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We present a fast and efficient coding algorithm for compound images. Unlike popular mixture raster content (MRC) based ap-
proaches, we propose to attack compound image coding problem from the perspective of modeling location uncertainty of image
singularities. We suggest that a computationally simple two-class segmentation strategy is sufficient for the coding of compound
images. We argue that jointly exploiting topological properties of image source in classification and coding stages is beneficial to the
robustness of compound image coding systems. Experimental results have justified effectiveness and robustness of the proposed

topological coding algorithm.
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1. INTRODUCTION

Compound image coding arises from various applications
related to the storage and the distribution of document im-
ages. Document images usually contain the mixture of tex-
tual, graphical, and pictorial contents. Mixture raster con-
tent (MRC) model, a layered representation, has been widely
used in the literature of compound image coding [1, 2, 3]. In
spite of the popularity of MRC representation, the computa-
tional complexity of generating layers by image segmentation
is prohibitive. For example, in MRC-based DjVu algorithm
[2], segmentation stage often takes significantly longer time
than the following coding stage.

In this paper, we attack compound image coding from a
different perspective. We argue that computationally expen-
sive document segmentation [4, 5, 6] is not an indispensable
component to compound image coding system. Instead, we
propose a simple yet effective two-class segmentation strat-
egy to accommodate the compound nature of document im-
ages. The key observation is that image coding does not need
to fully separate images from texts, graphics, and pictures as
document segmentation does. For the task of compression,
we advocate that it is sufficient to separate the compound
image into two subsources: texts/graphics for which location
uncertainty of image singularities should be directly mod-
eled in the spatial domain, and pictures for which wavelet
representations have shown to be appropriate [7, 8, 9, 10]. It
is easy to see that such two-class model can be viewed as a
special case of MRC representation (i.e., lift texts from mask

layer to foreground layer). The advantage with our two-class
model is reduced complexity.

We will show that topological properties of two sub-
sources provide a useful cue for fast segmentation. A linear-
time algorithm based on finding strongly connected com-
ponents [11] is proposed for the identification of tex-
tual/graphic regions. We then study how to exploit topo-
logical properties of image source in the coding stage where
the support of each subsource can have arbitrary shape. The
benefit of topological coding can be well understood from
the perspective of modeling location uncertainty of image
singularities. We argue that the fundamental limitation with
data-filling approach [12] in MRC-based coding lies in its ig-
norance of topological information contained in the mask.
The other advantage with joint exploitation of topological
properties in segmentation and coding is improved robust-
ness, that is, small errors in the segmentation result do not
have significant impact on the overall coding performance.
We also briefly study the rate-distortion (RD) optimization
problem within the proposed two-class coding framework.
Extensive experiment results are used to justify the effective-
ness and robustness of the proposed compound image cod-
ing algorithm.

The rest of this paper is organized as follows. Section 2
introduces two-class model for compound image source
and presents a fast topological segmentation algorithm.
Section 3 describes topological coding algorithms in the spa-
tial and the wavelet domain for texts/graphics and pictures,
respectively. Section 4 studies RD optimization within the


mailto:xinl@csee.wvu.edu

1182

EURASIP Journal on Applied Signal Processing

framework of two-class coding. We report our simulation re-
sults in Section 5.

2. TWO-CLASS MODEL FOR COMPOUND
IMAGE SOURCE

There are many different ways to model a compound im-
age source. For example, MRC representation structures a
compound image into three layers: mask (texts), foreground
(graphics), and background (pictures). Extensive studies
have been done on the problem of document segmentation
[4, 5, 6], that is, separate texts, graphics, and pictures apart.
We note that although document segmentation is a trivial
task for human eyes, it has been one of the long open prob-
lems in computer vision research. Especially from the com-
putational point of view, there is little evidence to believe
that cumbersome document segmentation is an indispens-
able component to compound image coding systems.

