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This paper presents a two-microphone speech enhancer designed to remove noise in hands-free car kits. The algorithm, based on
the magnitude squared coherence, uses speech correlation and noise decorrelation to separate speech from noise. The remaining
correlated noise is reduced using cross-spectral subtraction. Particular attention is focused on the estimation of the different
spectral densities (noise and noisy signals power spectral densities) which are critical for the quality of the algorithm. We also
propose a continuous noise estimation, avoiding the need of vocal activity detector. Results on recorded signals are provided,
showing the superiority of the two-sensor approach to single microphone techniques.

Keywords and phrases: two-sensor noise reduction, hands-free telephony, coherence, cross-spectral subtraction, noise estimation,

optimization.

1. INTRODUCTION

Hands-freecommunication has undergone huge develop-
ments in the past two decades. This technology is consid-
ered to have added value in terms of comfort and security for
the users. Unfortunately, it is characterized by strong distur-
bances, namely, echo and ambient noise, which lead to un-
acceptable communication conditions for the far-end user.
In highly adverse conditions, such as the interior of a run-
ning automobile (which is under consideration in this pa-
per), the ambient noise—mainly due to the engine, the con-
tact between the tires and road, and the sound of the blowing
wind—may be even more powerful than speech and thus has
to be reduced.

Since the 1970s, noise reduction has mainly utilized a
one-microphone structure, with or without any hypothesis
on the noise/speech distribution [1, 2, 3]. These techniques,
which are only based on the signal-to-noise ratio (SNR)
estimation, use the speech intermittence and noise sta-
tionarity hypothesis. These algorithms, and especially spec-
tral subtraction, thanks to its low-computational load, have
been investigated with success. Nevertheless, they lead to a

compromise between residual noise and speech distortion,
especially in the presence of highly energetic noise.

The presence of additional microphones should increase
performance, allowing spatial characteristics to be taken into
account and the system to get (partially) rid of some hy-
potheses like noise stationarity. In counterpart, the perfor-
mance of the algorithms depends highly on speech and noise
characteristics.

Microphone array techniques, based on beamformer al-
gorithms like generalized sidelobe canceller (GSC) or su-
perdirective beamformer, have been developed for car noise
reduction. These approaches were revealed to be efficient
in enhancing the SNR while ensuring no distortion due to
time-varying filtering (like spectral subtraction for instance).
Nevertheless, the achievable amount of noise reduction is
limited by the noise decorrelation. Thus, additional postfil-
tering is added to cope with decorrelated characteristics: in
[4, 5], the beamformer is combined with a Wiener filter in
order to remove decorrelated noise. Under more realistic hy-
pothesis, car noise is considered as diffuse, thus presenting
a strong correlation in the lower frequencies. Some authors
proposed using a spectral subtraction in the lower-frequency
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FIGURE 1: Two-sensor noise reduction system.

bands rather than the Wiener filter [6, 7, 8], or modifying
the Wiener filter estimation considering a priori knowledge
of the noise spatial statistics [9].

In the GSM context, a two-microphone system, on the
contrary to a microphone array, is considered acceptable in
terms of cost and ease of installation. The previously de-
scribed array techniques may be restricted to two-sensor con-
figurations at the expense of reduced performance due to the
limited number of microphones. Thus, algorithms specifi-
cally dedicated to two-microphone systems have been de-
veloped, also depending on signal characteristics. Adaptive
noise cancellation has been proposed by Van Compernolle
[10], adapted to one point-shaped noise source and linear
convolutive mixtures (each microphone picks up noise and
speech). A noise reference is formed by linear combination
of the two microphone signals, and is then used to remove
noise by Wiener filtering. This scheme has recently been
adapted to hearing aids with closed microphones [11, 12].
This signal configuration (point-shaped noise sources) is also
perfectly suited to source separation under the constraint
of less signal sources than sensors [13]. Unfortunately, the
speech enhancer usually has to cope with cocktail-party ef-
fect (many disturbances with point-shaped sources) and with
diffuse noises, which are poorly removed with the previous
approach. Maj et al. [14] proposed using generalized singu-
lar value decomposition (GSVD) to estimate the Wiener fil-
ter. On the contrary to beamformers, this technique is able to
remove coherent noise as well as diffuse noise. Though this
algorithm provides interesting performance, its huge com-
putational load is not compatible with real-time implemen-
tation. In order to reduce the complexity, subband imple-
mentation has been investigated, leading to more acceptable
complexity, though remaining relatively large [15].

