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There is a considerable evidence that our perception of sound uses important features which are related to underlying signal
modulations. This topic has been studied extensively via perceptual experiments, yet there are few, if any, well-developed signal
processing methods which capitalize on or model these effects. We begin by summarizing evidence of the importance of mod-
ulation representations from psychophysical, physiological, and other sources. The concept of a two-dimensional joint acoustic
and modulation frequency representation is proposed. A simple single sinusoidal amplitude modulator of a sinusoidal carrier is
then used to illustrate properties of an unconstrained and ideal joint representation. Added constraints are required to remove
or reduce undesired interference terms and to provide invertibility. It is then noted that the constraints would be also applied to
more general and complex cases of broader modulation and carriers. Applications in single-channel speaker separation and in
audio coding are used to illustrate the applicability of this joint representation. Other applications in signal analysis and filtering
are suggested.
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1. INTRODUCTION

Over the last decade, human interfaces with computers have
passed through a transition where images, video, and sounds
are now fundamental parts of man/machine communica-
tions. In the future, machine recognition of images, video,
and sound will likely be even more integral to computing.
Much progress has been made in the fundamental scientific
understanding of human perception and why it is so ro-
bust. Our current knowledge of perception has greatly im-
proved the usefulness of information technology. For exam-
ple, image and music compression techniques owe much of
their efficiency to perceptual coding. However, it is easy to
see from the large bandwidth gaps between waveform- and
structural-based (synthesized) models [1] that there is still
room for significant improvement in perceptual understand-
ing and modeling.

This paper’s aim is a step in this direction. It proposes to
integrate a concept of sensory perception with signal process-
ing methodology to achieve a significant improvement in the
representation and coding of acoustic signals. Specifically,
we will explore how the auditory perception of very low-
frequency modulations of acoustic energy can be abstracted
and mathematically formulated as invertible transforms that
will prove to be extremely effective in the coding, modifica-
tion, and automatic classification of speech and music.

2. THE IMPORTANCE OFMODULATION SPECTRA

Very low-frequency modulations of sound are the funda-
mental carrier of information in speech and of timbre in
music. In this section, we review the psychophysical, phys-
iological, and other sources of evidence for this perceptual
role of modulations. We also justify the need for a theory of
and general analysis/synthesis tools for a transform dimen-
sion approach often called “modulation spectra.”

In 1939, Dudley concluded his now famous paper [2]
on speech analysis with “. . . the basic nature of speech as
composed of audible sound streams on which the intelli-
gence content is impressed of the truemessage-bearing waves
which, however, by themselves are inaudible.”

In other words, Dudley observed that speech and other
audio signals such as music are actually low-bandwidth pro-
cesses that modulate higher-bandwidth carriers. The sug-
gestion is that the mismatch between the physical nature
of the acoustic media (air) and the size of our head and
vocal tract has resulted in this clever mechanism: lower-
frequency “message-bearing waves” hypothetically modu-
late our more efficiently produced higher-frequency acoustic
energy.

Eleven years later, in a seemingly unrelated paper on
time-varying systems [3], Zadeh first proposed that a sep-
arate dimension of modulation frequency could supplant
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the standard concept of system function frequency anal-
ysis. His proposed two-dimensional system function had
two separate frequency dimensions—one for standard fre-
quency and the other a transform of the time variation.
This two-dimensional bi-frequency system function was not
analyzed but only defined. Kailath [4] followed up nine
years later with the first analysis of this joint system func-
tion.