We propose a comprised two-class segmentation strategy,
that is, to view a document image as the mixture of two sub-
sources: texts/graphics and pictures. Such two-class model
can be viewed as a special case of three-layer MRC repre-
sentation; but we argue that our model dramatically allevi-
ates the computational burden on segmentation. The basic
motivation behind our fast segmentation strategy is that the
two subsources have different topological properties. That
is, if we consider the level-set representation [13] for each
subsource, textual/graphical regions typically have a support
with regular shape and large size, while the level set in pic-
torial areas has irregular shape and small size (due to noise
interference). Such distinction of the characteristics of level-
set shape and size leads to a fast segmentation algorithm in
the topological space.

Fast segmentation algorithm in the topological space

(1) Initialization: C(i, j) = 0 (class 0), for all 4, j.
(2) Loop over level-set value k = 0-255.
(i) Generate level set Qx = {(3, j) | X(i, j) = k} and its
indicator function

.. L (Gj) e
I1(3,7) = . 1
(@ j) {O, otherwise. M)

(ii) Identify each strongly connected component and
calculate its topological parameters (size A and

contour smoothness «).
(iii) If A < thy or a < thy, set C(i, j) = 1 (class 1).

In the above algorithm, strong connectivity refers to the
connection through the eight nearest neighbors. The size of
a set is defined by the number of pixels in the set and the
contour smoothness is measured by the average of absolute
differential tangent vector along the contour. It is well known
that there exists a linear-time algorithm for finding strongly
connected component in an undirected graph [11].

We note that the segmentation results generated by the
above algorithm are mostly satisfactory but seldom perfect. A
tantalizing question arises: how should we handle an imper-

fect segmentation result? Such issue is fundamentally impor-
tant to the optimization of compound image coding systems
but been has largely overlooked by the existing MRC-based
approaches. We suggest that the robustness of compound im-
age coding systems can be improved by jointly exploiting the
topological properties of image subsource (connectivity and
shape constraints) in both segmentation and coding stages.
The above claim can be intuitively justified by thinking of
compound image coding as a problem of resolving location
uncertainty of image singularities. Segmentation errors are
typically associated with ambiguity regions, that is, the set
of pixels whose characteristics lie between texts/graphics and
pictures (Figure 1). However, if the coding algorithms de-
signed for each subsource, indeed, exploit the topological
properties, the overall coding performance will be insensi-
tive to the choice of coding algorithm, which compensates
the wrong decision made by two-class segmentation.

3. TOPOLOGICAL CODING OF SUBSOURCES

In this section, we study the coding of two subsources with
the segmentation result (binary classification map) available.
We first introduce some notations. The compound image is
decomposed into two subsources: Q) = Q U i, where Oy
and Q,,; denote the support region of texts/graphics and pic-
tures, respectively. For Qug, which consists of a small num-
ber of level sets, spatial domain is the appropriate space for
modeling location uncertainty of image singularities (note
that wavelet transform is not level-set preserving). For Q;, it
is well known that wavelet space is suitable due to good en-
ergy compaction property of wavelet transform in both spa-
tial and frequency domains. The challenge here is that both
Qg and Qy,; have the support of arbitrary shape, which calls
for coding algorithms capable of exploiting topological prop-
erties. It should be noted that a straightforward approach
to handle arbitrary-shape support is by data filling [12] as
used in most MRC-based coding systems. However, from the
viewpoint of resolving location uncertainty of image singu-
larities, data filling is unlikely to be optimal because it ignores
useful topological information contained in the classification
map. Instead, we propose to study topological coding for tex-
tual/graphical and pictorial subsources, respectively.

3.1. Textual/graphical subsource

The coding of textual/graphical images has been studied in
the literature as palette-based image coding problem [14,
15, 16]. The main motivation behind palette-based coding
is based on the following observations with texts/graphics:

(1) there are typically far fewer colors than the number of
pixels;
(2) pixels of the same color tend to be contiguous.

The first observation implies that the subsource entropy
is primarily determined by the location of image singulari-
ties (color transition). The second observation leads to the
potential of exploiting topological properties during the ac-
tual coding process.



