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This paper considers self-tuning blind identification and equalization of fractionally spaced IIR channels. One recursive estimator
is used to generate parameter estimates of the numerators of IIR systems, while the other estimates denominator of IIR channel.
Equalizer parameters are calculated by solving Bezout type equation. It is shown that the numerator parameter estimates converge
(a.s.) toward a scalar multiple of the true coefficients, while the second algorithm provides consistent denominator estimates. It is
proved that the equalizer output converges (a.s.) to a scalar version of the actual symbol sequence.
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1. INTRODUCTION

Intersymbol interference (ISI) imposes limits on data trans-
mission rates in many physical channels. Traditionally, chan-
nel equalization is based on initial training period, during
which a known data sequence is sent to identify channel co-
efficients. When the training is completed, the equalizer en-
ters its decision-directed mode, aiming at retrieving the in-
formation symbols. Due to severe time variations in channel
characteristic, as it is the case in a mobile wireless HF com-
munication system, the training sequence has to be sent peri-
odically to update the estimate, thereby reducing the effective
channel rate. In addition, time-varying multipath propaga-
tion can cause significant channel fading, leading to system
outage and equalizer failure during the training periods. It is
desirable that the channel be equalized without using train-
ing signal, that is, in a blind manner, by using only the re-
ceived signal.

The first blind channel equalization methods were based
on a single-input single-output (SISO) channel models, sam-

pled at the symbol rate. Some of them, such as the con-
stant modulus algorithms (CMAs), involve nonlinear op-
timization and higher-order statistics (cummulants) of the
channel output [1, 2]. An exhaustive list of references of
CMA methods is given in [3]. Interesting results regard-
ing steady-state performance analysis of CMA are presented
in [4, 5]. Accurate estimation of cummulants requires large
sample sizes. Although nonminimum-phase SISO channel
is invertible by an infinitely long equalizer, this equalizer
is not implementable with a causal IIR filter, thus mak-
ing perfect equalization an impossible objective. Tong et
al. [6] analyzed the single-input multiple-output (SIMO)
FIR channel model, obtained by antenna array and/or frac-
tional output sampling (oversampling). They have shown
that the multiple channels can be identified up to a scalar
constant based on the second-order statistics only. More-
over, in the absence of receiver noise, SIMO FIR channels
can be perfectly equalized even in the case of nonminimum-
phase systems. Generally, this cannot be achieved with the
symbol-spaced causal equalizer. Since [6], a large body of
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work has been exploiting SIMO channel model [7, 8, 9,
10, 11, 12, 13, 14, 15]. For a comprehensive list of im-
portant contributions in this area up to 1998, we refer to
[16].

As pointed out in [11], FIR approximation of a commu-
nication channel often requires a large number of filter pa-
rameters, and the order of the filter increases with the in-
crease of the sampling rate. It is well known that IIR filters
can capture the system dynamics with fewer parameters as
compared with FIR filters. In [17], it is discussed that physi-
cal microwave radio channels often exhibit long tails of weak
leading and trailing terms in its impulse response. In the case
of FIR filters, this creates channel undermodeling effects and
degradation of equalizer performance. IIR channel represen-
tation can reduce the effect of modeling errors.

In this paper, we propose an adaptive (self-tuning) equal-
izer performing sequential data processing, making it candi-
date for online implementations. For simplicity of presenta-
tion, single-input two-output channel model is considered.
The paper is organized as follows. Section 2 describes prob-
lem statement and proposed equalizer. Section 3 presents
convergence properties of developed estimators. It is shown
that the parameter estimates of the unknown channel co-
efficients converge (a.s.) toward the scalar multiple of true
parameters, while the equalizer output converges to a scalar
version of the actual symbol sequence. Simulation example
confirming theoretical results is presented in Section 4.

2. PROBLEM STATEMENT AND THE BLIND
EQUALIZATION ALGORITHM

The standard model of fractionally spaced receiver is SIMO
system. For the simplicity of our presentation, we consider
the single-input two-output system model, or T/2 fraction-
ally spaced equalizer, where T' denotes the baud or symbol
duration. As shown in Figure 1, in this case, the receiver per-
forms two measurements, x; (i) and x, (i), for each transmit-
ted symbol w(i), where i = 0, 1,2,..., is discrete time. Here
z~1is a unit delay time, integer d is a delay between the input
w(i) and the outputs x¢(i), k = 1,2, while B;(z7!)/A;(z7")
and B,(z7!)/Ay(z7") are stable IIR transfer operators. An
equivalent representation of this process is given in Figure 2,
where

Az ) =14+az '+ +a,z ™,

B(zY)=by+biz ' +---+brz L, (1)

1 L

ClzY)=co+tecrzt+---+czt

Since our channel model assumes that the delay between
w(i) and xx(i), k = 1,2, is equal to d samples, at least one
of the coefficients by or ¢y in (1) must be different than zero.
Otherwise, the above delay will not be equal d, but d+1 sam-
ples. For the purpose of our analysis, we assume that ¢y # 0.

