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A novel approach for multimicrophone speech dereverberation is presented. The method is based on the construction of the null
subspace of the data matrix in the presence of colored noise, using the generalized singular-value decomposition (GSVD) technique,
or the generalized eigenvalue decomposition (GEVD) of the respective correlation matrices. The special Silvester structure of the
filtering matrix, related to this subspace, is exploited for deriving a total least squares (TLS) estimate for the acoustical transfer
functions (ATFs). Other less robust but computationally more efficient methods are derived based on the same structure and
on the QR decomposition (QRD). A preliminary study of the incorporation of the subspace method into a subband framework
proves to be efficient, although some problems remain open. Speech reconstruction is achieved by virtue of the matched filter
beamformer (MFBF). An experimental study supports the potential of the proposed methods.
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1. INTRODUCTION

In many speech communication applications, the recorded
speech signal is subject to reflections on the room walls and
other objects on its way from the source to the microphones.
The resulting speech signal is then called reverberated. The
quality of the speech signal might deteriorate severely and
this can even cause a degradation in intelligibility. Subse-
quent processing of the speech signal, such as speech cod-
ing or automatic speech recognition, might be rendered use-
less in the presence of reverberated speech. Although single-
microphone dereverberation techniques do exist, the most
successful methods for dereverberation are based on multi-
microphone measurements.

Spatiotemporal methods, which are directly applied to
the received signals, have been presented by Liu et al. [1] and
by Gonzalez-Rodriguez et al. [2]. They consist of a spatial
averaging of the minimum-phase component of the speech
signal and cepstrum domain processing for manipulating
the all-pass component of the speech signal. Other methods
use the linear prediction residual signal to dereverberate the
speech signal [3, 4].

Beamforming methods [5, 6] which use an estimate of
the related acoustical transfer functions (ATFs) can reduce

the amount of reverberation, especially if some a priori
knowledge of the acoustical transfer is given. The average
ATFs of all the microphones prove to be efficient and quite
robust to small speaker movements. However, if this infor-
mation is not available, these methods cannot eliminate the
reverberation completely. Hence, we will avoid using the
small movement assumption in this work as it is not valid
in many important applications.

Subspace methods appear to be the most promising
methods for dereverberation. These methods consist of esti-
mating the null subspace of the data matrix. These null sub-
space vectors are used to extract the ATFs (see, e.g., [7, 8]).
The EVAM algorithm presented by Gürelli and Nikias [9] is
of special interest. As the null subspace vectors are shown
to be filtered versions of the actual ATFs, extraneous zeros
should be eliminated. This is done by the “fractal” method
which is essentially a recursive method for successively elim-
inating these zeros, yielding the correct filters.

The methods presented in this contribution are also
based on null subspace estimation. The special Silvester
structure of the filtering matrix is taken into account to de-
rive several algorithms. Both fullband and subband versions
are derived. A shorter preliminary conference version of the
fullband methods has been published in [10].
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The general dereverberation problem is presented in
Section 2. The proposed method is outlined in Section 3. We
start by deriving a method for constructing the null subspace
in the presence of colored noise. Then, the special struc-
ture of the filtering matrix is exploited to derive a total least
squares (TLS) approach for ATF estimation. Suboptimal pro-
cedures, based on the QR decomposition (QRD), are derived
in Section 4. The use of decimated subbands for reducing
the complexity of the algorithm and increasing its robustness
is explored in Section 5. A reconstruction procedure, based
on the ATFs’ matched filter and incorporated into an exten-
sion of the generalized sidelobe canceller (GSC) is proposed in
Section 6. The derivation of the algorithms is followed by an
experimental study presented in Section 7.

2. PROBLEM FORMULATION

Assume a speech signal is received by M microphones in a
noisy and reverberating environment. The microphones re-
ceive a speech signal which is subject to propagation through
a set of ATFs and contaminated by additive noise. TheM re-
ceived signals are given by

zm(t) = ym(t) + nm(t)

= am(t)∗ s(t) + nm(t)

=
na∑
k=0

am(k)s(t − k) + nm(t),

(1)

wherem = 1, . . . ,M, t = 0, 1, . . . , T , zm(t) is themth received
signal, ym(t) is the corresponding desired signal part, nm(t)
is the noise signal received in themth microphone, s(t) is the
desired speech signal, and T + 1 is the number of samples
observed. The convolution operation is denoted by ∗. We
further assume that the ATFs relating the speech source and
each of the M microphones can be modelled as an FIR filter
of order na, with taps given by

aTm =
[
am(0), am(1), . . . , am

(
na
)]
, m = 1, 2, . . . ,M. (2)

Define also the Z-transform of each of theM filters as

Am(z) =
na∑
k=0

am(k)z−k, m = 1, 2, . . . ,M. (3)

All the involved signals and ATFs are depicted in Figure 1.
The goal of the dereverberation problem is to reconstruct
the speech signal s(t) from the noisy observations zm(t),
m = 1, 2, . . . ,M. In this contribution, we will try to achieve
this goal by first estimating the ATFs, am, followed by a sig-
nal reconstruction scheme based on these ATFs estimates.
Schematically, an ATF estimation procedure, depicted in
Figure 2, is searched for.