2.1. Motivation from auditory physiology

In 1971, Møller [5] first observed that the mammalian audi-
tory system has a specialized sensitivity to amplitude modu-
lation of narrowband acoustic signals. Suga [6] showed that
for bats, amplitude modulation information was maintained
for different cochlear frequency channels. Schreiner and Ur-
bas [7] then showed that this neural representation of am-
plitude modulation was even seen at higher levels of mam-
malian audition such as the auditory cortex and was hence
preserved up through all levels of our auditory system. Con-
tinued work by others showed that these effects were not only
observable; they were instead potentially fundamental to the
encoding used by mammalian auditory systems. For exam-
ple, as shown by Langner [8], “. . . experiments using signals
with temporal envelope variations or amplitude modulation
. . . amere placemodel of frequency representation in the cen-
tral nervous system cannot account for many aspects of au-
ditory signal analysis and that for complex signal processing,
in particular, temporal patterns of neuronal discharges are
important.”

In recent years the physiological evidence has only got-
ten stronger. Kowalski et al. [9, 10, 11] have shown that cells
in the auditory cortex—the highest processing stage along
the primary auditory pathway—are best driven by sounds
that combine both spectral and temporal modulations. They
used specially designed stimuli (called ripples) which have
dynamic broadband spectra that are amplitude modulated
with drifting sinusoidal envelopes at different speeds and
spectral peak densities. By manipulating the ripple param-
eters and correlating them with the responses, they were able
to estimate the spectrotemporal modulation transfer func-
tions of cortical cells and, equivalently, their spectrotempo-
ral receptive fields (or impulse responses). Based on such
data, they have postulated that the auditory system performs
effectively a multiscale spectrotemporal analysis which re-
encodes the acoustic spectrum in terms of its spectral and
temporal modulations. As we will elaborate below, the per-
ceptual relevance of these findings and formulations was
investigated psychoacoustically and applied in the assess-
ment of speech intelligibility and communication channel
fidelity.

Finally, Schulze and Langner [12] have demonstrated
that pitch and rhythm encoding are potentially separately
explained by convolutional and multiplicative (modulation)
models and, most importantly, Langner et al. [13] have ob-
served through magnetoencephalography (MEG) that fre-
quency and periodicity are represented via orthogonal maps
in the human auditory cortex.

2.2. Motivation from psychoacoustics

The psychoacoustic evidence in support of the perceptual
saliency of signal modulations is also very strong. For ex-
ample, Viemeister [14] thoroughly studied human percep-
tion of amplitude-modulated tones and showed it to be a
separate window into the analysis of auditory perception.
Houtgast [15] then showed that the perception of amplitude
modulation at one frequency masks the perception of other
nearby modulation frequencies. Bacon’s and Grantham’s ex-
periments [16] further support this point and they directly
conclude that “These modulation-masking data suggest that
there are channels in the auditory system which are tuned
for the detection of modulation frequency, much like there
are channels (critical bands or auditory filters) tuned for the
detection of spectral frequency.”

The most recent psychoacoustic experiments have con-
tinued to refine the information available about human per-
ception of modulation frequency. For example, Sheft and
Yost [17] have shown that our perception of consistent
temporal dynamics corresponds to our perceptual filtering
into modulation frequency channels. Also, Ewert and Dau
[18] have recently shown dependencies between modula-
tion frequency masking and carrier bandwidth. It is also
worth noting from their study and from [13] that modu-
lation frequency masking effects are indicative that much
unneeded redundancy might still be unnecessarily main-
tained in today’s state-of-the-art speech and audio coding
systems.

Finally, Chi et al. [19, 20] have extended the findings
above to include combined spectral and temporal modula-
tions. Specifically, they measured human sensitivity to rip-
ples of different temporal modulation rates and spectral den-
sities. A remarkable finding of the experiments is the close
correspondence between the most sensitive range of mod-
ulations, and the spectrotemporal modulation content of
speech. This result suggested that the integrity of speech
modulations might be used as a barometer of its intelligibil-
ity, as we will briefly describe next.