These contributions globally show the advantage of mul-
tisensor techniques compared to monosensor. They also
demonstrate the difficulty to cope with the real character-
istics of signals. The paper, whose concern is a two-sensor
noise reduction algorithm, is organized as follows. In the sec-
ond section, we describe noise and speech signal character-
istics. These characteristics then lead into the third section,
which discusses a filtering expression based on the coher-
ence function and noise cross-correlation subtraction. We
particularly focus on the estimation of the observed signal
power spectral densities (psd) as well as those of the noises.

Finally, in Section 4, the algorithm is evaluated on real signals
and compared to other techniques through objective perfor-
mance measures.

2. SPATIAL SIGNAL CHARACTERISTICS

Using two microphones, the main question becomes where
should we place the microphones inside the car? Indeed, as
said in the introduction, the investigated technique depends
on their relative position. Obviously, speech has to be picked
up as directly as possible to improve the SNR. The position
of the second microphone is strictly connected to the noise
and speech signal characteristics.

As depicted in Figure 1, we denote by n, (k) (resp., n2(k))
the noise, by s;(k) (resp., s2(k)) the speech signal, and by
x1(k) = ni(k) + s1(k) (resp., x2(k)) the noisy signals, picked
up at the first microphone (resp., at the second microphone).
The short-time Fourier transforms (STFT) are denoted by
capitals, and indexed by p, the frame number, and f, the fre-
quency (e.g., Ni(f, p) for nj(k) STFT of pth frame at fre-
quency f). The quantity G(f, p) represents the filtering gain
applied to one of the noisy signal in order to remove noise.
This gain can be calculated according to the spectral subtrac-
tion filter, theEphraim and Malah [3] filter, the coherence,
and so forth.

The psd of the noise, speech, and noisy signals are
denoted by y,,(f), y5,(f), and y.(f) on the ith channel
(i =1,2), while y,,(f) is the observations’ cross-power
spectral density (cross-psd). The coherence and the magni-
tude squared coherence (MSC) between the two signals x;
and x; are given respectively by

Pxx: (f)

(f) = JunlH)
P =

In a car environment, the signal characteristics are as fol-
lows.

MSC(f) = [p(H % (1)

(1) Noise is mainly composed of three independent com-
ponents: the engine, the contact between tires and
road, and the wind fluctuations. Their relative impor-
tance depends on the car, the road (more or less gran-
ular), and the car speed [16]. All these noises can be
roughly considered as diffuse. It is well known that
the coherence magnitude of diffuse signals is a cardinal
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FIGURE 2: MSC of real car noise signals, with 80-cm spaced micro-
phones, for two conditions: closed (dashed) or open (solid) driver
window.

sine modulus function of frequency [17]. This is con-
firmed by Figure 2, which depicts the MSC of noises
corresponding to a car travelling 130 km/h, with either
an open or closed driver window. The microphone dis-
tance is 80 cm. The MSC profiles show strong correla-
tion in the low part of the spectrum (as predicted by
the theory) and decorrelation in the high frequencies.
Note that the difference between theoretical and real
“cut-off” frequencies is due to noises which are only
partially diffuse and also due to microphones char-
acteristics. While the microphones are assumed to be
omnidirectional for the theory, they are cardioid in our
application.

(2) Speech distribution: speech signals are emitted from a
point source. Moreover, the small cockpit size and the
interior trim induce no reverberation. Thus, speech
signals picked up at different places are highly corre-
lated. A perfect speech correlation is assumed in what
follows.

