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Applying the fractional Fourier transform (FRFT) and the Wigner distribution on a signal in a cascade fashion is equivalent to a
rotation of the time and frequency parameters of the Wigner distribution. We presented in ter Morsche and Oonincx, 2002, an
integral representation formula that yields affine transformations on the spatial and frequency parameters of the n-dimensional
Wigner distribution if it is applied on a signal with the Wigner distribution as for the FRFT. In this paper, we show how this
representation formula can be used to solve certain energy localization problems in phase space. Examples of such problems are
given by means of some classical results. Although the results on localization problems are classical, the application of generalized
Fourier transform enlarges the class of problems that can be solved with traditional techniques.
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1. INTRODUCTION

In this paper, we generalize the concept of the fractional
Fourier transform (FRFT) as introduced by Kober [1] and
show its application for solving certain energy localization
problems in phase space. In the sequential sections, we will
deal with the FRFT; however, here we briefly recall the defi-
nition and some properties of the Wigner distribution. This
time-frequency representation is the most commonly used
tool to analyse the FRFT, see, for example, [2]. Relations be-
tween fractional operators and other time-frequency distri-
butions were studied in a general fashion in [3]. As is prob-
ably well known, the Wigner distribution for a signal f with
finite energy, that is, f ∈ L2(R), is given by

��[ f ](x, ω) = 1
2π

∫
R

f
(
x +

t

2

)
f
(
x − t

2

)
e−itω dt. (1)

Throughout this paper, we use the multidimensional mixed
Wigner distribution that reads

��[ f , g](x, ω) = (2π)−n
∫
Rn

f
(
x +

t

2

)
g
(
x − t

2

)
e−i(t,ω) dt,

(2)

for all n-dimensional functions f and g with finite energy,
that is, f , g ∈ L2(Rn), and with (·, ·) representing the inner
product in Rn. In the case g = f , we will use the short nota-
tion of the Wigner distribution ��[ f ]. Here we briefly re-
call some properties of the mixedWigner distribution, which
are used throughout this paper.

The Wigner distribution is invariant under the action of
both translation �b and frequency modulation �ω0 , given
by �b[ f ](x) = f (x − b) and �ω0 [ f ](x) = eiω0x f (x), for
b, ω0 ∈ Rn and f acting onRn. A straightforward calculation
shows that

��
[
�b f

]
(x, ω) = ��[ f ](x − b, ω),

��
[
�ω0 f

]
(x, ω) = ��[ f ]

(
x, ω− ω0

)
.

(3)

This means that a translation over (x0, ω0) in the Wigner
plane, the phase space related to the Wigner distribution,
corresponds to the operator

�(x0 ,ω0)[ f ](x) = Tx0Mω0 [ f ](x) = ei(ω0,x) f
(
x − x0

)
. (4)

In relation to the FRFT, the following property is of impor-
tance. A rotation over π/2 in all dimensions of the Wigner
plane is achieved by the action of the Fourier transform �n
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on the signal f ∈ L2(Rn), that is,

��[� f ](x, ω) = ��[ f ](−ω, x). (5)

For a comprehensive list of other properties of the
Wigner distribution, we refer to [4, 5]. One last property we
want to mention here is the property of satisfying the time
and frequency marginals, that is,

∣∣ f (x)∣∣2 =
∫
Rn

��[ f ](x, ω)dω, (6)

∣∣ f̂ (ω)∣∣2 =
∫
Rn

��[ f ](x, ω)dx. (7)

The sequel of this paper focuses on energy conserving
(unitary) operators that correspond to classes of affine trans-
formations in the Wigner plane. In Section 2, the FRFT is
discussed as an operator that corresponds to rotation action
in the Wigner plane. In Section 3, the whole class of affine
transformations in the n-dimensional Wigner plane is pre-
sented and studied extensively. Also an integral representa-
tion for this class is presented. In Section 4, this representa-
tion is used in a mathematical framework for analyzing and
solving energy localization problems in the Wigner plane.
This framework is based on the Weyl correspondence. Fi-
nally, some examples of energy localization problems are dis-
cussed in Section 5. The framework of the latter section is
used for solving two well-known energy localization prob-
lems.

