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In mobile positioning, it is very important to estimate correctly the delay between the transmitter and the receiver. When the re-
ceiver is in line-of-sight (LOS) condition with the transmitter, the computation of the mobile position in two dimensions becomes
straightforward. In this paper, the problem of LOS detection in WCDMA for mobile positioning is considered, together with joint
estimation of the delays and channel coefficients. These are very challenging topics in multipath fading channels because LOS
component is not always present, and when it is present, it might be severely affected by interfering paths spaced at less than one
chip distance (closely spaced paths). The extended Kalman filter (EKF) is used to estimate jointly the delays and complex channel
coefficients. The decision whether the LOS component is present or not is based on statistical tests to determine the distribution
of the channel coefficient corresponding to the first path. The statistical test-based techniques are practical, simple, and of low
computation complexity, which is suitable for WCDMA receivers. These techniques can provide an accurate decision whether
LOS component is present or not.
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nents, arriving with delay less than one chip at the receiver,

For the public interest, mobile phone positioning in a cellu-
lar network with reliable and rather accurate position infor-
mation has become unavoidable after the Federal Commu-
nications Commission mandate, FCC-E911 docket on emer-
gency call positioning in USA, and the coming E112 in the
European Union [1]. One method for locating the mobile
station (MS) in two dimensions requires the measurement
of line-of-sight (LOS) distance between the MS and at least
three base stations (BSs). Hence, knowing which BS is re-
porting, LOS component is crucial for accurate position esti-
mation. In many cases, the non-LOS (NLOS) signal compo-

obscure the LOS signal. This situation of overlapping multi-
path propagation is one of the main sources of mobile posi-
tioning errors (2, 3, 4].

Previous studies dealing with LOS detection used range
measurement-based techniques [5, 6, 7] (i.e., measurements
of the time of arrival), which exploit the time history of the
range measurements and the a priori knowledge of the noise
floor in the system. These techniques can increase the ac-
curacy of the mobile position estimation, but they require
the knowledge of the a priori statistic parameters such as
the standard deviation of the measurement noise. The use
of a link level-based techniques where the signal processing
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is made in the MS side as presented in this paper to de-
tect whether the LOS component is present or not is a new
topic. In this paper, accurate estimates of the channel co-
efficients and their corresponding delays in the context of
closely spaced paths are obtained using extended Kalman fil-
ter (EKF) algorithm, aided by an interference cancellation
(IC) technique. The channel coefficients will be used as basis
for deciding whether the first arriving path is a LOS or NLOS
component.

Many techniques were presented to cope with closely
spaced multipath propagations, such as subspace-based
methods [8] or least square (LS) approaches [9, 10]. These
techniques can provide rather accurate estimation of the
multipath delays, but they suffer from the high complex-
ity for the implementation in WCDMA systems in tracking
mode. Few authors have studied the problem of joint param-
eters estimation using Kalman filtering in multipath fading
and multiuser environment. In [11], Iltis has developed a
new technique for jointly estimating the channel coefficients
and the first-path delay in frequency selective channel based
on Kalman filtering in a single user system. Recently, the
idea has been extended to multiuser scenario [12]. In order
to solve the closely spaced multipaths, we propose here an
EKE-based solution with IC scheme. EKF algorithm jointly
estimates the delays and complex coefficients of all the paths
from all the participating BSs and it is combined with a new
IC scheme to enhance the estimation of the channel from the
desired BS (serving BS). The obtained estimates are used to
detect whether the LOS component is present or not. The
detection procedure exploits the distribution of the first ar-
riving path. If the distribution is Rician with strong Rician
factor, then LOS component is likely to be present. If the dis-
tribution is Rayleigh, it is more likely that LOS component
is absent. We point out that the proposed algorithm is not
limited to a WCDMA system and it can be easily extended to
other mobile positioning systems.

This paper is organized as follows. In Section 2, the chan-
nel and signal model are described. Then, the joint estima-
tion of the channel coefficients and delays is described in
Section 3 with an emphasis on the proposed IC algorithm.
Section 4 is devoted to the novel LOS detection procedures.
Simulation results are provided in Section 5, and conclusions
are drawn in Section 6.