3. ATF ESTIMATION—ALGORITHMDERIVATION

In this section, the proposed algorithm is derived in several
stages. First, it is shown that the desired ATFs are embedded
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Figure 1: The general dereverberation problem.
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Figure 3: Null subspace in the two-microphone noiseless case.

in a data matrix null subspace. Then, the special structure
of the null subspace is exploited to derive several estimation
methods. We start our discussion with the special case of the
problem, namely, the two-microphone noiseless case. We pro-
ceed through the two microphones contaminated by colored
noise case. Then the general multimicrophone colored noise
case is addressed. Special treatment for the case when only
part of the null subspace vectors are determined concludes
this section.

3.1. Two-microphone noiseless case

In this section, we lay the foundations of the algorithm by
showing that the desired ATFs are embedded in the null sub-
space of a signal data matrix. This proof is merely a repetition
of previously established results (see, e.g., [9]), but in a more
intuitive way of presentation.



1076 EURASIP Journal on Applied Signal Processing

3.1.1. Preliminaries

The two-microphone noiseless case is depicted in Figure 3.
The noiseless signals ym(t), as can be seen from the left-hand
side of the figure, are given by

y1(t) = a1(t)∗ s(t),

y2(t) = a2(t)∗ s(t).
(4)

Clearly, as depicted in the right-hand side of Figure 3, the
following identity holds:

[
y2(t)∗ a1(t)− y1(t)∗ a2(t)

]∗ el(t) = 0, (5)

where el(t), l = 0, 1, 2, . . . , are arbitrary and unknown fil-
ters, the number and the order of which will be discussed
in the sequel. It is evident that filtered version of the desired
ATFs, subject to the constraint that the arbitrary filters el(t)
are common to all the microphone, might result in zero out-
put. This observation was previously shown in [7, 8, 9].

Define the (n̂a + 1) × (T + n̂a + 1) single-channel data
matrix

�m =



ym(0) ym(1) · · · ym
(
n̂a
)

ym
(
n̂a + 1

) · · · ym(T) 0 · · · 0

0 ym(0) ym(1) · · ·
...

... · · · ym(T) 0 0

... 0
. . .

. . .
. . .

...

0
. . .

...
. . . 0

. . .

0 · · · 0 ym(0) ym(1) · · · ym
(
n̂a
) · · · ym(T)


. (6)

Note that, as the ATFs order na is unknown, we use instead an
(over-) estimated value n̂a. An estimate of the correct order
would be a product of the proposed algorithm. We assume
that the inequality n̂a ≥ na holds, that is, the ATFs order is
always overestimated. Define also the two-channel data ma-
trix

� =
[

�2

−�1

]
. (7)

The 2(n̂a+1)×2(n̂a+1) correlation matrix of the data is thus
given by R̂y = ��T/(T + 1).

Now, following [7, 9], the null subspace of the correlation
matrix can be calculated by virtue of the eigenvalue decom-
position (EVD). Let λl, l = 0, 1, . . . , 2n̂a + 1, be the eigenval-
ues of the correlation matrix R̂y . Then, by sorting them in
ascending order, we have

λl = 0, l = 0, 1, . . . , n̂a − na,

λl > 0, otherwise.
(8)

Thus, as proven by Gurelli and Nikias [9], the rank of the
null subspace of the correlation matrix is n̂a − na + 1. This
rank is useful for determining the correct ATFs order na. We
note that the singular-value decomposition (SVD) of the data
matrix � might be used instead of the EVD for determining
the null subspace. The SVD is generally regarded as a more
robust method.

Denote the null subspace vectors (eigenvectors corre-
sponding to zero eigenvalues or singular values) by gl for
l = 0, 1, 2, . . . , n̂a − na. Then, splitting each null subspace

vector into two parts of equal length n̂a + 1, we obtain

� =
[
g0 g1 · · · gn̂a−na

]
=
[
ã1,0 ã1,1 · · · ã1,n̂a−na
ã2,0 ã2,1 · · · ã2,n̂a−na

]
. (9)

Each of the vectors ãm,l represents a null subspace filter of
order n̂a:

Ãml(z) =
n̂a∑
k=0

ãml(k)z−k, l = 0, 1, . . . , n̂a − na, m = 1, 2.

(10)

From the above discussion, these null subspace filters may be
presented in the following product:

Ãml(z) = Am(z)El(z), l = 0, 1, . . . , n̂a − na, m = 1, 2.
(11)

Thus, the zeros of the filters Ãml(z) extracted from the null
subspace of the data contain the roots of the desired filters as
well as some extraneous zeros. This observation was proven
by Gurelli and Nikias [9] as the basis of their EVAM algo-
rithm. It can be stated in the following lemma (for the gen-
eralM channel case).

Lemma 1. Let ãml be the partitions of the null subspace eigen-
vectors intoM vectors of length n̂a+1, with Ãml(z) their equiva-
lent filters. Then, all the filters Ãml(z) for l = 0, . . . , n̂a−na have
na common roots, which constitute the desired ATFsAm(z), and
n̂a−na different extraneous roots, which constitute El(z). These
extraneous roots are common for all partitions of the same vec-
tor, that is, Ãml(z) form = 1, . . . ,M.
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Under several regularity conditions (stated, e.g., by
Moulines et al. [7]), the filters Am(z) can be found. An ob-
servation of special interest is that common roots of the fil-
ters Am(z) cannot be extracted by the algorithm as they are
treated as the extraneous roots which constitute El(z). Al-
though this is a drawback of the method, we will take benefit
of it while constructing a subband structure in Section 5.

