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We describe a new method of blind source separation (BSS) on a microphone array combining subband independent component
analysis (ICA) and beamforming. The proposed array system consists of the following three sections: (1) subband ICA-based
BSS section with estimation of the direction of arrival (DOA) of the sound source, (2) null beamforming section based on the
estimated DOA, and (3) integration of (1) and (2) based on the algorithm diversity. Using this technique, we can resolve the
low-convergence problem through optimization in ICA. To evaluate its effectiveness, signal-separation and speech-recognition
experiments are performed under various reverberant conditions. The results of the signal-separation experiments reveal that
the noise reduction rate (NRR) of about 18 dB is obtained under the nonreverberant condition, and NRRs of 8 dB and 6 dB are
obtained in the case that the reverberation times are 150milliseconds and 300milliseconds. These performances are superior to
those of both simple ICA-based BSS and simple beamformingmethod. Also, from the speech-recognition experiments, it is evident
that the performance of the proposed method in terms of the word recognition rates is superior to those of the conventional ICA-
based BSS method under all reverberant conditions.
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1. INTRODUCTION

Source separation for acoustic signals is to estimate original
sound source signals from the mixed signals observed in each

input channel. This technique is applicable to the realization
of noise-robust speech-recognition and high-quality hands-
free telecommunication systems. The methods of achieving
source separation can be classified into two groups: methods
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based on a single-channel input and those based on multi-
channel inputs. As single-channel types of source separation,
a method of tracking a formant structure [1], the organiza-
tion technique for hierarchical perceptual sounds [2], and a
method based on auditory scene analysis [3] have been pro-
posed. On the other hand, as multichannel type source sep-
aration, the method based on array signal processing, for ex-
ample, a microphone array system, is one of the most effec-
tive techniques [4]. In this system, the directions of arrival
(DOAs) of the sound sources are estimated and then each of
the source signals is separately obtained using the directivity
of the array. The delay-and-sum (DS) array and the adaptive
beamformer (ABF) are the conventional and popular micro-
phone arrays currently used for source separation and noise
reduction.

For high-quality acquisition of audible signals, several
microphone array systems based on the DS array have been
implemented since the 1980s. The most successful example
was proposed by Flanagan et al. [5] for a speech pickup in
auditoriums, in which a two-dimensional array composed of
63microphones is used with automatic steering to enable de-
tection and location of the desired signal source at any given
moment. Recently, many microphone array systems with
talker localization have been implemented for hands-free
telecommunications or speech recognition [6, 7, 8]. While
the DS array has a simple structure, it requires, however, a
large number of microphones to achieve high performance,
particularly in low-frequency regions. Thus, the degradation
of separated signals at low frequencies cannot be avoided in
these array systems.

In order to further improve the performance using more
efficient methods than the DS array, the ABF has been intro-
duced for acoustic signals analogously to an adaptive array
antenna in radar systems [9, 10, 11]. The goal of the adap-
tive algorithm is to search for optimum directions of the
nulls under the specific constraint that the desired signal ar-
riving from the look direction is not significantly distorted.
This method can improve the signal-separation performance
even with a small array in comparison to that of the DS ar-
ray. The ABF, however, has the following drawbacks. (1) The
look direction for each signal which is separated is necessary
in the adaptation process. Thus, the DOAs of the separated
sound source signals must be previously known. (2) The
adaptation procedure should be performed during breaks
of the target signal to avoid any distortion of separated sig-
nals. However, in conventional use, we cannot estimate signal
breaks in advance. The above-mentioned requirements arise
from the fact that the conventional ABF is based on super-
vised adaptive filtering, and this significantly limits the ap-
plicability of the ABF to source separation in the practical
applications.