2. FRACTIONAL FOURIER TRANSFORM

The FRFT on L2(R) was originally described by Kober [1]
and was later introduced for signal processing by Namias [6]
as a Fourier transform (�) of fractional order, that is,

�α f = �2α/π f , ∀ f∈L2(R), (8)

for α ∈ [−π, π]. From this formal definition, an integral rep-
resentation for �α has been derived in a heuristic manner.
Later this representation has been formalized in [7, 8]. The
integral representation for functions f ∈ L2(R) reads

�α[ f ](x) = Cα√
2π| sinα|

∫
R

f (u)ei((u
2+x2)·(cotα)/2−ux cscα) du,

(9)

for 0 < |α| < π, with Cα = ei((π/4) sgnα−α/2). For α = 0 and
α = π, an expression for the FRFT follows directly from (8),
namely, �0[ f ](x) = f (x) and �π[ f ](x) = f (−x). For α �∈
(−π, π], the FRFT is defined by periodicity �α+2π = �α.

For time-frequency analysis, it is of interest to consider
the relation of the FRFT with time-frequency operators like
the Wigner distribution. In [2], Almeida showed that the
FRFT �α gives raise to a rotation in the Wigner plane by an
angle α, that is,

��
[
�α f

]
(x, ω) = ��[ f ]

(
Rα(x, ω)

)
, (10)

where Rα(x, ω) represents the matrix vector product with
matrix

Rα =
(
cosα − sinα
sinα cosα

)
. (11)

In particular, we have a rotation by π/2 in the Wigner plane
for �π/2, which is a result that coincides with (5).

The action of the FRFT in the Wigner plane leads us in
a natural way to the question, which operators on L2(R) act
like a linear transformation in the Wigner plane? The follow-
ing section is devoted to this question. However, instead of
operators on L2(R), we consider operators acting on L2(Rn),
since finding a solution for the n-dimensional problem also
yields a solution for the one-dimensional problem, but it
does not follow straightforwardly from the solution of the
one-dimensional case.

3. AFFINE TRANSFORMATIONS IN THE
WIGNER PLANE

Inspired by the FRFT and its action in the Wigner plane, we
search for linear operators � on L2(Rn) such that there exist
a matrix A ∈ Rn×n and a vector b ∈ Rn for which

��[� f ](x, ω) = ��[ f ]
(
A(x, ω) + b

)
(12)

holds for all f ∈ L2(Rn). Since the translation vector b is
the result of the unitary operator �−b (see (4)), it suffices to
search for linear operators � on L2(Rn) such that there exists
a matrix A ∈ R2n×2n for which

��[� f ](x, ω) = ��[ f ]
(
A(x, ω)

)
. (13)

Furthermore, we restrict ourselves to matrices A for which
detA = ±1. Operators that yield such transformations A in
phase space preserve energy which follows straightforwardly
from (6) and (13) by substitution of variables.

In a previous paper [9], we dealt with the problem of clas-
sifying all unitary operators on L2(Rn) that correspond to a
matrix A ∈ R2n×2n in the sense of (13). Moreover, by polar-
ization, this class of unitary operators will also satisfy

��[� f ,�g](x, ω) = ��[ f , g]
(
A(x, ω)

)
, (14)

for all f , g ∈ L2(Rn).
In [10], it has been shown that a necessary and sufficient

condition on the matrix A, such that a unitary operator �
exists, is thatA ∈ R2n×2n is symplectic. This means that given
the 2× 2 block decomposition

A =
(
A11 A12

A21 A22

)
, (15)

the following relations should hold:

AT
22A11 − AT

12A21 = In,

AT
11A21 = AT

21A11,

AT
22A12 = AT

12A22.

(16)
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It can also be shown [11] that for symplectic matrices, we
have detA = 1. In the sequel of this paper, we use the nota-
tion Sp(n) for all real-valued symplectic 2n × 2n symplectic
matrices.

Starting with a symplectic matrixA ∈ R2n×2n, we derived
in [9] an integral representation for a unitary operator�A on
L2(Rn) that satisfies (14). This operator is defined as follows.

Definition 1. Let A ∈ Sp(n) with block decomposition (15).
Then for A12 = 0, the linear operator �A on L2(Rn) is given
by

�A[ f ](x) =
√∣∣detA11

∣∣e−i(AT
11A21x,x)/2 f

(
A11x

)
. (17)

Furthermore, if A12 �= 0, then

�A[ f ](x)=CAe
−i(AT

11A21x,x)/2

×
∫
Ran(AT

12)
f
(
A12t+A11x

)
e−i(A

T
12A22t,t)/2−i(t,AT

12A21x) dt,

(18)

for all f ∈ L2(Rn) and with

CA =
√√√√ s

(
A12
)

(2π)d volKer(A12)
(
A22
) . (19)

Here s(A12) denotes the product of the nonzero singular val-
ues of A12, and volKer(A12)(A22) denotes the volume of the
simplex spanned by A22e1, . . . , A22en, with e1, . . . , en any or-
thonormal basis in the null space of A12.