2.3. Motivation from speech perception

Further evidence for the value of modulations in the percep-
tion of speech quality and in speech intelligibility has come
from a variety of experiments by the speech community.
For example, the concept of an acoustic modulation trans-
fer function [21], which arose out of optical transfer func-
tions (e.g., [22]), has also been successfully applied to the
measurement of speech transmission quality (speech trans-
mission index, STI) [23]. For these measurements, modulat-
ing sine waves range in frequency from 0.63Hz to 12.7Hz in
1/3-octave steps. These stimuli were designed to simulate in-
tensity distributions found in running speech and were used
to test the noise and reverberant effects in acoustic enclosures
such as auditoria. More direct studies on speech perception
[24] demonstrated that the most important perceptual in-
formation lies at modulation frequencies below 16Hz. More
recently, Greenberg and Kingsbury [25] showed that a “mod-
ulation spectrogram” is a stable representation of speech for
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automatic recognition in reverberant environments. This
modulation spectrogram provided a time-frequency repre-
sentation that maintained only the 0- to 8-Hz range of mod-
ulation frequencies (uniformly for all acoustic frequencies)
and emphasized the 4-Hz range of modulations.

Based on the premise that faithful representation of these
modulations is critical for the perception of speech [17, 21], a
new intelligibility index, the spectrotemporal modulation in-
dex (STMI), was derived [19, 20] which quantifies the degra-
dation in the encoding of both spectral and temporal mod-
ulations due to noise regardless of its exact nature. The STI,
unlike the STMI, can best describe the effects of spectrotem-
poral distortions that are separable along these two dimen-
sions, for example, static noise (purely spectral) or reverber-
ation (mostly temporal). The STMI, which is based on rip-
ple modulations, is an elaboration on the STI in that it in-
corporates explicitly the joint spectrotemporal dimensions
of the speech signal. As such, we expect it to be consistent
with the STI in its estimates of speech intelligibility in noise
and reverberations, but also to be applicable to cases of joint
(or inseparable) spectrotemporal distortions that are unsuit-
able for STI measurements (as with certain kinds of channel-
phase distortions) or severely nonlinear distortions of the
speech signal due to channel-phase jitter and amplitude clip-
ping. Finally, like the STI, the STMI effectively applies spe-
cific weighting functions on the signal spectrum and its mod-
ulations; these assumptions arise naturally from the proper-
ties of the auditory system and hence can be ascribed a bio-
logical interpretation.

2.4. Motivations from signal analysis and synthesis

It is important to note that joint acoustic and temporalmod-
ulation frequency analysis has not yet been put into an anal-
ysis/synthesis framework. The previously mentioned papers
by Zadeh [3] and Kailath [4] did propose a joint analysis
and, more recently, Gardner (e.g., [26, 27]) greatly extended
the concept of bi-frequency analysis for cyclostationary sys-
tems. These cyclostationary approaches have been widely
applied for parameter estimation and detection. However,
transforms that are used in compression and for many pat-
tern recognition applications usually have a need for invert-
ibility, like the Fourier or wavelet transform. Cyclostationary
analysis does not provide an analysis-synthesis framework.
Furthermore, the foundation that assumes infinite time lim-
its in cyclostationary time averages is not directly appropriate
for many speech and audio applications.

Higher-order spectral analysis also has a common for-
mulation called the “bispectrum,” which is an efficient way
of capturing non-Gaussian correlations via two-dimensional
Fourier transforms of third-order cumulant sequences of dis-
crete time signals (e.g., [28]). There is no direct connection
between bispectra and the joint acoustic andmodulation fre-
quency analysis we discuss.

There have been other examples of analysis that esti-
mated and/or formulated joint estimates of acoustic and
modulation frequency. Some recent examples are Scheirer’s
tempo analysis of music [29] and Haykin-Thomson [30]
linking of a joint spectrum to a Wigner-Ville distribution.

AM and FM (amplitude modulation—frequency modula-
tion) and related energy detection, and separation techniques
are also directed at estimation problems [31, 32, 33, 34].
These techniques require assumptions of single-component
or a small number of multicomponent carriers and are hence
not general enough for arbitrary sounds and images. All of
these examples also lack general invertibility.