3. TWO-SENSOR ALGORITHM

We first note that it is impossible to create a noise-only ref-
erence in the interior of a car. Indeed, speech is strongly re-
flected in interior car surfaces and is therefore picked up by
both microphones wherever they are placed. The main idea
is to use the decorrelation of the noises when microphones
are sufficiently spaced. With 80 cm-spaced microphones and
under diffuse hypothesis, the noises are decorrelated for fre-
quencies above f = 210 Hz, that is, above the first minimum
of the theoretical MSC function. The lower spectrum, which
contains correlated noise, is removed by a bandpass filter in
order to respect the telephony requirements (300-3400 Hz).
Then, the coherence function is a perfect candidate to oper-

ate the filtering of the decorrelated signals and the proposed
algorithm is based on it. Indeed, we can show that, under cer-
tain hypotheses, the coherence may be equal to the Wiener
filter [18]. Hence, applying coherence as a filter to any noisy
signal leads to the removal of the decorrelated signals, that is,
noise.

Coherence has been widely used in dereverberation tech-
niques. In the car environment, it has been used successfully
but with some modifications to cope with low-frequency
noise correlation (see [4, 6, 7]). Indeed, in these frequency
bands, noises usually exhibit nonnull correlation. Akbari
Azirani et al. [18] proposed to estimate noise cross-psd dur-
ing noise-only periods, and to remove it from the observa-
tions’ cross-psd during speech activity. The present system is
based on this technique named “cross-spectral subtraction.”
The zero-phase filter Hei(f, p) is given by the following ex-
pression:

e = D]

\Pa (ys (f)

where Y, n, (f) is the noise cross-psd.

The computation of the filter Hs needs the estimation of
the different psd and cross-psd quantities and is a key point
in filtering quality. Concerning spectral subtraction, for in-
stance, many techniques have been developed to remove the
well-known problem of musical noise (see [1, 19, 20]). In the
MMSE-STSA technique developed by Ephraim and Malah
[3], it has been proven that the “decision-directed” approach
proposed by the authors to estimate the a priori and a poste-
riori SNR allows musical noise to be more efficiently con-
trolled [21]. This estimator is still widely used (see, e.g.,
[18, 22]).

The psd and cross-psd estimation is described in this
section. Firstly, we show that the estimation of the observa-
tions psd and cross-psd, yx, (f), yx, (f), and yx,, (f), should
be strictly connected to the signal characteristics, that is,
it should respect the long-term noise stationarity and the
short-term speech stationarity. This aspect is described in
Section 3.1 and the noise cross-psd estimation is considered
in Section 3.2. We focus on the noise overestimation and its
online estimation, avoiding voice activity detection (VAD).

Hcss(f) = (2)

3.1. Power spectral densities estimation

The noisy signals psd yx,(f, p) and cross-psd yx,, (f, p) are
estimated using a recursive filtering:

Y (fs ) =Ayx(fip— 1)
+ (1= VXi(f, p)X*(f, p),
Yux (s P) = Apux, (fsp = 1)
+ (1 =Xy (f, p)X3(f, p),

i=12
(3)

where A is a forgetting factor usually close to 1. The pa-
rameter A has to cope with two contradictory constraints.
On the one hand, the estimation has to respect the short-
term speech stationarity, and consequently A should take low
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FIGURE 3: (a) psd of speech (solid) and noise (dash-dotted) in func-
tion of the frame index, for f = 1kHz. (b) MSC at f = 1kHz
estimated on the observations for two different values, A = 0.6 and
A = 0.9 of the forgetting factor A.

values; experience shows that for an 8-kHz sampling fre-
quency with 256 sample frames and a 75% overlap, values
of A around 0.6-0.7 are the upper limit. On the other hand,
A has to favor long-term estimation to reduce the estimator
variance. The MSC behaviour at 1 kHz is depicted in Figure 3
for two values of A. The noisy signals used for the MSC com-
putation are composed of correlated speech and decorrelated
noise whose psd at 1 kHz, computed for each frame, are dis-
played at the top figure. For A = 0.6, the MSC follows the
speech variations, but the estimator variance is high during
noise periods. These fluctuations lead to strong filter varia-
tions, thus musical noise appears. On the contrary, the vari-
ance is highly reduced for A = 0.9, but the long-term forget-
ting factor induces an important reverberant effect especially
during speech periods.

