block.
For the chosen block size (N = 20) and the number of events
per block (K = 5), the maximum possible segment length
(nk+1 − nk) is 16. Therefore, the event location informa-
tion can be losslessly coded using differential encoding with
n3 = 4.

6.1.1. Results of evaluation

A speech data set consisting of 16 phonetically diverse sen-
tences of the TIMIT speech corpus was used as the test speech
data set for SD analysis. This test speech data set was different
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Figure 11: Average SD against bit rate for the proposed speech
coder with coupled TD analysis and TD parameter quantization
stages. Code-book size for event target quantization, n2, is depicted
as (n2).

Table 2: SD analysis results for the standard MELP coder and the
proposed OTD-based speech coder operating at the TD parameter
quantization resolutions of n1 = 7 and n2 = 9.

Coder (bit/frame) SD (dB) < 2dB 2–4 dB > 4dB

MELP (25) 1.22 91% 9% 0%

Proposed (10.25) 1.62 80% 20% 0%

from the speech data set used for VQ code book training in
Section 5.2. The SD between the original spectral parameters
and the reconstructed spectral parameters from the quan-
tized TD parameters (given in (24)) was used as the objective
performance measure. This SD was evaluated for different
combinations of the event function and event target code-
book sizes. The event location quantization resolution was
fixed at n3 = 4 bit. Figure 11 shows the average SD (dB) for
different n1 and n2 against the bit rate B.

6.1.2. Performance comparison

Figure 11 shows the average SD (dB) against the bit rate
requirement for spectral parameter encoding in bit/frame.
Standard MELP coder uses 25 bit/frame for the spectral pa-
rameters (line spectral frequencies). In order to compare the
rate-distortion performances of the proposed delay domain
speech coder and the standard MELP coder, the SD analysis
was performed for the standard MELP coder also using the
same speech data set. Table 2 shows the results of this analy-
sis. For comparison, the SD analysis results obtained for the
proposed coder with TD parameter quantization resolutions
of n1 = 7 and n2 = 9 are also shown in Table 2.

In comparison to the 25 bit/frame of the standard MELP
coder, the proposed coder operating at n1 = 7 and n2 = 9
results in a bit rate of 10.25 bit/frame. This signifies over 50%
compression of bit rate required for spectral information at
the expense of 0.4 dB of objective quality (spectral distortion)
and 450 milliseconds of algorithmic coder delay.

Table 3: Six operating bit rates of the proposed speech coder se-
lected for subjective performance evaluation.

Rate Bit/frame n1 (bit) n2 (bit) Average SD (dB)

R1 12.25 9 9 1.579 dB

R2 11.25 8 9 1.584 dB

R3 10.25 7 9 1.629 dB

R4 9.25 6 9 1.659 dB

R5 8.25 5 9 1.724 dB

R6 7.50 5 6 1.912 dB

6.2. Subjective quality evaluation

In order to back up the objective performance evaluation re-
sults, and to further verify the efficiency and the applicability
of the proposed speech coder design, subjective performance
evaluation was carried out in terms of listening tests. The 5-
point degradation category rating (DCR) scale [18] was uti-
lized as the measure to compare the subjective quality of the
proposed coder to that of the standard MELP coder.

6.2.1. Experimental design

Six different operating bit rates of the proposed speech coder
with coupling between TD analysis and TD parameter quan-
tization stages (Figure 10) were selected for subjective evalu-
ation. Table 3 gives the 6 selected operating bit rates together
with the corresponding quantization code-book sizes for the
TD parameters and the objective quality evaluation result. It
should be noted that the speech coder operating points given
in Table 3 have the best rate-distortion advantage within the
grid of TD parameter quantizer resolutions (Figure 11), and
are therefore selected for the subjective evaluation.