Many examples of current sound synthesis based upon
modulation grew out of Chowning’s frequency modulation
technique for sound synthesis [35], as summarized by more
recent suggestions of general applicability to structured au-
dio [1]: “Although FM techniques provide a large variety of
musically useful timbres, the sounds tend to have an “FM
quality” that is readily identified. Also, there are no straight-
forwardmethods to determine a synthesis algorithm from an
analysis of a desired sound; therefore, the algorithm designs
are largely empirical.”

Amplitude and frequency modulation-based analy-
sis/synthesis techniques have been previously developed
(e.g., [34]), but they are based upon a small number of dis-
crete carrier components. Even with a larger number of dis-
crete narrowband carriers, noise-like sounds cannot be ac-
curately analyzed or produced. Thus, discrete sinusoidal or
other summed narrowband carrier models are not general
enough for arbitrary sounds and images. For example, while
these techniques provide intelligible speech, they could not
be applied to high- or even medium-quality audio coding.
We are, nevertheless, highly influenced by these models. Sim-
ply put, our upcoming formulation is a generalization of pre-
vious work on sinusoidal models. As will be justified in the
following sections, a more general amplitude modulation or,
equivalently, multiplicative model can be empirically verified
to be very close to invertible, even after significant compres-
sion [36].

In the remainder of this paper, we will illustrate how an
analysis/synthesis theory of modulation frequencies can be
formulated and applied to the problem of efficient coding
and representation of speech and music signals. The focus in
this paper will be exclusively on the use of temporalmodula-
tions, leaving the spectral dimension unchanged. This is mostly
done to simplify the initial analysis and to explore the con-
tribution of purely temporal modulations to the encoding of
sound.

3. AMODULATION SPECTRALMODEL

For further progress to be made, understanding and apply-
ing modulation spectra, a well-defined foundation for the
concept of modulation frequency needs to be established. In
this section, we will propose a foundation that is based upon
a set of necessary conditions for a two-dimensional acous-
tic frequency versus modulation frequency representation.
By “acoustic frequency” we mean an exact or approximate
conventional Fourier decomposition of a signal. “Modula-
tion frequency” is the dimension that this section will begin
to strictly define.

The notion of modulation frequency is quite well under-
stood for signals that are narrowband. A simple case consists
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Figure 1: Two-dimensional representation of cosinusoidal amplitude modulation. The solid lines represent the support regions of both
S(ω− η/2) and S∗(ω + η/2). Thicker lines represent the double area under the carrier-only terms relative to the modulated terms. The small
dots, including the one hidden under the large dot at (η = 0, ω = ωc), represent the support region of the product S(ω − η/2)S∗(ω + η/2).
The three large dots represent the ideal representation Pideal(η,ω) of modulation frequency versus acoustic frequency.

of an amplitude-modulated fixed frequency carrier

s1(t) = m(t) cosωct, (1)

where the modulating signal m(t) is nonnegative and has an
upper frequency band limit suitable for its perfect and easy
recovery from s1(t). It is straightforward that the modulation
frequency for this signal should be the Fourier transform of
the modulating signal only:

M
(
e jω
) = F

{
m(t)

} =
∫∞
−∞

m(t)e− jωtdt. (2)

But what is a two-dimensional distribution of acoustic ver-
sus modulation frequency? Namely, how would this signal
be represented as the two-dimensional distribution P(η,ω),
where η is modulation frequency and ω is acoustic fre-
quency?

To begin answering this question, we can further simplify
the model signal to have a narrowband cosinusoidal modu-
lator

s(t) = (1 + cosωmt
)
cosωct. (3)

In order to allow unique recovery of the modulating signal,
the modulation frequency ωm is constrained to be less than
the carrier frequency ωc. The additive offset allows for a non-
negative modulating signal. Without loss of generality, we as-
sume that the modulating signal is normalized to have peak
values of ±1 allowing the additive offset to be 1.