2. CHANNEL AND SIGNAL MODELS

The system under consideration is a DS-CDMA system with
Ngs base stations and N, users per BS. In baseband system
(fully digital implementation), the received signal complex
valued at sample level, transmitted over an L-path fading
channel, can be written as [13]

0 Nps L

riy= > D D \Enau(m)si (T = 1(m) + (i),

m=-o y=1 =1
(1)

where i is the sample index (we assume that there are N;
samples per chip), Ep, is the bit energy of the uth BS (we

assume that all bits of the same BS have the same energy),
L is the number of discrete multipath components, T is the
sampling period (Ts = T./N;, T, is the chip period), a;,(m)
and 75, (m) represent, respectively, the complex-valued time
varying channel coefficient and delay of the /th path of base
station u, during the mth symbol. The delays are treated as
complex values, but only the magnitudes rounded to the

nearest integer values are retained. We denote by s
the signature of the uth BS during symbol m including
data modulation, spreading code, and pulse shaping, and %
is an additive circular white Gaussian noise of zero mean
and double-sided spectral power density Ny. The signatures
of all users are assumed to be known at the receiver (this
corresponds to a situation when a pilot signal is available,
e.g., Common Pilot Channel (CPICH) signal in downlink
WCDMA environment [14]). The intracell interference is as-
sumed Gaussian distributed by virtue of central limit theo-
rem, and it is included in the term #(-).

The output of the matched filter corresponding to the de-
sired BS u during the symbol n with lag 7 is as follows:

Nps

Bs L
yu(m 1) = > S By oy ()R (7 = 10(m)) +7i(n), (2)
—1121

v

where R,,,(-) is the cross correlation between the signature
of the BS of interest (uth BS) and the signature of the vth
BS, 7j(n) is the filtered noise plus interchip and intersymbol
interference, and a;,(n) and 7;,(n) are the complex chan-
nel coefficients and the path delays, respectively, at symbol
level. We point out that the channel coefficients and de-
lays are assumed to be constant within one symbol. This as-
sumption is reasonable since the symbol period (e.g., 66.5 us
for Sp = 256) is much less than the coherence time of the
channel. The constant delays assumption is also reasonable
for terrestrial communications due to the negligible Doppler
shift. The channel coefficients and delays are modeled as a
Gauss-Markov process [11, 12, 15]

(xl,v(” +1) = ﬂv‘xl,v(n) + Wocz)v(n)’ (3)
Ty(n+ 1) = yr,(n) + wy, (n),

where w, and w, are mutually independent additive circular

white Gaussian noise processes, y is a coefficient accounting

for the delay variation, and S, is a coefficient accounting for

the maximum Doppler spread, fp, of the vth BS, defined as

[16]

/31/ = IO (ZHfDTsym)x (4)

where Iy(-) is the zero-order Bessel function and Ty, is the
symbol interval. We assumed that for each BS, all the paths
have the same maximum Doppler spread. The coefficient f3,
is close to unity when the Doppler spread is significantly less
than the Nyquist bandwidth. We assume here that the coef-
ficient y is constant for all the BSs and all the paths. This is
a reasonable assumption in terrestrial communication when
the Doppler shift is negligible, and y can be set to a value
close to unity for all multipath delays of all users. However,
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EKEF can be easily modified to use different y coefficients [12].
We point out that the channel models of [11, 12, 17] are dif-
ferent from (3) in the sense that, earlier, the paths have been
assumed uniformly spaced at chip period (T.), and the only
delay modeled with (3) is the delay of the first path. In this
paper, we derive an extension of the EKF model for all the
path delays. This should not affect the EKF algorithm; it will
only increase slightly the number of parameters to be esti-
mated, and hence, the complexity. Also, we point out that the
Gaussian assumption of multiple access interference (MAI)
can be relaxed and the algorithm is straightforward to ex-
tended to non-Gaussian MAI case by using some IC within
each cell in a similar manner to the intercell IC algorithm
presented in the next section.