Topological Coding of Compound Images

1183

Besr Pon,

1 was dolighted bo hooe From you lask work, Pathi and [ had o
worderful Line during cur weeh-long suwer vacstion. The wea-
ther uss eucellent, and the food uss abaolutsly exquisits, |
hope than we con repeat this next gear and that you will Join
us e,

He came back with & lot of fantastic wemories, which we would

like to share with wou through some mnapshots that we tock.

of us sbosed the “Top Hab® . which |

hawe paited into this letter using soms reslly rest sdvsnced dig
ital imenirg technology on my home computer, Me will ship the

rest to wou on a CO-ROM soon,  WIShiEnG Wou the best,

Love,

Suzsn

FIGURE 1: Left: original cmpnd1 image; right: classification map.

We label all colors in the subsource by 1,2,..., N.. Since
N, is usually a small number, the overhead of coding a
palette of N, colors is negligible. To code the index map
index[X (i, j)], we define the set of pixels having color k by

Ri = {(i,j) | index [X(, j)] =k, (4, j) = 0}, (2)

and the union set of pixels whose color index is not less than
k is thus given by

Ui = U?Ele. (3)
It is easy to see that Ry is related to Ui by
R = Uk = Ugys (4)

where “the minus sign” denotes set subtraction operation
and U; D U, D + -+ D Uy.. Equation (4) decomposes the
original index map into N. — 1 binary maps (layers), which
can be coded in N, — 1 passes. Each coding pass only needs to
resolve the uncertainty of Uk from Uy, and therefore deals
with a binary map with monotonically decreasing support.
The existing context-based adaptive binary arithmetic cod-
ing (e.g., JBIG) can be easily modified to handle a binary
map with arbitrary-shape support. For example, we can as-
sign zero values to all the causal neighbors outside of the
support. In fact, the binary classification map can also be
incorporated into the above topological coding as an initial
layer.

To exploit topological properties (observation 2), we note
that both Ry (level sets) and Uy (union of level sets) are usu-
ally decomposed of strongly connected components with ar-
bitrary shapes. Since the pixels with the same color tend to be

contiguous, the topological structure of Uy, which is already
available at the decoder after the previous k—1 coding passes,
carries useful information. That is, we can label each strongly
connected set of Uy by 0 if all its pixels belong to Ry, by 1 if
its pixels are all in Uy, and by 2 if it contains the mixture
of R and Uy;. It is easy to see that only the sets labeled by 2
need to be coded in the kth coding pass.

3.2. Pictorial subsource

It has been widely recognized that the success of wavelet
coders for pictorial images is attributed to the effectiveness
of modeling location uncertainty of image singularities in the
wavelet space [17]. Our coding scheme consists of two stages
(similar to LZC [8]): position coding (resolve location uncer-
tainty of significant coefficients), and sign/magnitude coding
for those coefficients which have been identified to be signifi-
cant in the first stage. Most wavelet coders [7, 8, 9, 10] assume
that images have regular support with a rectangular shape.
However, the subsource of pictures is a partially masked
image whose support Q; could have arbitrary shape. Re-
cently, several works have appeared on the implementation
of arbitrary-shape wavelet transform (ASWT) [18, 19, 20].
We employ the implementation based on lifting construction
(20, 21].

Within the context of ASWT coding, it is natural to ask,
how can we effectively exploit the topological information
contained in the mask (binary classification map) to help re-
solve the location uncertainty of image singularities (signifi-
cant coefficients)? We suggest the following two techniques.
First, the positions of masked (do-not-care) coefficients are
exactly known if we choose to preserve the correspondence
of an image pixel to its mask value (class information) during
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wavelet transform. In other words, there exists a one-to-one
mapping between the mask in the spatial domain and its
counterpart in the wavelet domain. Therefore, we can sim-
ply skip the masked coefficients when coding the high-band
coefficients. Secondly, due to the good localization property
of wavelet transform in both spatial and frequency domain,
we could further exploit the topological property during the
process of coding the position of significant coefficients. For
example, for an isolated high-band coefficient (i.e., its pre-
diction neighbors are all masked coefficients), we know deter-
ministically that it would remain significant after ASWT be-
cause no prediction is available. Empirical study shows that
such observation leads to noticeable bit savings in the stage
of position coding.