The process of amplitude demodulation, whether it is
by magnitude, square law, Hilbert envelope, cepstral or syn-
chronous detection, or other techniques, is most gener-
ally expressed as a frequency shift operation. Thus, a gen-
eral two-dimensional representation of s(t) has the dimen-
sions acoustic frequency versus frequency translation. For
example, much as in the bilinear formulation seen in time-
frequency analysis, one dimension can simply express acous-
tic frequency ω and the other dimension can express a sym-

metric translation of that frequency via the variable η:

S
(
ω − η

2

)
S∗
(
ω +

η

2

)
, (4)

where S(ω) is the Fourier transform of s(t):

S(ω) = F
{
s(t)
} =

∫∞
−∞

s(t)e− jωtdt (5)

and S∗(ω) is the complex conjugate of S(ω). This representa-
tion is similar to the denominator of the spectral correlation
function described by Gardner [27].

Note that there is a loss of sign information in the above
bilinear formulation. For analysis/synthesis applications,
such as in the approaches discussed later in this paper, phase
information needs to be maintained separately.

In the same spirit as previous uses and discussions of
modulation frequency, an ideal two-dimensional represen-
tation Pideal(η,ω) for s(t) should have only significant energy
density at only six points in the (η,ω) plane:

Pideal(η,ω) = δ
(
0, ωc

)
+ δ
(
ωm,ωc

)
+ δ
(− ωm,ωc

)
+ δ
(
0,−ωc

)
+ δ
(
ωm,−ωc

)
+ δ
(− ωm,−ωc

)
,

(6)

that is, jointly at the carrier and modulation frequencies only
with added terms at the carrier frequency for DC modula-
tion, to reflect the above additive offset of the modulating
signal. However, going strictly by the definitions above, the
Fourier transform of the narrowband cosinusoidal modula-
tor s(t) is

S(ω) = F
{
s(t)
} = F

{(
1 + cosωmt

)
cosωct

}

= 1
2

{
δ
(
ω − ωc

)
+ δ
(
ω + ωc

)}

+
1
4

{
δ
(
ω − ωc − ωm

)
+ δ
(
ω − ωc + ωm

)

+ δ
(
ω + ωc + ωm

)
+ δ
(
ω + ωc − ωm

)}
.

(7)
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Figure 2: Spectrogram (left panel) and joint acoustic/modulation frequency representation (right panel) of the central 450 milliseconds
of “two” (speaker 1) and “dos” (speaker 2) spoken simultaneously by two speakers. The y-axis of both representations is standard acoustic
frequency. The x-axis of the right panel representation is modulation frequency, with an assumption of Fourier basis decomposition. Solid
and dashed lines surround speaker 1’s and speaker 2’s respective pitch information.

This transform when expressed as a bilinear formulation
S(ω − η/2)S∗(ω + η/2) has much more extent in both η and
ω than desired. A comparison between the ideal and actual
two-dimensional representation is schematized in Figure 1.

It can be observed from Figure 1 that the representation
S2(ω + η)S∗2 (ω − η) has more impulsive terms than the ideal
representation. Namely, the product S2(ω + η)S∗2 (ω − η) is
underconstrained. To approach the ideal representation, two
conditions need to be added: (1) a kernel which is convolu-
tional inω and (2) a kernel which is multiplicative in η. Thus,
a sufficient condition for the ideal modulation frequency ver-
sus acoustic frequency distribution is

Pideal(η,ω) =
{
S
(
ω − η

2

)
S∗
(
ω +

η

2

)
φm(η)

}
∗ φc(ω). (8)

It is important to note that the above condition does not
require the signal to be simple cosinusoidal modulation. In
principal, any signal

s(t) = m(t)c(t), (9)

wherem(t) is nonnegative and band limited to frequencyω <
|ωm| and c(t) has no frequency content below ωm, can have a
modulation frequency versus acoustic frequency distribution
in the form of the above ideal modulation frequency versus
acoustic frequency distribution. No regions will overlap in
frequency and, assuming separate preservation of phase, s(t)
will be recoverable from Pideal(η,ω).