3. JOINT CHANNEL COEFFICIENTS AND PATH
DELAYS ESTIMATION

The joint estimation of multipath delays and complex chan-
nel coefficients of the serving BS is done in two steps. First, we
jointly estimate all the path delays and channel coefficients
from all participating BSs, which leads to an estimation of
the interference due to CPICH channels. Then, an IC scheme
will be combined to enhance the estimation of the desired BS
(serving BS) channel. During the first step, the discrete state
vector, x(n) € C2INssx1 agsociated with all BSs is defined by

x(n) = [xq,. ..,XNBS]T, (5)

where x, = [ay,(n),...,ar,(n), 11,,(n),...,171,(n)], for v =
1,..., Ngs. Due to the fact that the received signal is not a lin-
ear function of the multipath delays 7;,, an EKF is needed.
The state and observation models are described by the fol-
lowing equations, respectively,

x(n+1) = Fx(n) + w(n),

z(n) = #(x(n)) + v(n), ©
where w(-) and »(-) are circular white Gaussian noise pro-
cesses, F € R?INwsx2LNs g defined by F = Block diag(Fy, ...,
Fny, ), where F, = diag(,....5,7,...,y), z(n) is the obser-
vation vector which depends nonlinearly on the state vector
x(n), z(n) = [y1(n),..., ynys(n)]7, and the nonlinear trans-
form (-) is given as follows:

% (x(n)) = [Hi(x(n)),..., Hyy (x(m))]", (7)

where H(x(n)) = 3 S VEp, @1y ()i (nToym =71 (1)),
ﬁori = 1,...,IVBS

Here, we assume that we have no data modulation, which
is true for the CPICH reference channels used for positioning
in WCDMA [14]. However, this assumption is not crucial
in the sense that data can be removed in a decision-directed
mode before we proceed with EKF estimation. The circular
white Gaussian noise vector w(-) is defined as
T

(8)

w(n) = [wi(n),..., W (n)]

where wi(1n) = [Wag» o Way_1o Wroio - - o> W1 ]

The EKF algorithm requires the linearization of the
transform #((-). The most common linearization method
used is the first-order Taylor expansion defined as follows
(11,17, 18]:

H(x(n) = H(k(nln - 1))

2LNjgs

+ Z (xm(n) = Xu(nln - 1)) 9)
m=1

0
X a%(x(”)) |x(n):f((n\n71)’

where %(n|n — 1) is the predictor at step n conditional to pre-
vious observations, x,,(n) are the elements of the state vector
x(n), and X, (n|n—1) are the elements of the predictor vector
X(nln—1),m =1,...,2LNgs.

Using the linearization in (9), the set of EKF equations
can be written as [11, 12, 17]

x(nln) = x(nln — 1) + K(n)[z(n) — #(x(nln - 1))],
K(n) = P(nln — 1)% (n)[9€ (n)FP(nln — DI (n)+2,] ",
P(nln) = [I1-K(n)¥ (n)?]P(nln - 1).
(10)

Here, ¥, is the covariance matrix of the measurement noise
and #' (n) is the partial derivative matrix

H'(n) = [%,..., %y, ], (11)
where
, 0H (x(n|n — 1)) 0# (&(n|n — 1))
%i = A PR N >
0%y 0Xp i
y (12)
0% (x(nln - 1)) 0% (x(nln — 1))]
OXri1i T 0%ap,i '

To ensure real and integer values for the estimated delays,
%;(+) are the rounded to the nearest integer value of |7;;(-)|
forj = L+1,...,2L, and for i = 1,..., Nps. The one step
predictions of the state vector and error covariance matrix
satisfy, respectively,

X(n+ 1|n) = Fx(n|n),

R R . (13)
P(n+1|n) = FP(n|n)F" +Q,
where Q = Blockdiag(Q, ..., Qn,,) and
Q; = diag (03\,%]1, e afvaHi, O-VZVTU,i’ e UE/TL,M)- (14)

When the first stage of estimating all the path delays and
channel coefficients is achieved, it becomes possible to esti-
mate the interference Jin(n, T) coming from the nonserving
BSs (we suppose that the serving BS has the index 1):

Nps L

Fi(m 1) = > S By by (P (1 = B0(m). (15)
v=2 =1

To refine the estimation of the desired BS channel, we cancel
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the estimated interference
Paes(n, T) = y1(1, T) = Pine(n, 7), (16)

and, then, we introduce a second estimation stage based on

EKEF with a state vector x9¢(n) € C2*! and with an obser-
vation vector z9%(n) given, respectively, by