Obviously, B = B]Az, C= B2A1, and A = A1A2. In (1),
L = max(degB(z™!), deg C(z7!)). Assuming that there is no
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FiGure 1: Channel model.
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FIGURE 2: Equivalent channel model.
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FiGure 3: Channel equalizer.

receiver noise, the received signals x; (i) and x, (i) are given by

A(z V(i) = z79B(z ) w(i),
(2)
A(z V(i) = z79C(z D w(i),

for all i > 0. The signals w(i), x; (i), x2(i) and the coefficients
of A(z7!), B(z™!), and C(z™!) can be complex quantities.

Our objective is online blind channel identification and
equalization, that is, estimation, up to a scaling constant, of
unknown polynomials A(z7!), B(z™!), and C(z7!), and in-
formation symbol w(i), based only on the received signals
x1(i) and x, (i), i > 0.

The proposed equalizer is depicted in Figure 3 where

A(i, Z_l) = 1+ﬁ1(i)2_1 +--- +ﬁNA(i)Z_nA,
P(i,z7") = po(i) + pr()z " + - - - + pu(Dz™,  (3)
Q(l) Zil) = QO(l) + qu(i)271 I qM(i)ziM)

with M = L — 1, where A(i, z!) is an estimate of A(z 1), re-

cursively generated at each time instant i, while P(i, z™!) and
Q(i, z71) are obtained from the following Bezout identity:

PG,z")-B(iz)+QG,iz") - Cliiz") =1 (4

for all i > 0. Here, B(i,z7!) and C(i,z"!) are estimates of
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B(z7') and C(z71), respectively, and are given by

(5)

We now propose two recursive algorithms providing the
convergence of B, C, and A toward the scalar multiple of
unknown polynomials B, C, and A. We then show that in
the limit, the equalizer output u(i) approaches the scalar
version of the unknown symbol w(i). Since C(z7!)x; (i) =
B(z D), (i), we can write

x1(i) = p() 1%, (6)

where 1 stands for conjugate transpose while

6 =

T
LI

C0)~~~) CO’ CO’ CO)---: co
o7 =[—x1(i—1),..., —xi1(i— L);

X2(i),X2(i - 1), . .,xz(i - L)],

(8)

with (-)T being the usual transpose operation. In (7), ¢ is
the leading coefficient of C(z™71).

Assuming that the order L is known, we can use the
following weighted recursive least-squares algorithm to es-
timate 6*:

(i) = (i — 1) + p(i)g(i)e(i), 9)

e(i) = x1 (i) — 0 — 1) g(i), (10)
Lo pi=1)  (pli—1)/V)ei)e()f (pli —1)/A)

pl) =" 5ol (pli - e D

p0) =pol, po>0,0<A<], (12)

where in (9) (+) stands for complex conjugate. In the sequel,

we show that under certain conditions, lim;_« 6(i) = 6* and
lim;_.o (y(i) — z74(1/A(z7"))w(i)) = 0, where (see Figure 3)

y(i) = P(i,z7V)x1 (i) + Q(i, 27 ") x2(i), (13)

with P(i,z71) and Q(, z7!) defined in (3) and (4). This mo-
tivates our algorithm for online identification of polynomial
A(z71). Let

pli- DT =[=yli-D—yli-na)].  (14)

af = [al,...,anA]T. (15)

Then a* can be estimated by using the following RLS algo-
rithm:

&(i) = &(i — 1) + RGP — DEG) (16)

e(i) = y(i) — ¢(i = D)Ta(i - 1), (17)
o RG=D@i- Dgli— DIRG - 1)

RO =R = R - gt -1) > Y

R(O) =rol, 19>0. (19)

Note that the first stage algorithm given by (7), (8), (9),
(10), and (11) is reminiscent of the concept in [7], which also
uses the basic equation C(z71)x; (i) = B(z~!)x,(i). The main
difference is that our work presents recursive algorithms and
assumes IIR channel model.

3. GLOBAL CONVERGENCE OF ADAPTIVE
EQUALIZER

In order to simplify algebraic details of our analysis, we con-
sider the case where all variables are real valued. The obtained
results can easily be extended to the case of complex vari-
ables. The following is assumed throughout the sequel.