An example of an implicitly convolutional effect of φc(ω)
is the limited frequency resolution that arises from a trans-
form of a finite duration of data, for example, the windowed
time analysis used before conventional short-time trans-
forms and filter banks. The multiplicative effect of φm(η) is

less obvious. Commonly applied time envelope smoothing
has, as a frequency counterpart, lowpass behavior in φm(η).
Other efficient approaches can arise from decimation al-
ready present in critically sampled filterbanks. Note that the
nonzero terms centered around η = ±2ωc, which are well
above the typical passband of φm(η), are less troublesome
than the typically much lower-frequency quadratic distor-
tion term(s) at η = ±2ωm. Thus, broad frequency ranges in
modulation will be potentially subject to these quadratic dis-
tortion term(s).

4. EXAMPLES OF APPLICATIONS

4.1. An adjunct to the spectrogram

Figure 2 shows a joint acoustic/modulation frequency trans-
form as applied to two simultaneous speakers. Speaker 1
is saying “two” in English while Speaker 2 is saying “dos”
in Spanish. This data is from (http://www.cnl.salk.edu/
∼tewon/Blind/blind audio.html.)

As expected, the spectrogram on the left side of Figure 2
offers little to discriminate the two simultaneous speakers.
However, the right side of Figure 2 shows isolated regions of
acoustic information associated with the fundamental pitch
and its first and aliased harmonics of each of the two speak-
ers. These pitch label locations in acoustic frequency also sep-
arately segment each of the two speaker’s resonance informa-
tion.

4.2. Applications to audio coding

When applied to signals, such as speech or audio, that are ef-
fectively stationary over relatively long periods, a modulation
dimension projects most of the signal energy onto a few low
modulation frequency coefficients. Moreover, mammalian

http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html
http://www.cnl.salk.edu/~tewon/Blind/blind_audio.html
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Figure 3: Simplified structure of the two-dimensional transform used in the new approach to audio coding [36]. The left matrix represents
a magnitude of a perfect reconstruction and critically sampled filterbank. The detection operation previously mentioned was inherent in the
magnitude operation. Signal phase was encoded separately and did not undergo the second transform.

auditory physiology studies have shown that physiological
importance of modulation effects decreases with modula-
tion frequency [19, 20]. While these traits suggest an ap-
proach for ranking the importance of transmitted coeffi-
cients and coding at very low data rates, this past work has
provided an energetic yet not invertible transform. We have
recently devised a transform, which after modification to
a lower bit rate is invertible back to a high-fidelity signal
[36].

This result confirms that there are modulation frequency
transforms that are indeed invertible after quantization.
Moreover, the energy compaction provided by the transform
allows significant added compression. Our design, which is
schematized in Figure 3, allows for essentially CD-quality
music coding at 32 kilobits/second/channel and provides a
progressive encoding which naturally and easily scales to bit
rate changes.

Simple subjective tests were performed [36] and, as seen
in Figure 4, the results suggested that the proposed algo-
rithm performed significantly better quality coding at 32
kilobits/second/channel than MPEG-1 layer 3 (MP3) cod-
ing at 56 kilobits/second/channel. Furthermore, the pro-
posed algorithm was shown to be inherently progressively
scalable, lending itself well to the widely increasing range
of applications where bandwidth cannot be known prior to
coding.

This result represents only a first attempt for using
joint acoustic and modulation frequency concepts in anal-
ysis/synthesis. The result does not just confirm the ex-
pected tolerable quantization of perfect reconstruction, it
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Figure 4: Listener preferences between the proposed algorithm at
32 kbit/s and MP3 at 56 kbit/s. Note that while the proposed algo-
rithm was used at almost 1/2 the bit rate of MP3, a large majority of
listeners preferred it to the higher bit rate MP3.

also demonstrates how quickly this approach has been able
to come close to state-of-the-art performance in audio cod-
ing. We thus expect continuing improvements in quality for
these bit rates.