T

x4(n) = [a11(n),...,a01(n), T1,1(n), ..., 11 ()],

(17)
Zdes(n) = )A’des(”)-

The EKF set of equations for single BS channel estima-
tion can be retrieved easily from the equation presented for
multiple BSs case. In this algorithm, we try to cancel only
the interference coming from other BSs (interference due to
CPICH channels). The interference coming from the other
users (i.e., DPCH channels [14]) is considered as additive
white noise and it will be neglected by the IC algorithm for
simplicity. To cancel the intracell interference, the spreading
codes of all users should be known by the receiver. Besides,
in WCDMA systems, CPICH power is usually significantly
higher than the individual DPCH power [14]. Therefore, us-
ing only intercell interference in the interference canceller is
reasonable.

4. LOS DETECTION

The probability density function (pdf) of a fading channel
with amplitude || which relates the Rayleigh, Rician, and
Nakagami distributions is given by [19]

2lal(1+ K, al?(1+ K,
Pr(|0¢|) Q:Kr) = %exp (_Kr —_ %)IO

X (Zlcx W),

where Q) is the average fading power, Q = E[|«|?], and K,
is the Rician factor. For K, = 0, the pdf becomes Rayleigh
distribution and it is Nakagami-n when n?> = K,. We point
out here that the Rayleigh distribution is a particular case
of Nakagami and Rician for n*> = K, = 0. The question is
how to detect the LOS and NLOS situations. This detection
problem can be redefined in terms of a statistical test. First,
we estimate {(a;1, 7i1), i = 1,..., Nps} with the EKF algo-
rithm. Then, by using statistic tests, we check if the channel
is Rayleigh or not.

The most straightforward method is to estimate the pdf
of the first arriving path, and compare it to some reference
pdfs such as Rayleigh, Rician, Normal, Lognormal. To esti-
mate correctly the distribution of the first arriving path, a set
of independent fading coefficients are needed. The fading co-
efficients can be considered independent if they are at least a
coherence time (At.on) apart. When the carrier frequency is
2.15GHz, and for a mobile velocity v in m/s, the coherence
time is [20]

(18)

9 0025 19)

Ateonh = ~
coh 167 fp v

In WCDMA mobile positioning, two techniques have been
proposed to let the MSs measure different BSs within their
coverage. The first one is the idle period-downlink (IP-DL)
transmission proposed in [21]. It imposes to each BS to turn
off its transmission for a well-defined period of time to let the
MSs measure other BSs. In this case, the MS cannot measure
continuously all the links, and the number of independent
points sufficient for the positioning can be only acquired
from the serving BS. As an alternative to IP-DL method,
Jeong et al. [22] proposed an IC scheme in conjunction with
the delay lock loops (DLLs) to reduce the intercell interfer-
ence. By using this technique, the MS can measure continu-
ously all the BSs in its coverage. In our algorithm, we use the
EKF-based IC scheme to be able to measure continuously all
available links.

We consider that N independent values are available in
the MS memory to be used in the estimation of the channel
distribution whenever the positioning is needed. For these N
independent points x;, we test the hypothesis that Pgr = Qqy,
where Py is the measured pdf and Qg is the reference pdf
(e.g., Rayleigh, Rician, etc.). We define the two states Hy and
Hj, respectively, such that [23]

Pyr(xi) = Qur(x;) forl<i<N,

(20)
Pag (x;) # Quy (xi)

for some i.

We introduce the m events X; = {x;_; < x < x;},1 =
1,..., m, where xy = —oc0 and x,,, = +00. We denote by k; the
number of successes of X;, that is, the number of samples in
the interval [x;_1, x;].

Under the hypothesis Hy,

P(X;) = Par(x;) = Qs (x:),

(21)
pio = (% — xi-1) P(X;).
Thus, to test the hypothesis, we form the Pearson’s test statis-
tic (PTS) [23]

(ki — npi)”
PTS = _— 22
>t (22)

where n is the total number of observed samples (n =
NAtcn). The hypothesis Hy is accepted if the PTS value sat-
isfies PTS < x7_,(m —1), where y7_, (m — 1) is taken from the
standard chi-square tables corresponding to the confidence
level A and to the degree of freedom (m — 1).