In matrix form, equation (11) may be written in the fol-
lowing manner. Define the (n̂a + 1) × (n̂a − na + 1) Silvester
filtering matrix (recall that we assume n̂a ≥ na)

�m =



am(0) 0 0 · · · 0

am(1) am(0) 0 · · · 0
... am(1)

. . .
...

am
(
na
) ...

. . .
. . . 0

0 am
(
na
) . . . am(0)

... 0 am(1)

...
. . .

...

0 0 · · · 0 am
(
na
)


︸ ︷︷ ︸

n̂a−na+1

. (12)

Then,

ãml = �mel , (13)

where eTl =
[
el(0) el(1) · · · el(n̂a − na)

]
are vectors of the

coefficients of the arbitrary unknown filters El(z). Thus, the
number of different filters (as shown in (11)) is n̂a − na + 1
and their order is n̂a − na. Using Figure 3 and identity (5),
and denoting

� =
[
e0 e1 · · · en̂a−na

]
, (14)

we conclude that

� =
[

�1

�2

]
�
�= ��, (15)

where � is an unknown (n̂a−na+1)×(n̂a−na+1)matrix. We
note that in the special case when the ATFs order is known,
that is, n̂a = na, there is only one vector in the null subspace
and its partitions ãm0, m = 1, . . . ,M, are equal to the desired
filters am up to a (common) scaling factor ambiguity. In the
case where n̂a > na, the actual ATFs Am(z) are embedded in
Ãml(z), l = 0, 1, . . . , n̂a − na. The case n̂a < na could not be
treated properly by the proposed method.

The special structure depicted in (15) and (12) forms the
basis of our suggested algorithm.

3.1.2. Algorithm

Based on the special structure of (15) and, in particular, on
the Silvester structure of �1 and �2, found in (12), we derive
now an algorithm for finding the ATFs Am(z).

Note that � in (15) is a square and arbitrary matrix, im-
plying that its inverse usually exists. Denote this inverse by

�i = inv(�). Then

��i = �. (16)

Denote the columns of �i by �i =
[
ei0 ei1 · · · ein̂a−na

]
.

Equation (16) can be then rewritten as

�̃x = 0, (17)

where �̃ is defined as

�̃ =



� � · · · · · · · · · � −�(0)

� � � · · · · · · � −�(1)

... �
. . .

...
...

...
...

. . .
. . .

...
...

...
...

. . .
. . . �

...

� � · · · · · · � � −�n̂a−na


(18)

and the vector of unknowns is defined as

xT =
[
ei0

T
ei1

T · · · ein̂a−na
T

a1T a2T
]
, (19)

where 0 is a vector of zeros: 0T = [0 0 · · · 0]. We used the
following expressions: � is a 2(n̂a+1)× (n̂a−na+1) all-zeros
matrix and �(l), l = 0, 1, . . . , n̂a−na, is a fixed shifting matrix
given by

�(l) =



�l×(na+1)
I(na+1)×(na+1)

�(n̂a−na−l)×(na+1)
�(n̂a+1)×(na+1)

�(n̂a+1)×(na+1)

�l×(na+1)
I(na+1)×(na+1)

�(n̂a−na−l)×(na+1)


, (20)

where I(na+1)×(na+1) is the (na + 1)× (na + 1) identity matrix.
A nontrivial (and exact) solution for the homogenous set of
(17) may be obtained by finding the eigenvector of the ma-
trix �̃ corresponding to its zero eigenvalue. The ATF coeffi-
cients are given by the last 2(na+1) terms of this eigenvector.
The first part of the eigenvector is comprised of the nuisance
parameters eil, l = 0, 1, . . . , n̂a − na. In the presence of noise,
the somewhat nonstraightforward procedure will prove to be
useful.

3.2. Twomicrophone noisy case

Recall that � is a matrix containing the eigenvectors corre-
sponding to zero eigenvalues of the noiseless data matrix. In
the presence of additive noise, the noisy observations zm(t),
given in (1), can be stacked into a data matrix fulfilling

� = � + �, (21)

where � and � are noisy signal and noise-only signal data
matrices, respectively, given by
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�m =



zm(0) zm(1) · · · zm
(
n̂a
)

zm
(
n̂a + 1

) · · · zm(T) 0 · · · 0

0 zm(0) zm(1) · · ·
...

... · · · zm(T) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .
0 · · · 0 zm(0) zm(1) · · · zm

(
n̂a
) · · · zm(T)


,

�m =



nm(0) nm(1) · · · nm
(
n̂a
)

nm
(
n̂a + 1

) · · · nm(T) 0 · · · 0

0 nm(0) nm(1) · · ·
...

... · · · nm(T) 0 0
... 0

. . .
. . .

. . .
...

0
. . .