In the particular case for which A12 is nonsingular, we
have volKer(A12)(A22) = 1 and s(A12) = det(A12). Further-
more, using the substitution u = A12t +A11x and conditions
(16), formula (18) is simplified to

�A[ f ](x) = e−i(A22A
−1
12 x,x)/2

(2π)n/2
√∣∣detA12

∣∣
×
∫
Rn

f (u)e−i((A
−1
12 A11u,u)/2−(x,A−112 u)) du

(20)

which corresponds to the metaplectic representation of
Sp(n), as given in [11].

The multidimensional FRFT is a special case of (20),
namely, it follows from (20) by taking

A11 = A22 = diag
(
cosα1, . . . , cosαn

)
,

A12 = diag
(− sinα1, . . . ,− sinαn

) (21)

if αi �= 2kπ, for all i = 1, . . . , n. Moreover, the FRFT can also
be seen as a special case of the operator

�Γ,∆[ f ](x) = ei(Γx,x)/2

(2π)n/2
√|det∆|

∫
Rn

f (u)ei((Γu,u)/2−(x,∆
−1u)) du,

(22)

with Γ ∈ Rn×n symmetric and ∆ ∈ Rn×n with det∆ �= 0. For
simplicity, we also assume ∆ to be symmetric. Of course this

operator is also a special case of (18). A generalization of the
FRFT in this way was already suggested in [12].

4. LOCALIZATION PROBLEMS AND THE
METAPLECTIC REPRESENTATION

In this section, we consider the celebrated problem in signal
processing of maximizing energy in both time and frequency,
or space and frequency in more dimensions. This problem
has already received much attention in the literature, see, for
example, [13, 14, 15, 16].

We will show how the representation formula (18) can
be used to solve a whole class of localization problems if
only one problem of this class has already been solved. In
the problems we consider here, the goal is to find a function
f ∈ L2(Rn) that maximizes∫

Rn

∫
Rn

σ(x, ω)��[ f ](x, ω)dx dω (23)

for some bounded weight function σ , called the symbol.
Consequently, if

σ(x, ω) = 1Ω(x, ω) =

1, (x, ω) ∈ Ω,

0, otherwise,
(24)

with Ω ⊂ R2n, then (23) represents the energy of f in the
Wigner plane within the region Ω.

For solving this maximum energy problem, we introduce
the localization operator �(σ) by

(
�(σ) f , g

) =
∫
Rn

∫
Rn

σ(x, ω)��[ f , g](x, ω)dx dω, (25)

for all f , g ∈ L2(Rn). Note that by introducing this opera-
tor �(σ), the problem comes down to search for such func-
tions f that maximize (�(σ) f , f ). The association of a sym-
bol σ with the localization operator �(σ) is called the Weyl
correspondence, see, for example, [11, 17]. In [14], Flandrin
showed that �(σ) is self-adjoint for real-valued σ . More-
over, it was shown in [18] that if σ is real valued and of fi-
nite energy, absolutely integrable, or just bounded, then the
eigenvectors of �(σ) can be chosen to form an orthonor-
mal basis for L2(Rn), the set of real-valued eigenvalues is
countable, and the possible accumulation point is 0. The
function fmax that maximizes (23) is given by the eigenvec-
tor φ0 of �(σ) corresponding to the largest eigenvalue λ0
of �(σ).

We now assume that for a certain symbol σ ∈ L∞(R2n),
the function thatmaximizes (23), fmax, and its corresponding
fraction of energy λ0 are known. Then the following lemma
gives us the solutions for a whole class of localization prob-
lems.