In recent years, alternative source-separation approaches
have been proposed by researchers using not array signal pro-
cessing but a specialized branch of information theory, that
is, information-geometry theory [12, 13]. Blind source sepa-
ration (BSS) is the approach to estimate original source sig-
nals using only the information of themixed signals observed
in each input channel, where the independence among the

source signals is mainly used for the separation. This tech-
nique is based on unsupervised adaptive filtering [13] and
provides us with extended flexibility in which the source-
separation procedure requires no training sequences and no
a priori information on DOAs of the sound sources. The
early contributory works on the BSS have been performed
by Cardoso and Jutten [14, 15], where high-order statis-
tics of the signals are used for measuring the independence.
Comon [16] has clearly defined the term independent com-
ponent analysis (ICA) and presented an algorithm that mea-
sures independence among the source signals. The ICA was
later followed by Bell and Sejnowski [17], and was extended
to the informax (or the maximum-entropy) algorithm for
BSS which is based on aminimization of mutual information
of the signals. In recent works on the ICA-based BSS, several
methods, in which the complex-valued unmixing matrices
are calculated in the frequency domain, have been proposed
to deal with the arriving lags among each element of the mi-
crophone array system [18, 19, 20, 21]. Since the calculations
are carried out at each frequency independently, the follow-
ing problems arise in these methods: (1) permutation of each
sound source, and (2) arbitrariness of each source gain. Vari-
ous methods to overcome the permutation and scaling prob-
lems have been proposed. For example, a priori assumption
of similarity among the envelopes of source signal waveforms
[19] or interfrequency continuity with respect to the unmix-
ing matrices [18, 20, 21] is necessary to resolve these prob-
lems.

In this paper, a new method of BSS on a microphone ar-
ray using the subband ICA and beamforming is proposed.
The proposed array system consists of the following three
sections: (1) subband ICA section, (2) null beamforming sec-
tion, and (3) integration of (1) and (2). First, a new subband
ICA is introduced to achieve frequency domain BSS on the
microphone array system, where directivity patterns of the
array are explicitly used to estimate each DOA of the sound
sources [22]. Using this method, we can resolve both per-
mutation and arbitrariness problems simultaneously with-
out the assumption for the source signal waveforms or inter-
frequency continuity of the unmixing matrices. Next, based
on the DOA estimated in the above-mentioned ICA sec-
tion, we construct a null beamformer in which the direc-
tional null is steered to the direction of the undesired sound
source, in parallel with the ICA-based BSS. This approach
to signal separation has the advantage that there is no diffi-
culty with respect to a low convergence of optimization be-
cause the null beamformer is determined by only DOA in-
formation without independence between sound sources. Fi-
nally, both signal separation procedures are appropriately in-
tegrated by the algorithm diversity in the frequency domain
[23].

In order to evaluate the effectiveness of the proposed
method, both signal-separation and speech-recognition ex-
periments are performed under various reverberant condi-
tions. The results reveal that the performance of the pro-
posed method is superior to that of the conventional ICA-
based BSS method [19], and we also show that the proposed
method did not cause heavy degradations of the separation
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Figure 1: Configuration of a microphone array and signals.

performance compared with those of the previous ICA-based
BSS method, particularly when the durations of the ob-
served signals are exceedingly short. In addition, the speech-
recognition experiment clarifies that the proposed method is
more applicable to the recognition task in multispeaker cases
than the conventional BSS.

The rest of this paper is organized as follows. In Sections
2 and 3, the formulation of the general BSS problems and the
principle of the proposedmethod are explained. In Section 4,
the signal-separation experiments are described. Following
a discussion on the results of the experiments, we give the
conclusions in Section 5.

2. SOUNDMIXINGMODEL OFMICROPHONE ARRAY

In this study, a straight-line array is assumed. The coordi-
nates of the elements are designated as dk (k = 1, . . . , K)
and the DOAs of multiple sound sources are designated as
θl (l = 1, . . . , L) (see Figure 1).

In general, the observed signals in which multiple source
signals are mixed linearly are given by the following equation
in the frequency domain:

X( f ) = A( f )S( f ), (1)

where X( f ) is the observed signal vector, S( f ) is the source
signal vector, and A( f ) is the mixing matrix. These are given
as

X( f ) = [X1( f ), . . . , XK ( f )
]T
, (2)

S( f ) = [S1( f ), . . . , SL( f )]T, (3)

A( f ) =



A11( f ) · · · A1L( f )

...
...