...
. . . 0

. . .
0 · · · 0 nm(0) nm(1) · · · nm

(
n̂a
) · · · nm(T)


.

(22)

Now, for a long observation time, the following approxima-
tion holds:

R̂z ≈ R̂y + R̂n, (23)

where R̂z = ��T/(T + 1) and R̂n = ��T/(T + 1) are the
noisy signal and noise-only signal correlation matrices, re-
spectively. Now, (17) will not be accurate anymore. First, the
null subspace matrix � should be determined in a slightly
different manner than suggested in (8). The white noise and
colored noises cases are treated separately in the sequel. Sec-

ond, the matrix �̃ will not in general have an eigenvalue
of value 0. A reasonable approximation for the solution, al-
though not exact, would be to transform (17) into the fol-
lowing problem:

�̃x = µ, (24)

where µ is an error term, which should be minimized. To ob-
tain this minimization, the eigenvector corresponding to the
smallest eigenvalue is chosen, and the desired ATFs are ob-
tained from the last part of the vector (as in the noiseless
case). Note that this is exactly the total least squares (TLS)
approach for estimating the parameters. As the matrix �̃ is
highly structured, more efficient structured total least squares
(STLS) methods [11] are called for. This issue will not be
treated in this work anymore.

3.2.1. White noise case

In the case of spatiotemporally white noise—that is, R̂n ≈
σ2I , where I is the identity matrix—the first n̂a−na+1 eigen-
values in (8) will be σ2 instead of zero. The corresponding
eigenvectors will remain intact. Thus, the algorithm remains
unchanged.

3.2.2. Colored noise case

The case of nonwhite noise signal was addressed in [7, 9]. In
contrast to the noise balancing method presented in [9] and
the prewhitening of the noise correlation matrix presented

in [7], the problem is treated here more rigourously, with
the application of the generalized eigenvalue decomposition
(GEVD) or generalized singular-value decomposition (GSVD)
techniques. These alternative methods are computationally
more efficient. We suggest to use the GEVD of the measure-
ment correlation matrix Rz and the noise correlation matrix
Rn (usually, the latter is estimated from speech-free data seg-
ments). The null subspace matrix � is formed by choosing
the generalized eigenvectors related to the generalized eigen-
values of value 1. Alternatively, the GSVD of the correspond-
ing data matrices � and � can be used. After determining
the null subspace matrix, subsequent steps of the algorithm
remain intact.

3.3. Multimicrophone case (M > 2)

In the multimicrophone case, a reasonable extension would
be based on channel pairing (see [9]). Each of the pairs
M × (M − 1)/2 fulfills[

yi(t)∗ aj(t)− yj(t)∗ ai(t)
]∗ el(t) = 0

i, j = 1, 2, . . . ,M; l = 0, 1, . . . , n̂a − na.
(25)

Thus, the new data matrix would be constructed as follows:

� =

�2 �3 · · · �M � · · · � · · · �
−�1 � · · · �3 · · · �M �

� −�1 −�2 �
...

... �
. . .

... �
...

. . . � �M

� � · · · −�1 · · · −�2 · · · −�M−1


,

(26)

where � here is an (n̂a + 1) × (T + n̂a + 1) all-zero matrix.
This data matrix, as well as the corresponding noise matrix,
can be used by either the GEVD or the GSVD methods to
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construct the null subspace. Denoting this null subspace by
�, we can construct a new TLS equation:

�̃x = µ, (27)

where �̃ is constructed in a similar way as �̃ was constructed
in (18). The vector of unknowns x is given by

xT =
[
ei0

T
ei1

T · · · ein̂a−na
T

a1T a2T · · · aMT
]
. (28)

Note that the last M × (na + 1) terms of x are the required
filter coefficients am,m = 1, 2, . . . ,M.

3.4. Partial knowledge of the null subspace

In the noisy case, especially when the dynamic range of the
input signal s(t) is high (which is the case for speech sig-
nals), determination of the null subspace might be a trouble-
some task. As there are no zero eigenvalues, and as some of
the eigenvalues are small due to the input signal, the border-
line between the signal eigenvalues and the noise eigenvalues
becomes vague. As the number of actual null subspace vec-
tors is not known in advance, using only a subgroup of the
eigenvectors, which are associated with the smallest eigenval-
ues, might increase the robustness of the method. Based on
Lemma 1, it is obvious that, in the noiseless case, even two
null subspace vectors are sufficient to estimate the ATFs just
by extracting their common zeros. Denote by L̄ < n̂a−na the
number of eigenvectors used. The matrix � in (15) is then
of dimensions (n̂a − na + 1) × L̄, and is thus noninvertible.
To overcome this problem, we suggest concatenating several
shifted versions of (15) in the following manner:

�̄ =



� 0 0 0
0 � 0 0
...

. . . 0
. . .

...
0 �


= �̄



� 0 0 0
0 � 0 0
...

. . . 0
. . .

...
0 �


︸ ︷︷ ︸

L>n̂a−na+l̂

= �̄�̄.

(29)

The new dimensions of �̄ is L × (n̂a − na + l̂), where l̂ is the
number of blocks added. Each block adds 1 to the row di-
mension and L̄ to the column dimension.