Thus, A has to take small values during speech presence
and high values during noise-only periods. To cope with
these constraints, we propose the law

SNR(f, p)

MJop) =098 =03 "R f, p)’

(4)
where SNR(f, p) is the SNR at the first microphone. The
ratio SNR(f, p)/(1 + SNR(f, p)) takes values in the inter-

val [0,1]. This type of adaptive coefficient has been pro-
posed by Beaugeant et al. [22] in echo cancellation frame-

work. For low SNR, A takes high values (close to 0.98), al-
lowing the psd and cross-psd estimations to be smoothed
during noise-only periods and thus limits musical noise. On
the contrary, for high SNR values, the forgetting factor takes
small values (close to 0.68), allowing the estimators to fol-
low the fast speech variations. We propose to approach the
ratio SNR( f, p)/(1 + SNR(f, p)) by the previous frame-gain
value Heis(f, p—1), assuming that the SNR does not vary too
quickly from one frame to another:

SNR(f,p)  _ B
m = Hcss(f:p 1). (5)

This leads to the following adaptive expression of the for-
getting factor A:

A(f, p) = 0.98 — 0.3Hes(f, p — 1). (6)

The ratio may also be estimated by direct computation of
the SNR. Nevertheless, it should not exhibit quick large vari-
ations avoiding the rapid fluctuations of A(f, p), thus lim-
iting musical noise. Simulations which we conducted show
that we can also use the a priori SNR given by the decision-
directed approach [3] (with high time constant). On the con-
trary, the a posteriori SNR produces overly rapid changes
[23].

The proposed law allows the residual noise to be con-
trolled during noise-only periods. Indeed, during speech ac-
tivity, the adaptive coefficient A varies quickly with the speech
fluctuations, leading to the apparition of musical noise. Al-
though this noise may be partially masked by the speech
components, it is still audible and has to be reduced.

3.2. Noise cross-correlation estimation

The musical noise during speech activity is due to two fac-
tors:

(1) the long-term estimation of noise cross-psd yu,u,(f)
during noise-only periods,

(2) the high variance of noise cross-psd included in the
term Yy, (f) due to the small forgetting factors.

In addition to its high variance, the short-term estimate
[Vnn, (f)| also exhibits a mean higher than the long-term
one, being more sensitive to instantaneous energetic changes
(these ones are less smoothed). Thus, we propose to con-
trol musical noise by overestimating the noise cross-psd.
First, based on statistical studies, we propose in Section 3.2.1
an overestimation law ensuring the quasiabsence of musical
noise. Finally, the noise cross-psd overestimation is achieved
in Section 3.2.2 with a novel estimator, giving a long-term
estimation without any need for a VAD.

3.2.1. Noise overestimation

Noise overestimation usually consists in multiplying the
noise estimate by a constant factor . For the power spec-
tral subtraction technique, studies show that a 9 dB overesti-
mation factor (« = 8) is necessary to remove musical noise
[19]; however, this strongly degrades speech. In this section,
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we propose to evaluate the overestimation necessary for the
cross-correlation spectral subtraction technique, ensuring no
musical noise for minimal speech distortion.

To estimate this overestimation, we introduce the cu-
mulative distribution function (cdf) of the short-term noise
cross-psd magnitude:

E(f,m) = Pr[|ynn, ()| <u(f) +ma(f)]. (7)