AK1( f ) · · · AKL( f )


 . (4)

We introduce the model to deal with the arriving lags
among each of the elements of the microphone array. In this
case, Akl( f ) is assumed to be complex valued. Hereafter, for
convenience, we only consider the relative lags among each of
the elements with respect to the arrival time of the wavefront
of each sound source, and neglect the pure delay between the

microphone and sound source. Also, S( f ) is identically re-
garded as the source signals observed at the origin. For ex-
ample, by neglecting the effect of the room reverberation, we
can rewrite the elements in the mixing matrix (4) as the fol-
lowing simple expression:

Akl( f ) = exp
(
j2π f τkl

)
,
(
τkl ≡ 1

c
dk sin θl

)
, (5)

where τkl is the arriving lag with respect to the lth source sig-
nal from the direction of θl, observed at the kth microphone
at the coordinate of dk. Also, c is the velocity of sound. If
the effect of room reverberation is considered, the elements
in the mixing matrix Akl( f ) are given by more complicated
values depending on the room reflections.

3. ALGORITHM

3.1. System overview of the proposedmethod

This section describes a new BSS method, using a micro-
phone array, and its algorithm. The proposed array system
consists of the following three sections (see Figure 2 for the
system configuration): (1) subband ICA section for ICA-
based BSS and DOA estimation, (2) null beamforming sec-
tion for efficient reduction of directional interference signals,
and (3) integration of (1) and (2) based on the algorithm di-
versity [23], selecting the most appropriate algorithm from
(1) and (2) in the frequency domain. The following sections
describe each of the procedures in detail.

3.2. Subband ICA section

3.2.1. Estimation on unmixingmatrix

In this study, we perform the signal-separation procedure as
described below (see Figure 3), where we deal with the case
in which the number of sound sources L equals that of mi-
crophones K , that is, K = L. First, the short-time analysis of
the observed signals is conducted by using discrete Fourier
transform (DFT) frame by frame. By plotting the spectral
values in a frequency bin of one microphone input, frame
by frame, we consider them as a time series. The other in-
puts at the same frequency bin are dealt with in the same
manner. Hereafter, we designate the time series as X( f , t) =
[X1( f , t), . . . , XK ( f , t)]T. Next, we perform signal separation
by using the complex-valued unmixing matrixW( f ) so that
the L time series output Y( f , t) becomes mutually indepen-
dent; this procedure can be given as

Y( f , t) =W( f )X( f , t), (6)

where

Y( f , t) = [Y1( f , t), . . . , YL( f , t)
]T
,

W( f ) =



W11( f ) · · · W1K ( f )

...
...

WL1( f ) · · · WLK ( f )


 .

(7)
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Figure 2: Configuration of the proposedmicrophone array system based on subband ICA and beamforming. Here, θ̂l , θl( f ), and σl represent
estimated DOA of lth sound source, DOA of lth sound source at each frequency f , and deviation with respect to the estimated DOA of lth
sound source, respectively. The bold arrows indicate the subband-signal lines. Here “st-DFT” represents the short time DFT.
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We perform this procedure with respect to all frequency bins.
Finally, by applying the inverse DFT and the overlap-add
technique to the separated time series Y( f , t), we reconstruct
the resultant source signals in the time domain.

Considering the calculation of the unmixing matrix
W( f ), we use the optimization algorithm based on the min-
imization of the Kullback-Leibler divergence; this algorithm
has been introduced byMurata and Ikeda for online learning
[19] and modified by the authors for offline learning with
stable convergence. The optimal W( f ) is obtained by using
the following iterative equation:

Wi+1( f ) = η
[
diag

(〈
Φ
(
Y( f , t)

)
YH( f , t)

〉
t

)

− 〈Φ(Y( f , t))YH( f , t)
〉
t

](
WH

i ( f )
)−1

+Wi( f ),

(8)

where H denotes the Hermitian and 〈·〉t denotes the time-
averaging operator, i is used to express the value of the ith
step in the iterations, and η is the step size parameter. Also,
we define the nonlinear vector functionΦ(·) as

Φ
(
Y( f , t)

) ≡ [Φ(Y1( f , t)
)
, . . . ,Φ

(
YL( f , t)

)]T
,

Φ
(
Yl( f , t)

) ≡ [1 + exp
(− Y (R)

l ( f , t)
)]−1

+ j · [1 + exp
(− Y (I)

l ( f , t)
)]−1

,

(9)

where Y (R)
l ( f , t) and Y (I)

l ( f , t) are the real and imaginary
parts of Yl( f , t), respectively.