The matrix �̄ has a similar structure as � in (12) and
(15) but with more columns. The resulting matrix �̄ has now
more columns than rows and thus can generally be pseudo-
inverted:

�Pi = Pinv
(
�̄
) = �̄

T(
�̄�̄

T)−1
, (30)

resulting in

�̄�Pi = �̄. (31)

Now the extended matrix �̄ can be used in (24) instead of �
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to construct �̃ in a similar manner to (18). Subsequent stages
of the algorithm remain intact.

4. A SUBOPTIMALMETHOD—THE QR
DECOMPOSITION AND ESTIMATES AVERAGING

Recall that the special structure of the filtering matrix � was
the basis for the TLS approach. In this section, a newmethod
is derived for the estimate of the ATFs, which is computa-
tionally more efficient although less robust. We rely again on
the fact that each column of the Silvester matrix is a delayed
version of the previous one. Thus, in the noiseless case, it is
enough to extract one of the columns. In the noisy case, each
column may be different. Thus extracting all the columns
might give several slightly different estimates. We can take
the median (or average) of these estimates to increase the ro-
bustness.

4.1. Complete knowledge of the null subspace

Apply the transpose operation to (15),

�T = �T�T . (32)

As �T is an arbitrary matrix, it will usually have a QRD. De-
note �T = Q�R�. Then,

�T = Q�R��T = Q�R�, (33)

where R� = R��T is also an upper triangular matrix since it
consists of a multiplication of two upper triangular matrices.
Since the QRD is unique, equation (33) constitutes the QRD
of �T . As R� is a square and upper triangular matrix, it has
only one nonzero element in its last row. Therefore, the last
row of R� will be a scaled version of the last column of �.
This last column consists of a concatenation of the vectors
am,m = 1, 2, . . . ,M, each preceded by n̂a − na zeros.
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Figure 5: Null subspace in the two-microphone noiseless case.
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Figure 6: Extended GSC structure for joint noise reduction and dereverberation.
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(1) Estimate ATFs: Am(e jω),m = 1, 2, . . . ,M.

Define A(t, e jω) =
[
A1(t, e jω) A2(t, e jω) · · · AM(t, e jω)

]
.

(2) Fixed beamformer (FBF)W0(t, e jω) = A(t, e jω)
‖A(t, e jω)‖2 .

FBF output: YFBF(t, e jω) =W†
0 (e jω)Z(t, e jω).

(3) Noise reference signals:
Um(t, e jω) = A1(e jω)Zm(t, e jω)− Am(t, e jω)Z1(t, e jω);m = 2, . . . ,M.

(4) Output signal: Y(t, e jω) = YFBF(t, e jω)−G†(t, e jω)U(t, e jω).
(5) Filters update. Form = 1, . . . ,M − 1:

G̃m(t + 1, e jω) = Gm(t, e jω) + µ
Um(t, e jω)Y∗(t, e jω)

Pest(t, e jω)

Gm(t + 1, e jω)
FIR←−− G̃m(t + 1, e jω)

where, Pest(t, e jω) = ρPest(t − 1, e jω) + (1− ρ)
∑

m |Zm(t, e jω)|2.
(6) Keep only nonaliased samples, according to the overlap and savemethod [12].

Algorithm 1: Summary of the TF-GSC algorithm.

For extracting the other columns of the matrix �, we use
rotations of the null subspace matrix �. Note that the QRD
procedure will extract the rightmost column of � regardless
of its Silvester structure. Define theK×K row rotationmatrix

JK =



0 0 · · · 0 1

1 0 · · · 0

0
. . . 0 · · · 0

... 0
. . .

...

0 · · · 1 0


. (34)

It is obvious that left multiplication of a K-row matrix by
JkK will rotate its rows downwards k times, while right mul-
tiplication of an L-columns matrix by (J lL)

T will rotate its
columns rightwards l times. Lemma 2 can now be used to
extract an estimate of the ATFs.

Lemma 2. Compute the QRD of the transpose of the k-times
(k ≤ n̂a − na + 1) row-rotated null subspace matrix �. The
last row of the R matrix equals the kth column (counting from
the rightmost column) of the filtering matrix � up to a scaling
factor.

The proof of this lemma follows.

Proof. Rotate the M(n̂a + 1) × (n̂a − na + 1) null subspace
matrix � not more than n̂a − na + 1 times. Then,

�R = JkM(n̂a+1)� = JkM(n̂a+1)��. (35)

Exploiting the orthogonality of the matrices JkK , we have

�R = JkM(n̂a+1)�
(
Jkn̂a−na+1

)T
Jkn̂a−na+1�. (36)

Then, applying the transpose operation,

(
�R
)T = (Jkn̂a−na+1�)T(JkM(n̂a+1)�

(
Jkn̂a−na+1

)T)T
. (37)

Now assume a QRD for the first term (although � is not
known),

(
Jkn̂a−na+1�

)T = QR . (38)

Then,

(
�R
)T = QR

(
JkM(n̂a+1)�

(
Jkn̂a−na+1

)T)T = QR̃. (39)

The last row of (JkM(n̂a+1)�(Jkn̂a−na+1)
T)T is the kth column

(counting from the rightmost column) �T , provided that
k ≤ n̂a−na+1 and it is still an upper triangular matrix. Thus,
the same statements regarding the nonrotated matrices apply
for the rotated matrices.