5. OTHER APPLICATIONS

While our previous examples have focused on single-channel
talker separation and audio compression applications, there
are many other potential opportunities for joint frequency
analysis. These future applications are divided into analysis-
only and analysis/synthesis systems. Some key examples are
given below.
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5.1. Analysis/synthesis systems

Both audio and images compression, as suggested by our
preliminary results, could gain efficiency and flexibility (e.g.,
fine-grained scalability) by compaction in modulation fre-
quency dimensions. Furthermore, as justified earlier, human
perception is less sensitive or insensitive to high modulation
frequencies. Also, as demonstrated by previous researches
[12, 13, 14, 15, 16], psychophysical models indicated lim-
ited resolution and significant masking in modulation fre-
quency. Joint acoustic and modulation frequency also pro-
vides a framework for investigations into human perception.
For example, it cannot necessarily be assumed that psychoa-
coustic masking in the two dimensions of joint frequency
can be accurately predicted from only the product of one-
dimensional functions of standard acoustic frequency mask-
ing and modulation frequency masking. Thus, a framework
for two-dimensional masking studies could provide a new
viewpoint.

Analysis/synthesis approaches could also be used to gen-
erate other novel realistic sounds and images for psychoa-
coustics, hearing and vision science, audiometry and op-
tometry, and entertainment. For example, a music modifi-
cation system, based upon this form of analysis/synthesis,
could generalize the standard notion of an acoustic frequency
equalizer to a two-dimensional joint frequency equalizer.
This joint equalizer could potentially accentuate, attenuate,
or remove musical instruments within ranges of joint fre-
quency. Also, polyphonic combinations of instruments with
acoustic frequency overlap but different rhythmic structure
could be separated. This concept of polyphonic separation
has interesting generalizations to images and video signals.
Thus, we expect that success in joint frequency could help
bridge representations of natural sounds and images to the
structural modeling proposed in MPEG-7 standards.

5.2. Analysis

Joint frequency features can also be used for novel repre-
sentation of signals and images. For an acoustic example,
the work of Kingsbury [37] suggests that modulation spec-
trogram features could be useful for correcting multiplica-
tive reverberant distortions in speech. Other acoustic appli-
cations include speech recognition in noisy environments,
music and speech enhancement, audiology and optometry
testing, and audio fingerprinting [38]. Some image and vi-
sion applications of joint frequency analysis include segmen-
tation and classification under nonuniform lighting condi-
tions. The segmentation and general conversion of naturally
produced material to structural models might also be fa-
cilitated, opening up new possible areas for standards like
MPEG-7 and MPEG-21.

6. SUMMARY AND CONCLUSIONS

Previous work in modulation spectra justifies the impor-
tance of this concept in auditory physiology, psychoacoustics,
speech perception, and signal analysis and synthesis. There is
a remaining need for analysis/synthesis tools which provide

a transform to and from a modulation spectral representa-
tion. Modifications of this representation can thus affect a
novel and general form of filtering which goes well beyond
conventional linear time-invariant filters.

An analysis/synthesis approach ideally requires invert-
ibility and perfect reconstruction. A joint acoustic/mod-
ulation frequency model was outlined along with a set of
minimum attributes for invertibility. This model was vali-
dated via high-quality and efficient performance in audio
coding. It also shows potential for single-channel multiple-
talker speech separation. Other applications were suggested
for acoustic and multimedia signals.

A key future extension of this theory would involve a
combined (or a two-dimensional) spectrotemporal modu-
lation transform. This is intuitively analogous to combin-
ing the modulation spectrum with the well-known cepstral
representation widely used in speech recognition. A more
versatile approach might utilize a two-dimensional wavelet
transform of the time-frequency representation [19, 20].
While it is critical that this representation be invertible in
coding applications, this restriction may not be necessary
in many other applications such as for the recognition of
speech where robustness in noise or utility for segregation
and streaming of competing speech signals might be more
important.
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