This technique is efficient when the observation interval
is long enough, the simulation results showed that around 1
second is needed to make reliable decision for a mobile veloc-
ity of 22.22 m/s. To decrease the duration of the observation
and hence the hardware needed for storage, we propose a new
algorithm using the estimation of Rician factor parameter K
with respect to the channel profile of the vth BS defined by
(20]

k= (23)
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Fori= 1,...,NBs,_
Compute K (dB)
Evaluate Pl(q’)LOS and P{gs
Evaluate d; = P(L’())S - PI(Q)LOS
if d; > 0, then LOS component is present from BS; with probability Pﬁ%s.
else, LOS component is absent from BS; with probability PI(\?LQS.
Next BS.
ArcoriTHM 1: Rician factor-based LOS detection.
User
signature Noncoherent
| integration
R é || | TK operator or 2 Block Detection ..
signal 1&D 71 pocs processing (L averaging | threshold [ Decision
T
Threshold
computation
FI1GURE 1: Block diagram of the acquisition model.
where y = |E[a1,,]] and ¢? = Var[aj,]/2. Hereinafter, we correlation and additional signal processing such as the non-

consider the case of single BS and the subscript v will be
dropped for convenience. In multiple BSs case, the same pro-
cedure is repeated for each BS. We point out that when K; is
zero, y is also zero and Rayleigh distribution should be de-
tected. To distinguish between Rayleigh and Rician cases, we
divide the whole range of K;, in dB scale, into three regions:
region I: [—oco, Bpin], region II: [Bmin, Bmax], and region III:
[Bmax> +o°], where Buin and Byax are two predefined param-
eters, which depend on the level of noise in the system.

IfK,(dB) € region I, then the distribution is Rayleigh and
we set the probability (Pxios, Pros) to (1.0, 0.0), if K, (dB) €
region III, then the distribution is Rician and we set the prob-
ability (PxLoss Pros) to (0.0, 1.0), and if K.(dB) region 11,
then the probabilities Pxios and Pros are computed as follow.

The range [Bmin, Bmax] is divided into (M + 1) equally
spaced intervals [b;_y, b;], where by = By and by =
Bmax- If bi1 < K.(dB) < b;, then we set the probability
(Pnros, Pros) to (M —i+1)/M, (i — 1)/M). This technique
is simple to implement and provides accurate detection of
the LOS component. The simulation showed that around
10 milliseconds are needed to detect accurately the distri-
bution of the first arriving path. The algorithm for LOS de-
tection based on the measurement from all BSs is shown in
Algorithm 1.

5. SIMULATION RESULTS

The EKF-based estimation was simulated in tracking mode.
We assume that the initial multipath delay estimates are
within Njyir samples away from the true delays, where Niyir <
N;. The acquisition of the closely spaced multipath delays can
be done with a separate feed-forward acquisition based on

linear Teager Kaiser (TK) operator-based estimation [24], the
iterative LS-based algorithms, projection onto convex sets
(POCS) [9, 10, 25], or the pulse subtraction (PS)-based algo-
rithms [26, 27]. The simulation results showed that the most
promising algorithms are TK and POCS. Figure 1 shows the
block diagram of the acquisition model including the addi-
tional signal processing.

The discrete-time TK operator applied to a complex sig-
nal x(n) is given by [27, 28]

Y, (x(n)) = x(n - Dx(n—1)*

—0.5[x(n —2)x(n)* + x(n)x(n — 2)*]. (24)
TK exploits the structure of the cross-correlation function to
estimate the subchip-spaced multipath components [24, 28].
The POCS algorithm is a constrained deconvolution ap-
proach, originally proposed in [9, 25] for delay estimation
in Rake receivers, under the assumption of rectangular pulse
shapes. If we reformulate (2) into a vectorial form, it is pos-

sible to write the following expression:
Yu(n) = Gu,uhu(n) +V,1(I’l), (25)
where y,(n) is the vector of correlation outputs correspond-
ing to the uth BS, at different time lags between 0 and max-
imum channel delay spread TmaxTs. It is defined as y,(n) =
(Yu(1,0), ..., Yu(1, Timax Ts)]T € ClmatDX1 The matrix Gy,
is the pulse shape deconvolution matrix with element g; ; =
VEo Ruui — j), for i,j = 0,..., Tmax, V4(n) is the sum
of Inter-Chip-Interference (ICI), Inter symbol Interference
(ISI), MAI, and AWGN noises after the despreading opera-
tion. The vector h,(n) of elements h;, is defined such that
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(a) Acquisition probability of first path.
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(b) Acquisition probability of all paths.