By rotating through all the columns of matrix �, several
estimates of the desired filter are obtained. An average or a
median of these estimates can be used to obtain a more ro-
bust estimate.

4.2. Partial knowledge of the null subspace

As in the TLS approach, we may want to use only part of the
null subspace vectors. Assume that we have only two of these
null subspace vectors,

�̆ = ��̆, (40)

where �̆ is an M(n̂a + 1) × 2 matrix and �̆ is an (n̂a − na +
1) × 2 matrix. Since �̆ is not a square matrix, the algorithm
of Section 4.1 is not applicable anymore.

Let

�̆
T =

(ã1,0)T (
ã2,0
)T · · · (ãM,0

)T(
ã1,1
)T (

ã2,1
)T · · · (ãM,1

)T
 . (41)

Each of the vectors ãm,l represents a null subspace filter of
order n̂a. Since there are only two rows, applying the QRD to
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�̆
T
will yield the following R�̆ matrix:

R�̆ =
 · · · · · ·[

0
(
ã′1,1
)T] [

0
(
ã′2,1
)T] · · ·

[
0
(
ã′M,1

)T]
 . (42)

Note that now ã′m,1 relate to filters that have an order which
is lower than their corresponding filters ãm,1 by 1. As the first
row R�̆ is not important, it is not presented. To further re-
duce the order by virtue of another QRD application, we
need another set of filtered version of the ATFs. This set may
be obtained in several ways. One possibility (although others
are also applicable) is to rotate each part of �̆, that is, ãm,l,
downwards and apply the QRD again. After this two-steps
stage, we obtain a shorter null subspace

�̆′
T =

(ã′1,0)T (
ã′2,0
)T · · · (ã′M,0

)T(
ã′1,1
)T (

ã′2,1
)T · · · (ã′M,1

)T
 . (43)

This process is repeated n̂a − na times until the correct or-
der is reached and only a common scale factor ambiguity re-
mains. This method has an appealing structure since the ex-
tra roots are eliminated recursively, one in each stage of the
algorithm. Each stage of the recursion is similar to the previ-
ous one. This property resembles the “fractal” nature of the
EVAM algorithm [9].

5. SUBBANDMETHOD

The proposedmethod, although theoretically supported, can
have several drawbacks in real-life scenarios. First, actual
ATFs in real room environments may be very long (1000–
2000 taps are common in medium-sized room). In such a
case, the GEVDprocedure is not robust enough and it is quite
sensitive to small errors in the null subspace matrix [13].
Furthermore, the matrices involved become extremely large
causing huge memory and computation requirements. An-
other problem is the speech signal wide dynamic range. This
may result in erroneous estimates of the frequency response
of the ATFs in the low energy parts of the input signal.

Thus, frequency domain approaches are called for. In this
section, we suggest incorporating the TLS subspace method
into a subband structure. The use of subbands for splitting
adaptive filters, especially in the context of echo cancellation,
has gained recent interest in the literature [14, 15, 16, 17].
However, the use of subbands in subspace methods is not
that common. The design of the subbands is of crucial im-
portance. Special emphasis should be given to adjusting the
subband structure to the problem at hand. In this contribu-
tion, we only aim at demonstrating the ability of the method,
thus only a simple eight-channel subband structure was used
as depicted in Figure 4. Each of the channel filters is an FIR
filter of order 150. The filters are equispaced along the fre-
quency axis and are of equal bandwidth.

Now the M microphone signals are filtered by the sub-
band structure. The subspace methods presented above can
be applied on each subband signal separately. Although the
resulting subband signal corresponds to a longer filter (which
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Figure 7: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 32. Results with speech-like
noise input using fullband method at SNR = 45dB.
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Figure 8: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 32. Results with white noise
input using fullband method at SNR = 35dB.
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Figure 9: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 8. Results with white noise
input using fullband method at SNR = 25dB.
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Figure 10: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 16. Results with speech-like
noise input using QRD method at SNR = 45dB.
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Figure 11: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 8. Results with speech-like
noise input using QRD method at SNR = 35dB.
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Figure 12: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 32. Results with speech-like
input using EVAMmethod at SNR = 45dB.
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Figure 13: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 32. Results with speech-like
input using EVAMmethod at SNR = 35dB.
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Figure 14: Real and estimated frequency response of an ATF with
exponential decaying envelope of order 32. Results with speech-like
input using subband method (separate bands) at SNR = 25dB.
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Figure 15: Real and estimated frequency response of an arbi-
trary ATF with exponential decaying envelope of order 32. Results
with speech-like input using subband method (combined bands) at
SNR = 25dB.
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Figure 16: Real and estimated frequency response of an arbitrary
ATF of order 32. Results with speech signal input using fullband
method at SNR = 50dB.
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Figure 17: Dereverberated speech signal due to the filtering by the
ATF of order 32 with speech signal input using subband method at
SNR = 50dB.