3.2.2. Source permutation and gain arbitrariness
problems and their solutions

This section describes the problems which arise after the sig-
nal separation described in Section 3.2.1, and solutions for
these problems are newly proposed. Hereafter, we assume a
two-channel model without loss of generality, that is, K =
L = 2.

We assume that the following separation has been com-
pleted at frequency bin f :[

Ŝ1( f , t)

Ŝ2( f , t)

]
=
[
W11( f ) W12( f )

W21( f ) W22( f )

][
X1( f , t)

X2( f , t)

]
, (10)

where Ŝ1( f , t) and Ŝ2( f , t) are the components of the esti-
mated source signals. Since the above calculations are car-
ried out at each frequency bin independently, the following
two problems arise (see Figure 4).

Problem 1. The permutation of the source signals Ŝ1( f , t)
and Ŝ2( f , t) arises. That is, the separated signal components
can be permuted at every frequency bin, for example, at a
frequency bin of f = f1, Ŝ1( f1, t) = S1( f1, t), and Ŝ2( f1, t) =
S2( f1, t), and at another frequency bin of f = f2, Ŝ1( f2, t) =
S2( f2, t), and Ŝ2( f2, t) = S1( f2, t).

Problem 2. The gains of Ŝ1( f , t) and Ŝ2( f , t) are arbitrary.
That is, different gains are obtained at different frequency
bins f = f1 and f = f2.

In order to resolve Problems 1 and 2, we focus on the
mechanism of the BSS as array signal processing to obtain the
separated signals in the acoustical space. For example, from
(10), Ŝ1( f , t) is given by

Ŝ1( f , t) =W11( f )X1( f , t) +W12( f )X2( f , t). (11)
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This equation shows that the resultant output signals are
obtained by multiplying the array signals of X1( f , t) and
X2( f , t) by the weight Wlk( f ), and then adding them. Thus,
from the standpoint of array signal processing, this opera-
tion implies that directivity patterns are produced in the ar-
ray system. Accordingly, we calculate directivity patterns with
respect toWlk( f ) obtained at every frequency bin. The direc-
tivity pattern Fl( f , θ) is given by [24]

Fl( f , θ) =
2∑

k=1
Wlk( f ) · exp

[
j2π f dk sin θ/c

]
. (12)

This equation shows that the lth directivity pattern Fl( f , θ)
is produced to extract the lth source signal. Using the direc-
tivity pattern Fl( f , θ), we propose the following procedure to
resolve Problems 1 and 2.

Step 1. We plot the directivity patterns in all frequency
bins; for example, in the frequency bins of f1 and f2, direc-
tivity patterns are plotted as shown in Figure 4.

Step 2. In the directivity patterns, directional nulls exist
in only two particular directions and these nulls represent
DOAs of the sound sources. Accordingly, by obtaining statis-
tics with respect to the directions of nulls at all frequency
bins, we can estimate the DOAs of the sound sources. The
DOA of the lth sound source, θ̂l, can be estimated as

θ̂l = 2
N

N/2∑
m=1

θl
(
fm
)
, (13)

where N is a total point of DFT and θl( fm) represents the
DOA of the lth sound source at themth frequency bin. These
are given by

θ1
(
fm
) = min

[
argmin

θ

∣∣F1( fm, θ)∣∣, argmin
θ

∣∣F2( fm, θ)∣∣],
θ2
(
fm
) = max

[
argmin

θ

∣∣F1( fm, θ)∣∣, argmin
θ

∣∣F2( fm, θ)∣∣],
(14)

where min[x, y] (max[x, y]) is defined as a function in order
to obtain the smaller (larger) value among x and y.
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Figure 5: Resultant directivity patterns after recovery of permuta-
tions and normalization of gains of separated signals.

Step 3. From these directivity patterns in all frequency
bins, we collect the specific ones in which the directional
null is steered to the directions of Ŝ1( f , t). Also, we collect
the other specific directivity patterns in which the directional
null is steered to the directions of Ŝ2( f , t). Here, we decide
to collect the directivity patterns in which the null is steered
to the direction of Ŝ1( f , t) (Ŝ2( f , t)) on the right-(left-)hand
side of Figure 5. From this constraint, we replace F1( f2, θ)
with F2( f2, θ) at the frequency bin of f = f2. By perform-
ing this procedure, we can resolve Problem 1.