Assumption 1. (i) Operators A(z™!) is a stable polynomial.
(ii) Polynomials B(z™!') and C(z~!) have no common fac-
tors.

Assumption 2. Signal {w(i)} is a zero-mean sequence of mu-
tually independent random variables satisfying sup; |w(i)| <
k,, < o0, and

n

Jim © > w(i)? =02 (as.). (20)
n—-0n -1

Assumptions 1 and 2 are standard conditions in the
literature on second-order approaches for blind iden-
tification/equalization of SIMO channels. We note that
[18] discusses a class of channels that do not satisfy
Assumption 1(ii).

Let F; be an increasing sequence of o-algebras gen-
erated by {w(0),w(1),...,w(i)}. Then {w(i)} satisfying
Assumption 2 is a martingale difference sequence with re-
spect to Fj, that is, w(i) is F; measurable and E{w(i) | Fi_1} =
0 (a.s.) for all i. For future reference, we give the convergence
theorem for martingale difference sequencies.

Lemma 1 (Stout [19]). Let w(i) be martingale difference se-
quence with respect to F; and let f (i— 1) be an F;_, measurable
sequence. Then

> fli—Dw(i) =0(Zf(i— 1)2) +0(1) (as.). (21)
i=1 i=1
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Theorem 1. Let Assumptions 1 and 2 hold, and order L is
known. Then algorithm (9), (10), and (11) provides

limB(i,z7') = iB(zil)

i—oo0 Co

(a.s.),
) (22)
limC(i,z7") = C—C(z‘l) (as.),

0

i— o0

where B, C, and B, C are defined in (1) and (5), respectively.

Proof. Let
6(i) = 6¢i) - 6%, (23)
where 6* is given by (7). Then, from (6) and (10), we have
e(i) = —(i)T0(i - 1). (24)
Substituting (24) in (9) gives
P70 = p()'0(i — 1) — p(De() (i — 1).  (25)
Since (11) implies
p(i) " =Ap(i— 1)+ p(i)p(i)T, (26)

equation (25) yields p(i)~'8(i) = Ap(i —1)7'8(i — 1), where-
from it follows that

p())710(i) = A'p(0)716(0). (27)

We now show that p(i)~! is a positive definite matrix. It is
well known that Assumptions 1 and 2 imply (see [20, 21])

t+N
lim inf — > ¢(k)p(k)T = ¢*I, o* >0(as.), (28)
N=eo N k=t

forall t > 0.

Let M; and M, be quadratic matrices. Then, in the above
notation, the statement M; > M, implies that x"M;x >
xT M, x for all nonzero vectors x. From (28), we conclude that
there exists finite Ny such that

£,
¥ o

=3 gk = T,

Vt=>0(a.s. 29
N 2 (as)  (29)

which is equivalent to

S o(ie()T = ¢,

k=i—No

Vi(a.s.), (30)

where &f = (6*/2)Ny. Relations (26) and (30) imply that

p()™ = Ap(0)7 + D A Fo(k)p(k)T
k=1

> > A kpk)ek)" (31)

k=i—Np

> \No Z p(k)p(k)T = &1 (as.)
k=i—No

foralliand ef = A, ""¢. By using (31) in (27), we can derive
o 1 L
[10G)|| s/\lg—*Hp(O) 190)|| (as.), (32)
2

from where the statement of the theorem directly fol-
lows. O

Note that 8* in (7) can become very large if ¢y is too
small, which may create numerical problems when algorithm
(9) attempts to estimate 8*. This problem can be avoided by
using another parameter instead of ¢o. We can define 8* as
follows:

6% = [C—O € ¢ (33)

bl b P
T €1 O

a by ﬁ]

el L
assuming that ¢; is not close to zero. Then we can write

x(i—1)=gi)o* (34)
with

(P(I)T = [ *Xl(i), 7x1(i72)1 7x1(i73)>---) (35)
— X1 (l - L), Xz(i), . ,xz(i - L)]
As before, 8* can be estimated by using algorithm (9), where
e(i) = x1(i — 1) — 8(i — 1)t(i). Instead of ¢;, we can simi-
larly use other parameters, including by, by, . .., by. Except for
a few minor algebraic steps, convergence analysis stays the
same as before.