is the convolution of the corresponding ATF and the subband
filter), the algorithm aims at reconstructing the ATF alone,
ignoring the filterbank roots. This is due to the fact that the
subband filter is common for all channels. Recall that sub-
space methods are blind to common zeros, as discussed in
Section 3. For properly exploiting the benefits of the sub-
band structure, each subband signal should be decimated.
We took a critically decimated filterbank, that is, decimation
factor equals the number of bands. By doing so, the ATF or-
der in each band is reduced by approximately the decimation
factor, making the estimation task easier. Note that now we
need only to overestimate the reduced order of the ATFs in
each subband rather than the fullband order. Another bene-
fit arises from the decimation. The signals in each subband
are flatter in the frequency domain, making the signals pro-
cessed whiter, and thus enabling lower dynamic range and
resulting in improved performance. After estimating the dec-
imated ATFs, they are combined together using a proper syn-
thesis filterbank comprised of interpolation followed by fil-
tering with a filterbank similar to the analysis subband filters.
The overall subband system is depicted in Figure 5, where the
ATF estimation block is shown schematically in Figure 2.

Gain ambiguity may be a major drawback of the subband
method. Recall that all the subspace methods are estimating
the ATFs only up to a common gain factor. In the fullband
scheme, this does not impose any problem since it results in
overall scaling of the output. In the subband scheme, the gain
factor is common for all subband signals but is generally dif-
ferent from band to band. Thus, the estimated ATFs (and the
reconstructed signal) are actually filtered by a new arbitrary
filter, which can be regarded as a new reverberation term.
Several methods can be applied to overcome this gain am-
biguity problem. First, the original gain of the signals in each
subbandmay be restored as an approximate gain adjustment.
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Another method was suggested by Rahbar et al. [18]. The
method imposes the resulting filters to have as few taps as
possible (actually, the filters are constrained to be FIR). The
order of these filters should be determined in advance. As
we do not have this information, we suggest using the ATFs
order estimation obtained by the subspace method. The use
of this method is a topic of further research. As far as this
paper goes, the gain ambiguity problem is ignored, and we
will assume that the gain in each subband is known. Thus we
would only demonstrate the ability of the method to estimate
the frequency shaping of the method in each band.

6. SIGNAL RECONSTRUCTION

Having the estimated ATFs, we can invert them and apply the
inverse filter to the received signals to obtain the desired sig-
nal estimate. A method for inverting multichannel FIR filters
by a multichannel set of FIR filters is presented in [19].

We use instead a frequency-domain method. Rewrite (1)
in time-frequency presentation using the short time Fourier
transform (STFT):

Zm
(
t, e jω

) = Am
(
t, e jω

)
S
(
t, e jω

)
+Nm

(
t, e jω

)
. (44)

Eliminating the reverberation term can be obtained by a
matched filter beamformer (MFBF):

Ŝ
(
t, e jω

) = 1∑M
m=1

∣∣Âm
(
t, e jω

)∣∣2
M∑

m=1
Zm
(
t, e jω

)
Â∗m
(
t, e jω

)
= S

(
t, e jω

) 1∑M
m=1

∣∣Âm
(
t, e jω

)∣∣2
×

M∑
m=1

Am
(
t, e jω

)
Â∗m
(
t, e jω

)
+

1∑M
m=1

∣∣Âm
(
t, e jω

)∣∣2
M∑

m=1
Nm
(
t, e jω

)
Â∗m
(
t, e jω

)
.

(45)

It is easily verified that if the estimation of the ATFs is suf-
ficiently accurate, that is, Âm(t, e jω) 	 Am(t, e jω), then the
first term in (45) becomes S(t, e jω) and dereverberation is ob-
tained. The second term is a residual noise term, which can
even be amplified by the procedure. To achieve a better esti-
mation of the speech signal, when noise is present, we suggest
incorporating the procedure into the recently proposed ex-
tended GSC, derived by Gannot et al. [20], shown schemati-
cally in Figure 6 and summarized in Algorithm 1. This GSC-
based structure enables the use of general ATFs rather than
delay-only filters in order to dereverberate the speech signal
and to reduce the noise level. It consists of a fixed beam-
former branch—which is essentially the MFBF described in
(45), a noise reference construction block—which uses the
ATFs ratios (note that Um(t, e jω) contain only noise terms),
and a multichannel noise canceller branch (consisting of the
filters Gm(t, e jω)). The use of the GSC structure is only es-
sential when the noise level is relatively high, otherwise, the
MFBF branch produces sufficiently accurate estimate.