Step 4. Problem 2 is resolved by normalizing the direc-
tivity patterns according to the gain in each source direction
after the classification (see Figure 5). In Figure 5, α1 and α2
are the constants which normalize the gain in the direction
of Ŝ1( f , t), and β1 and β2 are the constants which normalize
the gain in the direction of Ŝ2( f , t).

By applying the above-mentioned modifications, we can
finally obtain the unmixing matrix in the ICA section,
W(ICA)( f ), as follows:

W(ICA)( fm) ≡

W (ICA)

11

(
fm
)

W (ICA)
12

(
fm
)

W (ICA)
21

(
fm
)

W (ICA)
22

(
fm
)



=





1/F1

(
fm, θ̂1

)
0

0 1/F2
(
fm, θ̂2

)

 ·W( fm),

(without permutation),
 0 1/F2

(
fm, θ̂1

)
1/F1

(
fm, θ̂2

)
0


 ·W( fm),

(with permutation).
(15)

3.3. Beamforming section

In the beamforming section, we can construct an alternative
unmixing matrix in parallel, based on the null beamforming
technique where the DOA information obtained in the ICA
section is used. In the case that the look direction is θ̂1 and
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the directional null is steered to θ̂2, the elements of the un-
mixingmatrix,W (BF)

1k ( fm), satisfy the following simultaneous
equations:

F1
(
fm, θ̂1

) = 2∑
k=1

W (BF)
1k ( fm) · exp

[
j2π fmdk sin θ̂1

c

]
= 1,

F1
(
fm, θ̂2

) = 2∑
k=1

W (BF)
1k

(
fm
) · exp[ j2π fmdk sin θ̂2

c

]
= 0.

(16)

The solutions of the equations are given by

W (BF)
11

(
fm
) = − exp

[− j2π fmd1 sin θ̂2
c

]

×
{
− exp

[
j2π fmd1

(
sin θ̂1 − sin θ̂2

)
c

]

+ exp
[
j2π fmd2

(
sin θ̂1 − sin θ̂2

)
c

]}−1
,

W (BF)
12

(
fm
) = exp

[− j2π fmd2 sin θ̂2
c

]

×
{
− exp

[
j2π fmd1

(
sin θ̂1 − sin θ̂2

)
c

]

+ exp
[
j2π fmd2

(
sin θ̂1 − sin θ̂2

)
c

]}−1
.

(17)

Also in the case that the look direction is θ̂2 and the direc-
tional null is steered to θ̂1, the elements of the unmixing

matrix, W (BF)
2k ( fm), satisfy the following simultaneous equa-

tions:

F2
(
fm, θ̂2

) = 2∑
k=1

W (BF)
2k

(
fm
) · exp[ j2π fmdk sin θ̂2

c

]
= 1,

F2
(
fm, θ̂1

) = 2∑
k=1

W (BF)
2k

(
fm
) · exp[ j2π fmdk sin θ̂1

c

]
= 0.

(18)

The solutions of the equations are given by

W (BF)
21

(
fm
) = exp

[− j2π fmd1 sin θ̂1
c

]

×
{
exp

[
j2π fmd1

(
sin θ̂2 − sin θ̂1

)
c

]

− exp
[
j2π fmd2

(
sin θ̂2 − sin θ̂1

)
c

]}−1
,

W (BF)
22

(
fm
) = − exp

[− j2π fmd2 sin θ̂1
c

]

×
{
exp

[
j2π fmd1

(
sin θ̂2 − sin θ̂1

)
c

]

− exp
[
j2π fmd2

(
sin θ̂2 − sin θ̂1

)
c

]}−1
.

(19)

These unmixing matrices are approximately optimal for the
signal separation when the ideal far-field propagation is only
considered and the effect of the room reverberation is neg-
ligible. However, these acoustic conditions are oversimpli-
fied. In contrast, the optimality cannot hold under rever-
berant conditions because the signal reduction cannot be
achieved by the directional nulls only. This signal-separation
approach, however, has the advantage that there is no diffi-
culty with respect to a low-convergence of optimization be-
cause the null beamformer is determined by DOA informa-
tion only without independence between sound sources. The
effectiveness of the null beamforming will appear especially
when we combine the beamforming and ICA as described in
the next section.