In (7), u(f) stands for the module of the long-term cross-
psd estimate, and o(f) for the short-term cross-psd magni-
tude standard deviation; the parameter m may take differ-
ent integer values, m = 1, 2, 3. This cdf roughly indicates the
probability that the short-term cross-psd module is lower
than its long-term estimate plus a positive term depending
on its variance. The short-term cross-psd is computed us-
ing A = 0.7. The cdf curves, computed with real signals,
are depicted in Figures 4 (closed window) and 5 (open win-
dow). In closed window condition (Figure 4), 95% of the
short-term cross-psd are included in the confidence interval
[0; F(f,2)]. Note that the profile for m = 1 depends highly
on the frequency; for f < 500Hz, only 80% of the cross-
psd are included in the interval [0; F(f, 1)]. The explanation
is strictly connected to the spatial distribution (diffuse char-
acteristics) but does not come straight forward. Nevertheless,
we can conclude that, for closed window condition, y+20 is a
fairly good overestimation of the short-term noise cross-psd.
For an open window, the F( f, m) profiles are similar on the
whole spectrum, and the segment [0; F(f, 1)] includes 90%
of the short-term cross-psd: y + o is a sufficient overestima-
tion ensuring that 90% of the frames do not produce musical
noise. The constant profile over the frequency range is due to
the noncorrelated characteristics of the noise, whatever the
frequency is.

To evaluate the overestimation to be applied, the long-
term noise cross-psd module |y, 4, (f)| (dashed bottom line)
and the u(f) + 20(f) curve (middle solid line) are depicted
in Figure 6 (closed window condition). For this condition,
the necessary overestimation varies from 2 dB for the low fre-
quencies to 6 dB for the high frequencies. We also displayed

the long-term mean psd 4/yu, (f)yn,(f) (top dash-dotted

line); this last curve is strictly connected to the u(f) + 20(f)

curve. Thus, the long-term estimate +/y,, (f)yn, (f) is an ac-

curate overestimation of the short-term cross-psd.

The open window condition is considered in Figure 7,
with the p(f) + o(f) curve (instead of u(f) + 20(f) for
closed window), as well as the long-term |y, (f)| and

\Vm ()Y, (f). The conclusions are exactly the same.

Finally, to limit musical noise, especially during speech
periods, we propose to overestimate the noise cross-psd with

the mean psd /s, (f)yn, (f). It is important to note that this

overestimation does not induce too much speech distortion
for the following reasons.

(1) The overestimation is effective for decorrelated noises,
that is, especially for high frequencies (see Figures 6
and 7). In this spectrum segment, the SNRs are quite
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open window condition, for three values of m.

favorable, and the speech components are slightly af-
fected by this overestimation,

(2) In the case of highly correlated noises, that is, for
low frequencies, the cross-psd is close to the mean
psd. Thus, this slight overestimation for closed-
window conditions does not lead to speech distor-
tion (see Figure 6), while the musical noise is con-
trolled. In open window conditions, the overestima-
tion is large (6 dB) because of the noise decorrelation
(see Figure 7); more speech distortion is expected.
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FIGURE 7: psd and cross-psd module as functions of the frequency
in open window condition: long-term mean psd +/yu, (f)yu, (f)
(dash-dotted), u(f)+o(f) (solid), and long-term cross-psd module
[Puiny (f)1 (dashed).

Experiments on real data show that this overestimation
completely removes the musical noise at the cost of a small
but acceptable amount of speech distortion.

periods, while being frozen during speech presence. This ap-
proach, which is widely used in the literature, needs a robust
VAD to help ensure filtering quality. It is especially true for
algorithms like spectral subtraction techniques that directly
use the noise psd estimation to derive the main signal; a small
error in the estimation may lead to musical noise or large
amounts of speech distortion. A robust VAD, however, is not
as crucial for algorithms using a priori and a posteriori SNR
estimation as for the decision-directed approach [3] since the
filter estimate also depends on smoothing coefficients.