7. EXPERIMENTAL STUDY

The validity of the proposed methods was tested using var-
ious input signals and ATFs modelled as an FIR filters
with exponential decaying envelope, and compared with the
EVAM algorithm [9]. This input signal consisted of either
white noise, speech-like noise (white signal colored to have a
speech-like spectrum, drawn from the NOISEX-92 database
[21]), or a real speech signal comprised of a concatenation of
several speech signals drawn from the TIMIT database [22].
The input signal was 32000 samples long (corresponding to
4 seconds for the 8-kHz sampled speech signal, including si-
lence periods). Three-microphone signals were simulated by
filtering the input signal by various ATFs. In most applica-
tions, the order of realistic ATFs is at least several hundred
taps. However, our method (as well as other methods in the
literature) is incapable of dealing with this order. Thus, we
settled for short ATFs of order of either 8, 16, or 32. To ap-
proximate more realistic scenario, we used ATFs with expo-
nential decaying envelope. Various SNR levels were taken to
test the robustness of the algorithms to additive noise. Tem-
porally nonwhite but spatially white (i.e., no correlation be-
tween noise signals at the microphones) noise signals were
used. The noise correlation matrix was estimated using sig-
nals drawn from the same source but at different segments.
The basic fullband algorithm (using all the null subspace vec-
tors or only part of them) as well as QRD-based algorithms
(again, with all the vectors or only part of them) were tested
and compared with the state-of-the-art EVAM algorithm.
Then, the subband-based algorithm was evaluated to con-
firm its ability to comprehend longer filters. The gain ambi-
guity problem was not addressed in this experimental study,
and the gain levels in the various bands were assumed to be
known a priori (see also [5]).

The frequency response of the real ATFs compared with
the estimated ATFs for the fullband algorithm is depicted in
Figures 7, 8, and 9 for SNR levels of 45 dB, 35 dB, and 25dB,
respectively. The filter order was overestimated by 5, that is,
n̂a − na = 5 in all cases. While the estimation with speech-
like noise (with a wide dynamic range) is quite good at the
higher SNR level and filter order 32 (Figure 7), when the SNR
decreases to 35 dB, the performance is maintained only with
a white noise input signal (Figure 8). For SNR level of 25 dB,
the algorithm fails to work with the longer filter and its order
had to be reduced to only 8 (Figure 9). The sensitivity to the
noise level is thus clearly indicated.

Results for the suboptimal QRD-based algorithm are de-
picted in Figure 10 for the speech-like input and an SNR level
of 45 dB, and in Figure 11 for a white noise input and an SNR
level of 35 dB. The QRD-based method is more sensitive to
the noise level. At 45 dB, good results could be obtained only
with filter of order 16, and at 35 dB, only with filter order of 8.

In all cases, using only part of the null subspace vec-
tors yielded reduced performance. Therefore, we omit results
concerning these experiments from the presentation.

For comparison, we used the EVAM algorithm, while
successively reducing the overestimation of the filter order in
their fractal-basedmethod as explained in [9]. Results for the
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speech-like input are depicted in Figures 12 and 13 for SNR
levels of 45 dB and 35dB, respectively. It is clearly shown that,
while high performance of the EVAM algorithm is demon-
strated, degradation is encountered at the lower SNR level,
especially at the high-frequency range where the input signal
content is low.

The incorporation of the subspace method into a sub-
band structure is depicted in Figures 14 and 15. We used
the eight-subband structure shown in Figure 4. The decima-
tion in each channel by a factor of 8 (critically decimated)
allowed for a significant order reduction. In particular, the
correct order of the filter in each channel was only 4. In this
case, we overestimated the correct order only by 2, since the
null subspace determination is less robust. In Figure 14, the
subband structure is depicted, and the estimated response is
given in each band separately. In Figure 15, all the bands are
combined to form the entire frequency response of the ATFs.
The results demonstrate the ability of the algorithm to work
well at lower SNR levels (25 dB) while the filter order is still
relatively high (na = 32), even for the speech-like signal. It is
worth noting that errors in the frequency response aremainly
encountered in the transition regions between the frequency
bands. This phenomenon should be explored indepth to en-
able a filterbank design, which is more suited to the problem
at hand.

Finally, the fullband algorithm is tested with real speech
signal. For demonstrating the dereverberation ability we used
a high SNR level (50 dB) and na = 32. The frequency re-
sponse of the estimated filter is depicted in Figure 16 for the
fullband method. The dereverberated speech signal is shown
in Figure 17. It is clearly shown from the figure, that while the
microphone signal is different from the original signal (due
to the filtering by the ATF), the dereverberated signal resem-
bles it. This is also supported by a more than 12dB decrease
in the power of the difference.

8. CONCLUSIONS

A novel method for speech dereverberation based on null
subspace extraction (applying either GSVD to a noisy data
matrix or GEVD to the corresponding correlation matrix) is
suggested. An ATF estimation procedure is obtained by ex-
ploiting the special Silvester structure of the corresponding
filtering matrix by using TLS fitting. An alternative, more ef-
ficient method, is proposed, based on the same null subspace
structure and on the QRD. The TLS approach, although im-
posing a high computational burden, is found to be superior
to the cheaper QRD method. The desired signal is obtained
by incorporating the estimated ATFs into an extended GSC
structure.

Of special interest is the subband framework, in which
the ATF estimation is done in each decimated band sepa-
rately and then combined to form the fullband ATFs. This
technique allows an increase of the filter order which can be
treated by the proposed system while maintaining good per-
formance even with real speech signals and higher noise lev-
els. This method still suffers from the gain ambiguity prob-
lem, and thus, should be further explored. Unfortunately,

this issue is left for further research. However, we note that
such subband structure might be incorporated into other
methods as well (e.g., the EVAM algorithm). An experimen-
tal study supports the above conclusions. It is worth men-
tioning that the method (as well as other methods in the lit-
erature) should be further explored and tested in actual sce-
narios where the ATFs are more realistic and much longer.
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