4. RATE-DISTORTION OPTIMIZATION FOR
COMPOUND IMAGE SOURCE

Previous works such as optimizing block-thresholding seg-
mentation [1] and RD optimized segmentation [3] empha-
size on the study of RD optimization techniques during im-
age segmentation for MRC-based coding. However, rate and
distortion in the segmentation stage can only be an estimate
because the actual RD characteristics depend on the segmen-
tation result (like a chicken and egg problem). The other
advantage offered by our two-class modeling paradigm is
that it facilitates the RD optimization for compound image
source.

We formulate RD optimization for a two-class source by
minimizing the distortion D = Dy + D; under the constraint
Ry + Ry < R, where Ry and R, refer to the bit rate allo-
cated to the two subsources, respectively. A commonly used
technique for such constrained optimization problem is to
use Lagrange multiplier. The Lagrange multiplier-based op-
timization technique [22] is to transform the original con-
strained problem into an unconstrained problem (minimize
D + AR, where 1 is the Lagrange multiplier).

For two-class source model, we propose to decompose
the original problem

min (Do +D1) +A(R0+R1) (5)
into the following two independent problems:

min Dy + ARy, minD; + AR;. (6)
For a single-class source, the optimal rate allocation is
often achieved by iterative search along the operational RD
curve [10]. Here, we solve the optimal rate allocation for two-
class source in a similar fashion. Suppose for subsource 0
(texts/graphics), N, points along the operational RD curve
(Ri,Di),i=0,1,...,N. — 1, have been found, each of which
corresponds to one coding pass; for subsource 1 (pictures),
we can apply an embedding coding strategy similar to the
existing wavelet coding schemes and obtain a collection of
points (R}, D]), j = 0, 1,..., that are densely sampled along
the operational RD curve. The following iterative RD opti-
mization techniques are proposed for the two-class source.

log (MSE)

0 0.5 1 1.5 2 2.5 3 3.5 4
Rate (bpp)

FiGure 2: Operational rate-distortion curve comparison between
subsource 0 (solid) and subsource 1 (dotted).

(1) Initialization: iope = 0, jopr = 0, obtain (R), DY) and
(R, DY).
(2) Iteration: ‘
(i) fori = 1,2,..., set SR = Rj — Ry™ and 0D =
Di — Dg™; if SD/OR > ), update iop = i; otherwise
continue; ) ) )
(i) for j = 1,2,...,set SR = R} — R{™ and 6D = D] —
D{“"‘; if D/SR > A, update jope = j; otherwise stop.

Due to the distinct characteristics of two subsources,
their operational RD curves differ dramatically. Figure 2
shows an example of the operational RD curves for a por-
tion of cmpnd2 image. It can be seen that the slope of sub-
source 0 is dramatically larger than that of subsource 1.
Therefore, the subsource 0 has higher priority than the sub-
source 1 when the Lagrange multiplier is large (at very low
bit rates). This matches our intuition because the distortion
in texts/graphics is often more visible than that in pictures.

5. SIMULATION RESULTS

In this section, we report our experiment results with two
compound images in the JPEG2000 test set: cmpndl (512 X
768) and cmpnd2 (5120 X 6624). The cmpnd2 image is
composed of 8 concatenated small subimages. Since the size
of cmpnd2 is huge, we choose to cut out one subimage
(sized 1568 x 1568) from cmpnd?2 and use it as the test im-
age. It should be noted that both cmpndl and cmpnd?2 are
computer-generated images containing no noise. Coding of
noisy compound images (e.g., scanned documents) is be-
yond the scope of this paper.