FIGURE 2: Probability of acquisition within 1 chip in closely spaced multipaths downlink WCDMA transmission using TK, POCS, and PS
algorithms, Ngs = 3, N, = 32, S = 256, N; = 8, L = 5, and E;/N, = 10dB.

hi, = 0 if no multipath is present at the time delay /, and
hy, = oy, if the index I corresponds to a true path loca-
tion. Therefore, resolving multipath components refers to
the problem of estimating the nonzero elements of the un-
known gain vector h,(n). The POCS estimation is an itera-
tive process. The estimates at the (k + 1)th iteration can be
written as [10]

-1
Bu(”)(kH) = ﬁu(”)(k) + (%I + GllguGu,u)

POCS (26)

X GIu—{u (Yu(”) - Gu,uﬁu(n)(k)>;

where Apocs is a constant determining the convergence speed
and I is the unity matrix. The threshold used in the multipath
detection is set adaptively, based on the estimation of signal-
to-noise ratio (SNR) in the system [29].

Figure 2 shows the probability of acquiring the first path
(plot “a”) and acquiring all the paths (plot “b”) within 1
chip error using TK, POCS, and PS algorithms. The chan-
nel profile is Rayleigh with probability pr = 0.9 and Rician
with exponential distribution Rician factor of mean yp = 4
with probability 0.1. The channel has 5 paths with average
powers 0, —2, 0, —1, and —3 dB. The acquisition probability
is computed over Ny,ng random realizations of the channel,
Niand = 150. We see that at low Near Far Ratio (NFR) val-
ues (up to 0dB), it is possible to acquire all the paths within
1 chip in at least 60% of the cases with TK algorithm. How-
ever, the probability is much higher for the first path. This
proves that the assumption of initial delay error for the EKF
estimation within 1 chip is quite reasonable.

5.1. EKF for joint estimation with closely spaced paths

A downlink multiuser WCDMA scenario was considered
with L paths, the first one being either Rayleigh or Rician.
The channel is supposed to be Rayleigh with probability
pr and Rician with probability 1 — pg. The delay separa-
tion between successive paths are uniformly distributed in
[Te/Ng Te] (N = 8).

In Figure 3, we show the tracking trajectory of both de-
lays and channel coefficients of the first arriving path for L =
4, with tracking delay error initialized at Nipit = 7—7 = 0.57T.

The matrix of the average path powers is

0 -2 -2-3
-1 -1 -4 -5

Pgs = dB. 27

=1 5 1 4 (27)
-2 -2 —4 -5

The first row corresponds to the average path powers of the
desired BS. The simulation shows that EKF is able to track
quite accurately the delays and the complex channel coeffi-
cients by using the IC scheme. In Figure 4, we show the prob-
ability of acquiring correctly the delay of the first arriving
path within an error of 1 sample (1/N;s chip) with and with-
out IC algorithm. The channel from each BS has 3 closely-
spaced paths. The corresponding average powers are

0 -1 -4
-3 -2 -4
Pgs = dB. 28
B=1 1, (28)
-2 -2 —4
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Coefficients of the desired BS: path 1
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—— True coefficient
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--- Estimated coefficient: with IC

Coef. RMSE: path 1
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Symbols
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(d)

FIGURE 3: EKF-based desired BS estimation for four closely spaced paths, Ngs = 4, N, = 8, E;/Np = 10dB, S = 256, and N, = 8.

0.9

0.8 v+t B m i

Probability of LOS acqui. within 1 sample error

-e- WithIC
—a— Without IC

FIGURE 4: Probability of first arriving path acquisition within 1 sam-
ple error with and without IC. Three closely spaced fading channel
paths, Npgs = 4, pPr= 0.9, E,/N, = 8dB, Sg = 256, N; = 8, N,, = 32,
Nrana = 200.