Lemma 1. Let σ ∈ L∞(R2n), �(σ) the localization operator
as defined in (25), and A ∈ Sp(n). Then �Aφk, k ∈ N, and
λk, k ∈ N, are, respectively, the eigenvectors and eigenvalues of
�(σ ◦ A). Here φk, k ∈ N and λk, k ∈ N denote, respectively,
the eigenvectors and eigenvalues of �(σ).
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Proof. The proof follows straightforwardly from definition
(25) and property (14). We have

(
�A�(σ)�∗

A f , g
)

= (�(σ)�∗
A f ,�∗

Ag
)

=
∫
Rn

∫
Rn

σ(x, ω)��
[
�∗

A f ,�∗
Ag
]
(x, ω)dx dω

=
∫
Rn

∫
Rn

σ(x, ω)��[ f , g]
(
A−1(x, ω)

)
dx dω

=
∫
Rn

∫
Rn

σ
(
A(x, ω)

)
��[ f , g](x, ω)dx dω

= (�(σ ◦ A) f , g).

(26)

Now, assume that {φk | k ∈ N} is the set of eigenvectors of
�(σ) and {λk | k ∈ N} the set of corresponding eigenvectors.
Then

�
(
σA
)
�Aφk =

(
�A�(σ)�∗

A

)
�Aφk

= �A�(σ)φk = λk�Aφk,
(27)

which completes the proof.

For one-dimensional problems, the following corollary
applies.

Corollary 1. Let Ω ⊂ R2 be an arbitrary bounded region in
the Wigner plane and let fmax ∈ L2(R) be the signal that has
maximal energy Emax in Ω. Then the signal that has maximal
energy Emax inΩ′ = A(Ω)− b is given by �b�A fmax with �b,
b ∈ R as in (4) and A ∈ R2×2 with detA = 1.

To illustrate Corollary 1, the previous result is now ap-
plied to two well-known energy localization problems.

5. EXAMPLES

The two examples we discuss in this section are the maxi-
mization of energy on ellipsoidal areas in the Wigner plane
and on parallelograms in the time-frequency plane that is re-
lated to the Rihaczek distribution. Both problems have al-
ready been studied in the literature [14, 19] using tradi-
tional results on the Wigner distribution. Here we present
a way of solving these problems using a generalization of the
FRFT. For simplicity, we restrict ourselves to the case of one-
dimensional signals, where the idea of using the fractional
transform for solving such problems can also be visualized
in a better way.

5.1. Energy concentration on ellipsoidals
in theWigner plane

The problem we consider first is the concentration of energy
in a circular region in the Wigner plane. So we consider a
region

CR =
{
(x, ω) ∈ R

2 | x2 + ω2 ≤ R
}

(28)

and search for functions f ∈ L2(R), with normalized energy
‖ f ‖L2 , for which

Ef (R) =
∫
CR

��[ f ](x, ω)dx dω
‖ f ‖2 (29)

is maximized. For solving this localization problem, we ob-
serve that

Ef (R) =
(
�
(
1CR

)
f , f
)
, (30)

with � the localization operator �(σ) as in (25).
We observe that 1CR is a bounded real-valued symbol,

and so we have an orthonormal basis of eigenfunctions with
the operator �(1CR) and corresponding positive eigenvalues.
The function fmax, that maximizes Ef (R), is then given by the
eigenvector φ0 of �(1CR) corresponding to the largest eigen-
value λ0 of �(1CR). Moreover, Emax(R) is given by λ0.

The eigenvectors of �(1CR) are given by the Hermite
functions Hk, k ∈ N, which is a result by Janssen in [20].
Furthermore, it can be shown [19] that the corresponding
eigenvalues satisfy

λ0 = 1− e−R2
,

λk+1 = λk − (−1)ke−R2
(Lk(2R2)− Lk+1(2R2)),

where k ∈ N\{0} with Lk being the Laguerre polynomial of
degree k. It can be shown that λ0 ≥ λk, k ∈ N, see [20].
Consequently, Emax(R) = 1 − e−R2

and fmax(x) = H0(x) =
e−x2/2.

The circular region can also be translated over a vector
(x0, ω0). As a result of (4), the eigenfunctions of �(σ) are
then given by �(x0 ,ω0)Hk . The eigenvalues remain the same.