3.4. Integration of subband ICAwith null
beamforming

In order to integrate the subband ICA with null beamform-
ing, we introduce the following strategy for selecting the
most suitable unmixing matrix in each frequency bin, that
is, algorithm diversity in the frequency domain. If the direc-
tional null is steered to the proper estimated DOA of the un-
desired sound source, we use the unmixing matrix obtained

by the subband ICA, W (ICA)
lk ( f ). If the directional null devi-

ates from the estimated DOA, we use the unmixing matrix

obtained by the null beamforming, W (BF)
lk ( f ), in preference

to that of the subband ICA. The above strategy yields the fol-
lowing algorithm:

Wlk( f ) =


W (ICA)

lk ( f ),
(∣∣θl( f )− θ̂l

∣∣ < h · σl
)
,

W (BF)
lk ( f ),

(∣∣θl( f )− θ̂l
∣∣ ≥ h · σl

)
,

(20)

where h is a magnification parameter of the threshold and σl
represents the deviation with respect to the estimated DOA
of the lth sound source; it can be given as

σl =

√√√√√ 2
N

N/2∑
m=1

(
θl
(
fm
)− θ̂l

)2
. (21)

Using the algorithm with an adequate value of h, we can re-
cover the unmixing matrix trapped on a local minimizer of
the optimization procedure in ICA. Also, by changing the pa-
rameter h, we can construct various types of array signal pro-
cessing for BSS, for example, a simple null beamforming with
h = 0 and a simple ICA-based BSS procedure with h = ∞.

By substituting W( f ) after performing the above-
mentioned modification for (10) and applying inverse DFT
to the outputs Ŝ1( f , t) and Ŝ2( f , t), we can obtain the source
signals correctly.

4. EXPERIMENTS AND RESULTS

Signal-separation experiments are conducted using the
sound data convolved with the impulse responses recorded in
two environments specified by different reverberation times
(RTs). In these experiments, we investigated the performance
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Figure 6: Layout of reverberant room used in experiments.

of separation under different reverberant conditions from
two standpoints: an objective evaluation of separated speech
quality and a word recognition test.

4.1. Conditions for experiments

A two-element array with the interelement spacing of 4 cm is
assumed. We determined this interelement spacing by con-
sidering that the spacing should be smaller than half themin-
imum wavelength to avoid the spatial aliasing effect; it cor-
responds to 8.5/2 cm in 8 kHz sampling. The speech signals
are assumed to arrive from two directions: −30◦ and 40◦. Six
sentences spoken by six male and six female speakers selected
from the ASJ continuous speech corpus for research [25] are
used as the original speech. Using these sentences, we obtain
36 combinations with respect to speakers and source direc-
tions. In these experiments, we used the following signals
as the source signals: (1) the original speech not convolved
with the room impulse responses (only considering the ar-
rival lags among microphones) and (2) the original speech
convolved with the room impulse responses recorded in the
two environments specified by the different RTs. Hereafter,
we designate the experiments using the signals described in
(1) as the nonreverberant tests, and those of (2) as the rever-
berant tests. The impulse responses are recorded in a vari-
able RT room as shown in Figure 6. The RTs of the im-
pulse responses recorded in the room are 150milliseconds
and 300milliseconds, respectively. These sound data which
are artificially convolved with the real impulse responses have
the following advantages. (1)We can use the realistic mixture
model of two sources neglecting the affection of background
noise. (2) Since the mixing condition is explicitly measured,
we can easily calculate a reliable objective score to evaluate
the separation performance as described in Section 4.2. The
analysis conditions of these experiments are summarized in
Table 1.

4.2. Objective evaluation score

Noise reduction rate (NRR), defined as the output signal-to-
noise ratio (SNR) in dBminus the input SNR in dB, is used as
the objective evaluation score in this experiment. The SNRs
are calculated under the assumption that the speech signal
of the undesired speaker is regarded as noise. The NRR is

Table 1: Analysis conditions of signal separation.