We have implemented a new topological image coder
based on two-class modeling of compound image source.
The topological coder in the spatial domain employs a sixth-
order context model at each coding pass. The implementa-
tion of adaptive binary arithmetic coder (QM coder) is taken
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FiGure 3: Rate-distortion performance comparison for cmpnd1 be-
tween our two-class coder and OBTS coder [1].

from the existing JBIG standard. The topological coding in
the wavelet space is based on an implementation of masked
Daubechies’ 9-7 transform [23]. A simplified two-stage cod-
ing algorithm similar to LZC is used to code the unmasked
wavelet coefficients. It should be noted that both JBIG and
simplified LZC do not represent state-of-the-art coders.
More sophisticated coders such as JBIG2 and JPEG2000
could lead to even better coding performance. The coding
results reported here are mainly for the purpose of justify-
ing the efficiency of the proposed two-class source modeling
and topological coding techniques. Decoder executable and
encoded bit streams in our experiments can be downloaded
from http://www.ee.princeton.edu/~lixin/cmpnd.htm.

We first compare our two-class image coder and the
OBTS coder for cmpndl image. It appears that the im-
age quality offered by our coder at 0.285bpp is visu-
ally lossless compared to the original. As an example, the
bits spent on textual/graphical and pictorial subsources are
20480 and 91 144, respectively at the rate of 0.285bpp.
The coding results of OBTS are cited from [1, Figure 9].
The RD performance comparison is shown in Figure 3.
Large PSNR improvements (greater than 6 dB) can be ob-
served. We note that such significant coding gain should
be interpreted properly. Wavelet coding techniques (LZC,
JPEG2000) typically could achieve at least 3dB gain over
DCT-based coding techniques (e.g., JPEG employed in OBTS
coder). Therefore, partial credits of 6 dB gain go to wavelet
coding techniques. Nonetheless, topological coding algo-
rithms described in Section 3 do achieve impressive coding
performance.

Figure 1 shows the segmentation result for cmpndl im-
age. The segmentation result of texts/graphics from pictures
is mostly satisfactory despite a few wrongly classified regions
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FiGURrE 4: Rate-distortion performance comparison for cmpnd?2 be-
tween our two-class coder and DjVu coder.

scattered in the pictorial content. Indeed, those segmentation
errors are due to the fact that some areas in the pictorial con-
tent are locally constant, causing the ambiguity. To testify the
robustness of our coder, we have generated an optimal mask
manually for cmpndl image to see how it could further en-
hance the coding performance. It appears that the PSNR loss
brought by segmentation errors is quite modest (less than
0.3 dB). We conclude that the ambiguity regions in the picto-
rial content can be efficiently handled by topological coding
in either spatial or wavelet domain.

We also compare our two-class coder and the well-
known DjVu coder for compnd2 image. The DjVu coder im-
plementation is already available as a commercial software
(DjVuShop 2.0). We have chosen the default parameter set-
tings for color document selection but enforce the resolu-
tion of all layers to be 300 dpi (lower resolution for text color
and background only renders worse PSNR results). Figure 4
shows the RD performance comparison between our coder
and DjVu coder. Again, the PSNR improvements are in the
range of 6-10dB. Figure 5 compares the various portions
of cmpnd2 image decoded by our coder at 0.133 bpp and
by DjVu at 0.138 bpp (texts/graphics: 199664 bits, pictures:
126312 bits). Subjective quality improvements are also strik-
ing. Such dramatic improvements are partially due to the
fact that DjVu coder mainly targets at web-browsing ap-
plications where compression ratio is extremely high. The
RD performance of DjVu coder is far from being optimized
at the bit rate of above 0.1 bpp. However, we believe that
the gap will not be fully closed even with carefully tuning
the coding parameters of DjVu coder. As we can see from
Figure 6, document segmentation results generated by DjVu
algorithm are relatively poor and coding efficiency loss is in-
evitable.
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FIGURE 5: Comparison of portions of decoded cmpnd2 images by our two-class coder at 0.133 bpp, PSNR = 37.45 dB (left) and by DjVu
coder at 0.138 bpp, PSNR = 29.73 dB (right).
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