3.1. Estimation of polynomial A(z™")
Note that, from Figures 2 and 3,

$) = (ﬁ(z;z1>3(

where

L

z(i) = Z_dA(z—l)

w(i). (37)
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Equation (36) can be written in the form

(i) = (P(iz"") - B(iz™)

A A (38)
+Qz7Y) - Cliz ) (z(i) +8()
with
8(i) = [P(z,z . (B(fo_l) —B(iz 1))
+Q,z7Y) (C(;l) - A(i,21)>](602(1'))~

(39)

Since symbols w(i) are uniformly bounded and A(z7!) is a
stable operator, z(i) is bounded for all i = 0. Hence, from
(22), one obtains

lim 8(i) = 0

j—o00

(a.s.). (40)

We now turn attention to Bezout identity (4). Let

B bo 0 e 0 o 0O --- 0
by by 0 o ¢ 0
bz bL 0 C C] 0
bry bp— -+ by ¢ o2 Co
H = 41
br by -+ b cL CL-1 C1 (41)
0 by b, 0 CL (%)
0 0 by O 0 CL-1
| 0 0o --- g 0 0 --- ¢ 1

be 2L x 2L eliminant (Sylvester resultant) matrix of polyno-
mials B(z™!) and C(z™!). Assumption 1 implies that for some
& >0,

| det(H)| = &¥ >0, (42)

where det(H) denotes determinant of H. Let H(i) be elimi-
nant matrix of polynomials B(i, z7!) and C(i, z7!). Then, by
(42) and Theorem 1, there exists some i such that

| det(H)| = &f >0 (as.) (43)
for all i > iy, and some &5 . Hence, (4) has a solution for all
i = iy. Then, from (4) and (38), it follows that

y(i) = coz(i) + 8(i) (as.) (44)

for all i > iy. Substituting (37) into (44), one obtains

Az V) y(i) = cow(i—d)+ A(z1)8() (as.) (45)

or

y(i)=¢(i— DTa* +cow(i—d) +A(z71)3(i) (as.), (46)
with ¢(i) and a* defined in (14) and (15). The parameter
vector a* is estimated by using algorithm (16), (17), and
(18). Next, we show the consistency of the parameter esti-
mates &(i).

Theorem 2. Let Assumptions 1 and 2 hold. Then &(i) gener-
ated by the algorithm (16), (17), and (18) satisfies

(a.s.). (47)

lim (i) = a*

1—00
Proof. First we show that the regressor ¢(i) is persistently ex-
citing (PE), that is,

lim inf% S oK$(T > e, e >0(as)  (48)
e k=1

Note that by using (44), ¢(i) given by (14) can be written in
the form

¢(k) = (k) + y(k), (49)

where
)T = [ —czk—1),...,—coz(k—ns)],  (50)
y()" = [ =8k —1),...,—8(k —na) - (51)

Since A(z7!) is a stable operator, Assumption 2 implies (see
(20, 21])

lim inf% > sk)s(k)T = eI (as.) (52)
= k=1

for some & > 0. Using the fact that z(i) is finite sequence,
and by (40) y(k) . 0 (a.s.), application of the Cauchy-

Schwartz’s inequality yields

(¢ Suswre)

|43 cwwaor
k=1

L d 12
: (; > ||W(k)||2) — 0 (as).
k=1
(53)



Equalization of IIR Channels

935

Also from (49), we obtain

Pp(k)p(k)" = c(k)g(k)" + g(k)y (k)"
+y(k)s(k)" +y(k)y (k).
Then statement (48) follows from (52), (53), and (54). We

now analyze recursion (16). Observe that from (46), we can
derive

y(i) —¢(i— DTa(i— 1) = —¢(i — )Tai — 1)
+cow(i — d) + A(z™1)d(i),

(54)

(55)

where
(i) = a(i) — o, (56)
Hence from (16), it follows that
RG)™'a(i) = R()~'a(i — 1)
+¢(i— D[~ ¢l — D'a) + cow(i —d) (57)
+A(z7H)8(3)].
Since
RGO =Ri—-1)"+¢(i— (i — 1T, (58)
the previous equation gives

R()'a(i) =R(i— 1) 'a(i—1) ™
+¢(i— 1)[cow(i — d) + A(z ") ()], (59)

from where we have
R(i)~ta(i) = R(0)"'&(0)

£ ok = Dlcowlk — d) + Az 1)5(k)].
. (60)