Sampling frequency 8 kHz

Frame length 32ms

Frame shift 16ms

Window Hamming window

Number of iterations 500

Step size parameter η = 1.0× 10−4

defined as

NRR ≡ 1
2

2∑
l=1

(
SNR(O)

l − SNR(I)
l

)
,

SNR(O)
l = 10 log10

∑
f

∣∣Hll( f )Sl( f )
∣∣2∑

f

∣∣Hln( f )Sn( f )
∣∣2 ,

SNR(I)
l = 10 log10

∑
f

∣∣All( f )Sl( f )
∣∣2∑

f

∣∣Aln( f )Sn( f )
∣∣2 ,

(22)

where SNR(O)
l and SNR(I)

l are the output SNR and the in-
put SNR, respectively, and l �= n. Also, Hij( f ) is the el-
ement in the ith row and the jth column of the matrix
H( f ) = W( f )A( f ), where the mixing matrix A( f ) corre-
sponds to the frequency-domain representation of the room
impulse responses described in Section 4.1.

4.3. Alternativemethod for comparison

In order to perform a comparison with the proposed meth-
od, we also performed a BSS experiment using the alternative
method proposed by Murata and Ikeda [19] with the modi-
fication for offline learning.

Our proposed method is based on the utilization of di-
rectivity patterns; in contrast, Murata’s method is based on
the utilization of W−1( f ) for the normalization of gain and
the a priori assumption of similarity among the envelopes of
source signal waveforms for the recovery of the source per-
mutation. In this method, the following operations are per-
formed:

Z( f , t) = [Z1( f , t), . . . , ZL( f , t)
]T =W( f )X( f , t),

S̃l( f , t) =W−1( f )
[
0, . . . , 0, Zl( f , t), 0, . . . , 0

]T
,

(23)

where S̃l( f , t) denotes the component of the lth estimated
source signal in the frequency bin of f . By using both W( f )
andW−1( f ), the gain arbitrariness vanishes in the separation
procedure. Also, the source permutation can be detected and
recovered by measuring the similarity among the envelopes
of S̃l( f , t) between the different frequency bins.

4.4. Objective evaluation of separated signal

In order to illustrate the behavior of the proposed array for
different values of h, the NRR is shown in Figures 7, 8, and 9.
These values are taken as the average of all of the combina-
tions with respect to speakers and source directions.
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Figure 8: Noise reduction rates for different values of threshold pa-
rameter h. Reverberation time is 150milliseconds.

From Figure 7, for the nonreverberant tests, it can be seen
that the NRRs monotonically increase as the parameter h de-
creases, that is, the performance of the null beamformer is
superior to that of ICA-based BSS. This indicates that the
directions of the sound sources are estimated correctly by
the proposed method, and thus the null beamforming tech-
nique is more suitable for the separation of directional sound
sources under nonreverberant condition.

In contrast, from Figures 8 and 9, for the reverberant
tests, it is shown that the NRR monotonically increases as
the parameter h decreases in the case that the observed sig-
nals of 1 second duration are used to learn the unmixing ma-
trix, and we can obtain the optimum performances by setting
the appropriate value of h, for example, h = 2, in the case
that the learning durations are 3 seconds and 5 seconds. We
can summarize from these results that the proposed combi-
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Figure 9: Noise reduction rates for different values of threshold pa-
rameter h. Reverberation time is 300milliseconds.

nation algorithm of ICA and null beamforming is effective
for the signal separation, particularly under the reverberant
conditions.

In order to perform a comparison with the conventional
BSS method, we also perform the same BSS experiments us-
ing Murata’s method as described in Section 4.3. Figure 10a
shows the results obtained using the proposed method and
Murata’s method where the observed signals of 5 second du-
ration are used to learn the unmixing matrix, Figure 10b
shows those of 3 second duration, and Figure 10c shows
those of 1 second duration. In these experiments, the param-
eter h in the proposed method is set to be 2.