Sixteen nonexpert listeners were recruited for the listen-
ing test on volunteer basis. Each listener was asked to lis-
ten to 30 pairs of speech sentences (stimuli), and to rate the
degradation perceived in speech quality when comparing the
second stimulus to the first in each pair. In each pair, the
first stimulus contained speech synthesized using the stan-
dard MELP coder and the second stimulus contained speech
synthesized using the proposed speech coder. The six differ-
ent operating bit rates given in Table 3 of the proposed coder,
each with 5 pairs of sentences (including one null pair) per
listener, were evaluated. Therefore, a total of 30 (6×5) pairs of
speech stimuli per listener were used. The null pairs contain-
ing the identical speech samples as the first and the second
stimuli were included to monitor any bias in the one-sided
DCR scale used.

6.3. Results and analysis

The 30 pairs of speech stimuli consisting of 5 pairs of sen-
tences (including 1 null pair) from each of the 6 operating
bit rates of the proposed speech coder were presented to the
16 listeners. Therefore, a total of 64 (16 × 4) votes (DCRs)
were obtained for each of the 6 operating bit rates, R1 to R6.
Table 4 gives the DCR obtained for each of the 6 operating bit
rates of the proposed speech coder. It should be noted that
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Table 4: Degradation category rating (DCR) results obtained for
the 6 operating bit rates of the proposed speech coder.

Rate
Compression

ratio
No. of DCR votes

DMOS
5 4 3 2 1

R1 51% 31 23 10 0 0 4.33

R2 54% 21 34 9 0 0 4.19

R3 59% 22 28 14 0 0 4.13

R4 63% 20 32 9 3 0 4.08

R5 67% 16 21 25 2 0 3.80

R6 70% 7 22 28 7 0 3.45

the degradation was measured in comparison to the subjec-
tive quality of the standard MELP coder. Degradation mean
opinion score (DMOS) was calculated as the weighted aver-
age of the listener ratings, where the weighting is the DCR
values (1–5). As can be seen from the DMOSs in Table 4, the
proposed speech coder achieves a DMOS of over 4 for the op-
erating bit rates of R1 to R4. This corresponds to a compres-
sion ratio of 51% to 63%. Therefore, the proposed speech
coder achieves over 50% compression of the bit rate required
for spectral encoding at a negligible degradation (in between
not perceivable or perceivable but not annoying distortion
levels) of the subjective quality of the synthesized speech.
DMOS drops below 4 for the bit rates of R5 and R6, suggest-
ing that on average the degradation in the subjective quality
of synthesized speech becomes perceivable and annoying for
compression ratios over 63%.

7. CONCLUSIONS

We have proposed a dynamic programming-based optimiza-
tion strategy for a modified TD model of speech. Optimum
event localization, model accuracy control through TD res-
olution, and overlapping speech parameter buffering tech-
nique for continuous speech analysis can be highlighted as
the main features of the proposed method. Improved objec-
tive performance in terms of modelling accuracy has been
achieved compared to the SBEL-TD algorithm, where the
event localization is based on the a priori assumption of spec-
tral stability. A speech coding scheme was proposed, based
on the OTD algorithm and associated VQ-based TD param-
eter quantization techniques. The MELP model was used as
the baseline parametric model of speech with OTD being in-
corporated for efficient compression of the spectral param-
eter information. Performance evaluation of the proposed
speech coding scheme was carried out in detail. Objective
performance evaluation was performed in terms of log SD
(dB), while the subjective performance evaluation was per-
formed in terms of DMOS calculated using DCR votes. The
DCR listening test was performed in comparison to the qual-
ity of the standard MELP synthesized speech. These evalua-
tion results showed that the proposed speech coder achieves
50%–60% compression of the bit rate requirement for spec-
tral parameter encoding for a little degradation (in between

not perceivable and perceivable but not annoying distortion
levels) of the subjective quality of decoded speech. The pro-
posed speech coder would find useful applications in voice
store-forward messaging systems, multimedia voice output
systems, and broadcasting.
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