The cross-spectral technique is strongly affected by the
quality of the noise estimate since the filter He( f, p) given
by (2) depends directly on the noise cross-psd estimate. Ex-
periments show that the filter needs a regularly estimated
noise cross-psd to achieve a sufficient denoising with ac-
ceptable artefact on speech and noise. In particular, freezing
the estimate during a whole sentence is not compatible with
the noise stationarity, leading to musical noise emergence.
Hence, the VAD has to detect speech pauses or even intersyl-
labic segments, which may be difficult to achieve with a low-
cost stand-alone algorithm. We then propose to use a fuzzy
law based on energetic considerations; noise is supposed to
be a long-term stationary signal unlike speech. Therefore, a
large energy increase between two adjacent frames may be
viewed as the presence of speech, whereas small variations
only or a decrease in energy corresponds more likely to noise.
We propose using the following law, adapted from monosen-
sor algorithm [24]:

Y (fs Py (f p)

- (®)
= “(SNRpost(fxp))\/Ym (f)P - I)Ynz(f:P - 1)’

where the function a(gﬁf{pw) depends on real positive con-
stants b, g, and L:

1
1 + l/(g " mpost)

) (9)
. 1+—/—\_/ .
1+g-b-SNR

The a posteriori modified SNR, §N§post, is given by

o(SNRpos) = L+ (1 - L) -

| X1 (f, P)Xa(f, p) |
W (fop = Dyu(fip = 1)
and takes values in the interval ]0, +oo].

Constants b, g, and L parameterize the a(-) function.
Note that, for high values of SNR, indicating an abrupt

gmipost(f)p) = (10)

jump in energy and the emergence of speech, a(mpost) =~ 1,
freezing the noise estimation. The parameter L, comprised
in the interval [0, 1], sets the exponential decay of the mean
noise psd estimation; for weak values of s”ﬁzpw (the in-
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stantaneous amplitudes of the observations are less ener-
getic than those of the previous noise estimate), (9) becomes
a(SNRpost) = L, hence

\/Vm(frp))’nz(f’P) = L\/Ym (f’p - 1)Vnz(f’P - 1) (11)

The coefficient b fixes the maximal value reached by « (see
Figure 8), while ¢ adjusts this maximum for a given value of
§Nﬁp05t (see Figure 9). Note that L also has an impact on the
maximum (the lower L, the higher the maximum). Usually,
g is chosen as ¢ = 1/(1 — b), fixing the accumulation point
a(l) = 1; thus, in the case of deterministic noise, the estima-
tor converges towards the true value.

4. SIMULATIONS AND RESULTS

Simulations were conducted on real signals recorded in a
driving car. The directional microphones were placed on the
left-hand side, upright the windshield and close to the rear
view mirror, ensuring a distance of 80 cm. Therefore, the
noise decorrelation condition is fulfilled (see Figure 2 for co-
herence profile). Two different noises are recorded: a quasi-
stationary noise, corresponding to a 130 km/h driving car,
and a highly nonstationary one at the same speed with open
driver window. These two conditions include slow changes
in the engine revolution speed caused by accelerations and
shifting gears. Artificial files with different SNR from —3 dB
to 20 dB were created by adding noise and speech recorded
in a quiet environment (stopped car, switched off engine).
The proposed algorithm, called modified cross-spectral
subtraction, is also denoted by modified Hc,. The gain is
computed using (2) (as for standard cross-spectral subtrac-
tion). The norm of the noise cross-psd |y, ., (f)| is over-

estimated by +/yu, (f)yn, (f), which is computed using (8),

1.05
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0.95
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— g=05
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...... g:

F1Gure 9: Influence of the coefficient g on the « shape, for b = 0.5
and L = 0.9.

(9), and (10). The performances of our algorithm are com-
pared to those of two other techniques, which have been
proven to be efficient in those types of environments.

(1) A monosensor technique: the Wiener uncertainty al-
gorithm denoted as WU [25]. The filtering part is
achieved by the Wiener filter, with a correcting fac-
tor depending on the speech presence probability de-
rived by Ephraim and Malah [3]. Note that this algo-
rithm provides continuous SNR estimation using the
decision-directed approach. The noise psd is learned
during noise-only periods using a manual VAD.

(2) A two-microphone algorithm: the cross-spectral sub-
traction denoted by Hs. An implementation of this
filter is given in [18]. For this algorithm, the noise
cross-psd is learned during noise-only periods, then
frozen during speech activity using the same manual
VAD as the monosensor algorithm. The forgetting fac-
tor A is fixed as 0.7.