The channel profile from the desired BS is Rayleigh with
probability pr = 0.9 and it is Rician with probability 0.1. The

Rician factor is exponentially distributed with mean pp = 4.
The acquisition probability is computed over Nyung random
realizations of the channel, N;y;ng = 200. We can see that it
is possible to achieve 20% to 30% gain in the probability of
first-arriving path acquisition by using the IC algorithm at
low NEFR values. The tracking of the first-arriving path can
be achieved in up to 80% of the cases with IC. However, at
high NFR, the feedback propagation error in EKF, when the
interference is strong, prevents the correct tracking of the de-
lay. The initial delay and covariance errors have a major effect
on the convergence of the EKF, that is, bad initialization may
lead to divergence of the algorithm.

5.2. LOS detection

First, we show the performance of PTS-based LOS detection.
Then, we show the performance of Rician factor-based al-
gorithm. We consider a relatively fast fading channel with
mobile velocity v = 80km/h (22.22m/s). In the statis-
tical test, the decision is made on Ny slots basis, with
Niots € {50, 100, 500, 1000, 1500, 2000, 4000}. Independent
points spaced at At,h apart are taken within the decision in-
terval. In WCDMA, 1 slot is 4ot = 0.6667 milliseconds and
for Sp = 256, there are 10 symbols per slot. The confidence
level in the decision was 99.99% [23]. Table 1 shows the com-
parison of the measured data distribution of the first path
against several distributions: Rayleigh, Rician, Gaussian, and
Lognormal.
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TaBLE 1: Probabilities of accepting a certain distribution with a confidence level of 99.99%. Rayleigh and Rician channels (K, = 15.5dB) and

v =22.22m/s.
Rayleigh channel Nilots Prayleigh Prician Prormal Prognormal Decision
50 0.993 1 1 0.83 None
100 0.993 1 0.98 0.76 None
500 1 1 0.86 0 None
1000 1 1 0.40 0 None
1500 1 1 0.10 0 NLOS
2000 1 1 0 0 NLOS
Rician channel Nilots Prayleigh Prician Prormal Prognormal Decision
50 1 1 1 0.04 None
100 1 1 1 0 None
500 1 1 0 0 NLOS
1000 1 1 0 0 NLOS
1500 0 1 0 0 LOS
2000 0 1 0 0 LOS
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FiGURE 5: Estimated and theoretical Rayleigh and Rician pdfs for Nyjos

(K, = 15.5dB), v = 22.22m/s.

When the channel is Rayleigh distributed (i.e., NLOS
case), we see that at least 1500 slots are needed to decide
Rayleigh and Rician. This is not contradictory as the Rayleigh
distribution is a particular case of Rician. Hence, the overall
decision will be Rayleigh and the LOS component will be ab-
sent. If we use a lower number of slots (e.g., 100 slots), the
distribution cannot be established, as we also detect normal
distribution with probability 0.98, and Lognormal distribu-
tion with probability 0.76. Also, in the case of Rician chan-
nel profile (i.e., LOS case), at least 1500 slots are needed to
decide Rician distribution. We point out that for LOS case,
the statistical test for Rayleigh distribution should provide

pdf

1.5 2

Amplitude values

0 0.5 1

-eo- Measured pdf
—>— Rayleigh theoretical pdf
—— Rician theoretical pdf

(b)

= 500 (plot (a)) and Ny = 1500 (plot (b)). Rician channel profile

Prayleigh = 0. In this case, the number of independent points
needed for the decision is N = 880, which is obtained from
Nslots

N =t .
slot A foon

(29)

In Figure 5, we show the similarities between estimated pdf,
theoretical Rayleigh, and theoretical Rician pdfs when the
channel is Rician with Nyjo;s = 500 and Nyjois = 1500. We
can see that the measured data curve and Rician curve have
good fitting for the later case. This technique can be used
efficiently in continuous time measurement mode when the
mobile can keep track of the channel estimates over several
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FIGURE 6: Estimated Rician factor K, (plot (a)) and the probability distance d (plot (b)). Channel profile Rician with K, = 15.5dB and

y =22.22m/s.

TaBLE 2: Probabilities of accepting a certain distribution using Ri-
cian factor-based algorithm. Rayleigh and Rician channel (K, =
15dB) and v = 22.22m/s.