From Figure 10, in both nonreverberant and reverberant
tests, it can be seen that the BSS performances obtained by
using the proposed method are the same as or superior to
those of Murata’s conventional method. In particular, from
Figure 10c, it is evident that the NRRs of Murata’s method
degrade markedly in the case that the learning duration is
1 second; however, there are no significant degradations in
the case of the proposed method compared with those of
Murata’s method. By looking at the similarity, for example,
frequency-averaged cosine distance defined by

2
N

N/2∑
m=1

∣∣∣〈Y1
(
fm, t

)
Y2
(
fm, t

)∗〉
t

∣∣∣〈∣∣Y1
(
fm, t

)∣∣2〉1/2
t

〈∣∣Y2
(
fm, t

)∣∣2〉1/2
t

, (24)

among the source signals of different lengths, we can sum-
marize the main reasons for the degradations in Murata’s
method as follows (see Figure 11). (1) The envelopes of the
original source speech become more similar to each other
as the duration of the speech shortens. (2) The separated
signals’ envelopes at the same frequency are similar to each
other since the inaccurate unmixing matrix is estimated to
have many components of crosstalk. Therefore, the recov-
ery of the permutation tends to fail in Murata’s method.
In contrast, our method did not fail to recover the source
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Figure 10: Comparison of noise reduction rates obtained by the
proposed method (h = 2) and Murata’s method in the case that the
learning duration for ICA is (a) 5 seconds, (b) 3 seconds, and (c)
1 second.

permutation because we did not use any informations of sig-
nal waveforms, but rather used only the directivity patterns.

4.5. Word recognition test

TheHMMcontinuous speech recognition (CSR) experiment
is performed in a speaker-dependent manner. For the CSR
experiment, 10 sentences spoken by one speaker are used as
test data, and the monophone HMM model is trained us-
ing 140 phonetically balanced sentences. Both test and train-
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Figure 11: Cosine distances for different speech lengths. These val-
ues are the average of all of the frequency bins.

Table 2: Analysis conditions for CSR experiments.

Frame length 25ms

Frame shift 10ms

Window Hamming window

Feature vector 12th order MFCC [26]

+ 12th order ∆MFCC

+ 12th order ∆∆MFCC

+ ∆POWER + ∆∆ POWER

Number of states 5

Vocabulary 68

ing sets are selected from the ASJ continuous speech corpus
for research. The remaining conditions are summarized in
Table 2.

Figure 12 shows the results in terms of word recognition
rates under different reverberant conditions. Compared with
the results of Murata’s BSS method, it is evident that the im-
provements of the proposed method are superior to those
of the conventional ICA-based BSS method under all condi-
tions with respect to both reverberation and learning dura-
tion. These results indicate that the proposed method is ap-
plicable to the speech-recognition system, particularly when
confronted with interfering speech signals.

5. CONCLUSION

In this paper, a new BSS method using subband ICA and
beamforming was described. In order to evaluate its effective-
ness, signal-separation and speech-recognition experiments
were performed under various reverberant conditions. The
signal-separation experiments with observed signals of suffi-
cient duration reveal that the NRR of about 18 dB is obtained
under the nonreverberant condition, and NRRs of 8 dB and
6 dB are obtained in the case that the RTs are 150milliseconds
and 300milliseconds, respectively. These performances were
superior to those of both simple ICA-based BSS and simple
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Figure 12: Comparison of word recognition rates obtained by the
proposed method (h = 2) and Murata’s method in the case that the
learning duration for ICA is (a) 5 seconds, (b) 3 seconds, and (c)
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beamforming technique. Also, it was evident that the NRRs
of Murata’s ICA-based BSS method degrade markedly in the
case that the learning duration is 1 second; however, there
are no significant degradations in the case of the proposed
method. From the speech-recognition experiments, com-
pared with the results of Murata’s BSS method, it was evident
that the improvements of the proposed method are superior
to those of Murata’s BSS method under all conditions with
respect to both reverberation and learning duration. These
results indicate that the proposed method is applicable to

the speech-recognition system, particularly when confronted
with interfering speech signals.

In this paper, we mainly showed that the utilization of
beamforming in ICA can improve the separation perfor-
mance. As for the other application of beamforming to ICA,
we have already presented a method [27] in which we are
particularly concerned with the acceleration of convergence
speed in the ICA learning. These results show the explicit
evidence for the effectiveness of beamforming used in ICA
framework; however, further study and development on the
alternative combination technique between ICA and beam-
forming is an open problem.
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