In order to compare the performance of the different
algorithms, two different measures have been evaluated on
processed signals: the cepstral distance (dcep) and the SNR
gain which is given by

SNR gain (dB) (12)
= SNR after processing (dB) — input SNR (dB).

The first one evaluates speech distortion while the second
shows the noise reduction. These indices are computed on
manually segmented speech frames, then averaged on all
frames to give a global measure per condition (station-
ary/nonstationary).

Consider Figures 10 and 11 displaying the results for
the quasistationary noise condition. The SNR gain curves
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FIGURE 10: SNR gain as a function of the input SNR for stationary
noise condition.
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FIGURE 11: dcep as a function of the input SNR for stationary noise
condition.

(Figure 10) show the improvement due to noise overestima-
tion and permanent updating; the modified Hcs performs
around 2 to 4 dB better than H. The monosensor algorithm
experiences lower performance than the modified H, espe-
cially for low SNR. In terms of distortion (see Figure 11), the
novel technique performs much better than the two others.
This result may be explained by the use of the adaptive for-
getting factor A(f, p), which prevents overly large smooth-
ing of the psd and cross-psd estimates during speech activ-
ity. Note that the monosensor WU algorithm distorts speech

SNR gain (dB)

Input SNR (dB)

-------- Wiener uncertainty
= - Cross-spectral subtraction
—— Modified cross-spectral subtraction

FIGURE 12: SNR gain as a function of the input SNR for nonstation-
ary noise condition.
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FIGURE 13: dcep as a function of the input SNR for nonstationary
noise condition.

much more than the two-microphone techniques, in partic-
ular, for high SNR. This confirms the superiority of the mod-
ified Hss over the WU algorithm for these high SNR despite
their equivalent scores in terms of noise reduction.

The results concerning nonstationary noises are depicted
in Figures 12 and 13. At a first glance, it is obvious that
the two-microphone methods perform much better than
the single microphone one in terms of noise reduction as
well as speech distortion. It is mainly due to the fact that
the two-sensor techniques work particularly well in filtering
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these decorrelated noises. Moreover, the fast noise variations
prevent the WU from estimating the SNR with accuracy, thus
leading to large amounts of speech distortion and residual
noise fluctuations. Concerning the two-sensor algorithms,
the performance appear to be quite comparable. The reason
is that continuous noise updating does not provide any clear
advantage; the noise variations, mainly due to the blowing
wind, are too rapid to be followed by the estimator. Never-
theless, it should be pointed out that the noise overestima-
tion does not distort the speech signal more than the stan-
dard H, filter. Moreover, from a subjective point of view,
informal listening tests show that the residual noise appears
more natural with the modified H filter; musical noise and
noise level fluctuations, which are audible with standard H
(and monosensor technique), are completely removed. Nev-
ertheless, on very low SNR frames, slight additional speech
distortion can be noticed, which is in accordance with the
expected behavior of our algorithm. Note also that this dis-
tortion is hardly audible due to the energetic noises.

5. CONCLUSION

In this paper, we proposed a two-sensor noise reduction al-
gorithm based on cross-spectral subtraction. The improve-
ment mainly focused on a noise overestimation rule derived
from statistical studies, and on spectral densities estimation.
With these modifications, simulations showed that the pro-
posed algorithm outperforms proven methods in this envi-
ronment. With highly nonstationary noises, the new tech-
nique is intrinsically better than monosensor ones in terms
of speech distortion and noise reduction. In stationary noise
conditions, the modified filter outperforms the standard
cross-spectral subtraction technique, ensuring much more
noise reduction (from 2 to 4 dB) with less speech distortion.

From a computational point of view, this technique is low
CPU consuming, about three times the complexity of the
spectral subtraction. This allows real-time implementation
in GSM mobile phones (e.g., far less CPU consuming than
vocoder). The hardware cost caused by the two-microphone
approach may be limited by using the terminal microphone,
reducing the cost to one additional microphone, like most
standard hands-free systems.
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