Rayleigh channel Nyois — pios Pros Aimean Decision
1 0.0917 0.9083 0.8165 LOS
10 0.5760 0.4240 -0.1520 NLOS
50 0.8133 0.1867 —0.6267  NLOS
100 0.9000 0.1000 —0.8000  NLOS
Rician channel  Ngos  pnios Pros Amean Decision
1 0.0975 0.9026 0.8 LOS
10  0.0272 0.9728 0.94 LOS
50 0.0433 0.9567 0.91 LOS
100 0.0918 0.9082 0.8164 LOS
500 O 1 1 LOS

milliseconds, for example, the CPICH signal coming from
the serving BS.

By applying Algorithm 1 to the same channel profiles
tested with the pdf-based technique, we can obtain faster
decision on whether the channel is Rayleigh or Rician. The
minimum and maximum edges Bmin and Bmax are —20 and
+20 dB, respectively, and the number of subintervals consid-
ered is (M + 1) = 10. Figure 6 shows the estimated Rician
factor in dB (plot (a)) and the distance d = Pios — Pnios
(plot (b)) when the Rician factor is computed on a slot by
slot basis. Table 2 shows the means pros and pnros, respec-
tively, of the probabilities Pros and Pnios, the mean distance
dmean Of d, and the corresponding decision when the Rician
factor is computed over Nyqos € {1, 10, 50, 100, 500} slots.

For the case of Rayleigh channel, we see that the decision
based on 1 slot is not possible, the estimated Rician factor in
this case is too high, and the decision will be Rician. At least
10 slots are needed to decide safely that the distribution is
Rayleigh. However, in the case of Rician channel, it is quite

easy to decide the presence of LOS even on a slot-by-slot
basis. To show the performance of Rician factor-based algo-
rithm, we considered a channel with succession of Rayleigh
and Rician fading. The estimation of the Rician factor is done
on a frame-by-frame basis (1 frame = 15 slots). Figure 7
shows that the true Rician factor versus the estimated Rician
factor in dB (plot (a)) and the distance d = Pros — Pnios
(plot (b)). During the first 200 frames and between frames
of index 500 and 600, the channel is Rayleigh (K, [dB] = ).
The minimum and maximum edges Bmin and Bmax are —20
and +20dB, respectively, and the number of subintervals is
(M + 1) = 10. We point out that these two edges, Bmin and
Bmax, should be set adaptively, based on the noise level in the
system. It is clear that during the first 400 frames, dmean < 0,
where dmean = mean{d;, 0 < i < 400}, which indicates the
absence of LOS component, even if we have Rician distri-
bution during 200 frames. This is due to the fact that for
K, = —6dB, which is very low, the Rician distribution is
very similar to Rayleigh. However, when the Rician factor is
6, 15.5, or 20 dB, it is quite easy to decide the presence of LOS
component.

The two presented techniques for LOS detection are mak-
ing a trade-off between short observation time and noise-
level estimation. The first technique that is based on pdf es-
timation does not need any estimation of the noise level, but
it requires long observation time, which is not a limitation in
continuous time measurement. The second technique which
uses much lower observation time needs an estimate of the
noise level to set adaptively the thresholds Bmin and Bax.

6. CONCLUSIONS

New techniques of LOS/NLOS detection for mobile posi-
tioning for WCDMA system have been presented, based on
EKF estimation and statistic tests-based decisions. The de-
lays and channel coefficients are jointly estimated using EKF
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FIGURE 7: Estimated Rician factor K, (plot (a)) and the probability distance d (plot (b)). Channel profile: combined Rayleigh-Rician and

y =22.22m/s.

with an IC scheme in the context of closely spaced paths
in multicell WCDMA transmission. The simulation results
showed that the tracking of the first-arriving path can be
achieved efficiently with a probability of acquisition varying
from 40% to 80% of the cases in good NFR conditions (NFR
< 10dB). The channel coefficient estimates are then used for
LOS/NLOS detection. We have presented two statistics-based
techniques. The first one is using curve fitting criteria. This
method requires the storage of N independent points in the
mobile terminal updated at least at coherence time interval
(Ateon) (about 880 points). We showed that this technique
can provide quite satisfactory decision on whether the LOS
component is present or not. The second technique is based
on the estimation of Rician factor and can be used when
the measurement interval is constrained in time. We found
that in moderate-to-high mobility case, one frame is enough
to carry reliable decision on whether the LOS component is
present or not. However, the decision parameters should be
updated according to the noise level for best performance.
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