Dilating circular regions in either the time or frequency
direction will yield ellipsoidal regions that are orientated
along one of these axes. The total class of ellipsoidal regions
that are obtained from a circle bymeans of an area preserving
affine transformation is given by A(CR) − b, with A ∈ R2×2,
detA = ±1, and b ∈ R2n. We restrict ourselves to the case
detA = 1 since a function that maximizes energy in the re-
gions A(CR) − b, with detA = −1, is the complex conju-
gate of the function that maximizes energy in the regions
MA(CR)− b, with

M =
(
1 0
0 −1

)
. (31)

Furthermore, since symplectic matrices in R2×2 are matrices
with detA = 1, Corollary 1 applies to this situation, which
means that the eigenfunctions of �(1A(CR)−b) are given by
�b�AHk and that its eigenvalues satisfy the recursive rela-
tions for the eignvalues as presented above. Particularly, we
solved the following energy localization problem. Let C̃R be
the ellipsoidal region given by

C̃R = A
(
CR
)− b, (32)

with A ∈ R2×2 and b ∈ R, then �b�AH0 is the signal that
has maximal energy Emax(R) = 1− e−R2

in this region of the
Wigner plane.
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Figure 1: Localization on a circle/ellipse: (a) the circular region and (b), (c), (d) ellipsoidal regions A(Ω) for different A ∈ R2×2, where
detA = 1.

Figure 1 illustrates the type of regions one can obtain by
starting with the circle C1 and then transforming it by a sym-
plectic matrix A. In this example, we have chosen

A =
(
3 2
1 1

)
, A =

(
2 1
−5 −2

)
,

A =

−3 2

1
2

−1
6


 ,

(33)

for the domains (b), (c), and (d), respectively. Note that the
maximal amount of energy a signal can have in each of these
regions is (e − 1)/e.

5.2. Energy concentration on parallelograms
in the Rihaczek plane

The second problem we consider is the maximization of a
signal f ∈ L2(R), normalized to energy equal to 1, within a
rectangular plane in phase space, with respect to the Rihaczek
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distribution

�[ f ](x, ω) = f (x) f̂ (ω)e−iωx√
2π

. (34)

This problem can also be related to the problem of maximiz-
ing energy with the localization operator �(σ). To show this,
we introduce the mixed Rihaczek distribution �[ f , g] by

�[ f , g](x, ω) = f (x)ĝ(ω)e−iωx√
2π

. (35)

We will show that

(
�(σ) f , g

) =
∫ ω0

−ω0

∫ x0

−x0
�[ f , g](x, ω)dx dω, (36)

for all signals f and g with finite energy if

σ = 1[−x0 ,x0]×[−ω0 ,ω0] ∗ ϕ, (37)

for some x0, ω0 ∈ R+ and where ϕ is given by ϕ(x, ω) =
e−2ixω. We observe that ‖σ‖∞ ≤ 1, and so σ is a bounded
symbol.

To prove relation (36), we first write (�(σ) f , g) as the
inner product

(
�(σ) f , g

) = (σ0 ∗ ϕ,��[ f , g]
)

= (σ0, ϕ∗��[ f , g]
)
,

(38)

with σ0 = 1[−x0 ,x0]×[−ω0 ,ω0]. The latter expression can be
rewritten as(

ϕ∗��[ f , g]
)
(x, ω)

= 1
2π2

∫
R

∫
R

∫
R

ϕ(p, q) f (x − p + t)g(x − p − t)

× e−2it(ω−q) dt dp dq

= 1
2π2

∫
R

∫
R

∫
R

ϕ
(
− u + v

2
, q
)
f (x + u)g(x + v)

× e−i(u−v)(ω−q) dudv dq

= 1
4π2

∫
R

∫
R

∫
R

e−iqx f (u)g(v)e−iu(ω−q)eivω du dv dq

= 1
2π

∫
R

e−iqx f̂ (ω − q)ĝ(ω)dq

= 1
2π

e−iωxĝ(ω)
∫
R

e−iωx f̂ (q)eiqx dq

= f (x)ĝ(ω)e−iωx√
2π

,

(39)

yielding relation (36).
We observe that the mixed Wigner distribution reduces

to the Rihaczek distribution for g = f . This means that �(σ)
is the localization operator that corresponds to the rectangu-
lar region [−x0, x0] × [−ω0, ω0] in the Rihaczek plane, that

is, the time-frequency plane generated by the Rihaczek dis-
tribution.

As far as known, no explicit solution exists for the eigen-
vector/value problem for this �(σ). However, some informa-
tion of this �(σ) can be obtained by looking at �(σ)∗�(σ),
with �(σ)∗ the adjoint of �(σ). Observe that the eigenval-
ues of �(σ)∗�(σ) are directly related to the singular values
of opL(σ). For studying �(σ)∗�(σ), we consider a result by
Flandrin. In [14], it was shown that when σ is as in (37), then
�(σ) = 	(ω0)
(x0), with

	
(
ω0
)
[ f ](x) =

√
2
π

∫
R

sin
(
ω0(x − u)

)
(x − u)

f (u)du,



(
x0
)
[ f ](x) =


 f (x), if |x| ≤ x0,

0, if |x| > x0.