Observe now that (4), (13) and, Theorem 1 imply bounderies
of y(i). Then, by (14), {¢(i)} is a bounded sequence. Further
from (4), (9), (10), and (13), we can conclude that y(i — 1)
depends only on the past samples w(i —d — k), k = 1, and
not on w(i — d). Then (14) implies that ¢(i — 1) is Fi_q—;
measurable. Hence, application of Lemma 1 gives

lim S otk—Dwk—d) =0 (as). (6
e ko

Statement (61) is also intuitively clear from the fact that ¢(k—
1) and w(k — d) are bounded and independant signals, and
w(k — d) is a zero-mean variable. Since §(k) —— 0, we also
have koo

lim% S k- DAE)OR) =0 (as).  (62)
k=0

1—00

Note that (58) implies

R(i)' =R(0O)™" + i ¢k — Dp(k — D). (63)

k=0

Then statement (47) directly follows from (48), (60), (61),
and (62). This completes the proof. O

Next we show that

lim (u(i) — cow(i—d)) =0

i— 00

(a.s.), (64)

where (see Figure 3)

u(i) = A(i, z7") (i), (65)

while ¢y is an unknown leading coefficient in C(z!). Note
that

u(i) = (A(i,z7') = Az ") y() +A(z ) y(i).  (66)

Since, by Theorem 1, limi~w (A, z71) — A(z71) = 0 (as.)
and y(i) is bounded, (40), (45), and (66) imply statement
(64).

Note that algorithm (14), (15), (16), (17), and (18) is a
simple adaptive FIR linear predictor [22], and the proof of
convergence in Theorem 1 takes into account the dynamics
of the input to the predictor, which is the output of the first
adaptive filtering stage.

4. SIMULATION EXAMPLE

In this experiment, we are using an ii.d symbol sequence
drawn from a 16-QAM constellation. The corresponding
symbol levels along both axes are —2, —1, 1, and 2. The poly-
nomials B(z™!) and C(z™!) are obtained by oversampling the
following continuous time channel [9]:

he(t) = e 727019 (+ — 0.25T, B)
, (67)
+08e 72700 (t — T, B), te€[0,4T),

where (¢, B) is the raised cosine with roll-off factor § while
T is the symbol duration. As in [9], we take f = 0.35.

The above h.(t) represents a causal approximation of a
two-ray multipath mobile radio environment. By sampling
h.(t) at a rate of T/2, we obtain

B(z™') = (0.52 — j0.72) + (—0.48 + j0.24)z"!

+(=0.05+ j0.07)z"% + (0.01 — j0.02)z 7,
(68)
C(z7!') = (0.12 - j0.43) + (—0.48 + j0.41)z""

+(0.13 = j0.11)z72 + (—0.04 + j0.03)z .
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F1GURE 4: Norm of parameter error vector.
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FiGURE 5: Eye diagram of channel output.

In our simulations, we assume that
A(z7l) =1+08z7' +0.41z72. (69)

Parameter estimation error is depicted in Figure 4. Figure 5
presents received symbols while Figure 6 shows the equalized
symbol-eye diagram. The amount of rotation and magnifica-
tion in the eye diagram is a function of ¢y = (0.12 — j0.43),
that is, angle of rotation is —73.86°, while the magnification
is |co| = 0.45. Figure 7 shows the following minimum mean
square error on a sample path over 1000 symbols:

n

S (ui) - cow(i — d)), (70)

i=1

J(n) =

N | —

where ¢ is the leading coefficient in C(z~!). Obviously, J(n)

Imaginary

Real

FIGURE 6: Eye diagram of equalizer output.

x1073
1 -

0.8

0.6

MMSE

0.4

0.2

0 100 200 300 400 500 600 700 800 900 1000
Real

FIGURE 7: Minimum mean square error.

slowly approaches zero value. It is not difficult to see that all
four plots coincide with the theoretical conclusions.

5. CONCLUSION

The self-tuning blind equalization is considered in this pa-
per. The proposed method consists of two recursive estima-
tors: one for estimation of “FIR portion” of the channel,
while the second algorithm estimates “IIR portion” (denom-
inator) of the channel. It is proved that the first estimator
converges (a.s) toward a scalar multiple of the true parame-
ters, and the second algorithm provides (a.s) consistent pa-
rameter estimates. Moreover, it is shown that the equalizer
output converges toward the scaled version of actual sym-
bol sequence. It is well known that the presence of receiver
noise will adversely affect equalizer performance. Currently
under way are efforts to extend the above results to the case
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when such noise is present, and replace RLS algorithms with
LMS type procedures. The choice of the order of IIR chan-
nel model is an important design step. If this order is se-
lected to be too small, unmodelled channel dynamics can
cause deterioration in equalizer performance. Performance
analysis of some second-order methods for blind identifi-
cation/equalization with respect to channel undermodeling
is presented in [17]. Similar analysis for our algorithms is
worth further investigation.
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