(40)

These projections have been studied extensively by Slepian
and Pollak [16, 21]. In particular, they showed that the eigen-
functions of the operator 
(x0)	(ω0)
(x0) are given by the
prolate spheroidal wave functions (PSWF) ψk, k ∈ N, (see
[22]) and their corresponding eigenvalues depend on the
product x0ω0. Moreover, for x0ω0 → ∞ approximately, the
first 2x0ω0/π eigenvalues that correspond to the PSWF at-
tain a value close to unity. For index numbers in a region
around 2x0ω0/π, the eigenvalues plunge to zero and attain
values close to zero afterwards. The number of eigenvalues in
the region where the eigenvalues decrease from close to one
to close to zero is proportional to log x0ω0. This asymptotical
behaviour has been described rigorously in [21].

Furthermore, we observe that the singular values of �(σ)
are given by sk =

√
λk, where λk denote the eigenvalues of

the operator 
(x0)	(ω0)
(x0). By definition, its asymptot-
ical behavior is similar to the behaviour of the eigenvalues of

(x0)	(ω0)
(x0).

The eigenvectors of �(σ)∗�(σ) are given by the PSWF.
However, they do not give rise to explicit expressions for the
eigenfunctions of �(σ).

As for the circular regions in the Wigner plane, we can
also apply a linear transformation A ∈ R2×2, with detA =
1, and a translation over b ∈ R2 on the rectangular re-
gion in the Rihaczek plane. This leads to parallelograms
A([−x0, x0] × [−ω0, ω0]) − b. Figure 2 illustrates the type
of regions one can obtain by starting with the rectangular
[−1, 1]× [−1, 1] and then transforming it by the symplectic
matrices A as indicated in (33).

In a straightforward way, it can be shown that
Lemma 1 also holds for the operator �(σ)∗�(σ) and
so also Corollary 1 holds for �(σ)∗�(σ). For this situ-
ation, it means that the singular values of the operator
�(1A([−x0,x0]×[−ω0 ,ω0])−b) are given by

√
λk, where λk satisfies

the previous discussed asymptotical behaviour. The eigen-
functions of

�
(
1A([−x0,x0]×[−ω0 ,ω0])

)∗
�
(
1A([−x0,x0]×[−ω0 ,ω0])

)
(41)

are given by �b�Aψk, with ψk the PSWF.
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Figure 2: Localization on a rectangle/parallelogram: (a) the rectangular region Ω and (b), (c), (d) parallelograms A(Ω) for different A ∈
R2×2, where detA = 1.

6. CONCLUSIONS

In this paper, we have shown how a generalization of the n-
dimensional FRFT can be used to analyze certain energy lo-
calization problems in the 2n-dimensional phase plane. This
generalization is a newly derived representation of so-called
metaplectic operators. These operators form a natural ex-
tension of the notion of the FRFT in the way that taking

the Wigner distribution and a metaplectic operator in a cas-
cade fashion corresponds to a symplectic transformation on
the spatial and frequency parameters of the Wigner distribu-
tion.

The approach of solving localization problems with
metaplectic operators (and their representation formula)
has been illustrated by two classical examples in the one-
dimensional case.
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The presented integral representation formula is valid for
all choices of the corresponding symplectic transformations
in the Wigner plane. On the contrary, classical representa-
tion formulas [11] are only available for symplectic transfor-
mations with 2× 2 block decompositions where not all four
blocks are singular, which is the case if the metaplectic op-
erator is a d-dimensional Fourier transform on L2(Rn), with
0 < d < n.

REFERENCES

[1] H. Kober, “Wurzeln aus der Hankel-, Fourier- und aus an-
deren stetigen transformationen,” Quart. J. Math. Oxford Ser.,
vol. 10, pp. 45–49, 1939.

[2] L. B. Almeida, “The fractional Fourier transform and time-
frequency representations,” IEEE Trans. Signal Processing, vol.
42, no. 11, pp. 3084–3091, 1994.

[3] S. C. Pei and J. J. Ding, “Relations between fractional op-
erations and time-frequency distributions, and their applica-
tions,” IEEE Trans. Signal Processing, vol. 49, no. 8, pp. 1638–
1655, 2001.

[4] T. A. C. M. Claasen and W. F. G. Mecklenbräuker, “The
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