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Time-domain equalization is crucial in reducing channel state dimension in maximum likelihood sequence estimation and inter-
carrier and intersymbol interference in multicarrier systems. A time-domain equalizer (TEQ) placed in cascade with the channel
produces an effective impulse response that is shorter than the channel impulse response. This paper analyzes two TEQ design
methods amenable to cost-effective real-time implementation: minimum mean square error (MMSE) and maximum shortening
SNR (MSSNR)methods.We reduce the complexity of computing thematrices in theMSSNR andMMSE designs by a factor of 140
and a factor of 16 (respectively) relative to existing approaches, without degrading performance. We prove that an infinite-length
MSSNR TEQ with unit norm TEQ constraint is symmetric. A symmetric TEQ halves FIR implementation complexity, enables
parallel training of the frequency-domain equalizer and TEQ, reduces TEQ training complexity by a factor of 4, and doubles the
length of the TEQ that can be designed using fixed-point arithmetic, with only a small loss in bit rate. Simulations are presented
for designs with a symmetric TEQ or target impulse response.

Keywords and phrases:multicarrier modulation, channel shortening, time-domain equalization, efficient computation, symme-
try.

1. INTRODUCTION

Channel shortening, a generalization of equalization, has re-
cently become necessary in receivers employing multicarrier
modulation (MCM) [1]. MCM techniques like orthogonal
frequency division multiplexing (OFDM) and discrete mul-
titone (DMT) have been deployed in applications such as
the wireless LAN standards IEEE 802.11a and HIPERLAN/2,
digital audio broadcast (DAB) and digital video broadcast
(DVB) in Europe, and asymmetric and very-high-speed dig-
ital subscriber loops (ADSL, VDSL). MCM is attractive due
to the ease with which it can combat channel dispersion, pro-
vided that the channel delay spread is not greater than the
length of the cyclic prefix (CP). However, if CP is not long
enough, the orthogonality of the subcarriers is lost, causing
intercarrier interference (ICI) and intersymbol interference
(ISI).

A well-known technique to combat the ICI/ISI caused
by the inadequate CP length is the use of a time-domain
equalizer (TEQ) in the receiver front end. The TEQ is a
finite impulse response filter that shortens the channel so
that the delay spread of the combined channel-equalizer im-
pulse response is not longer than the CP length. The TEQ
design problem has been extensively studied in the litera-
ture [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In [3], Falconer and
Magee proposed a minimum mean square error (MMSE)
method for channel shortening, which was designed to re-
duce the complexity in maximum likelihood sequence es-
timation (MLSE). More recently, Melsa et al. [5] proposed
the maximum shortening SNR (MSSNR) method, which at-
tempts to minimize the energy outside the window of inter-
est while holding the energy inside fixed. This approach was
generalized to the min-ISI method in [9], which allows the
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residual ISI to be shaped in the frequency domain. A blind,
adaptive algorithm that searches for the TEQmaximizing the
SSNR cost function was proposed in [10].

Channel shortening has also applications in MLSE [13]
and multiuser detection [14]. For MLSE, for an alphabet of
size � and an effective channel length of Lc +1, the complex-
ity of MLSE grows as �Lc grows. One method of reducing
this enormous complexity is to employ a prefilter to shorten
the channel to amanageable length [2, 3]. Similarly, in amul-
tiuser system with a flat fading channel for each user, the op-
timum detector is the MLSE, yet complexity grows exponen-
tially with the number of users. “Channel shortening” can
be implemented to suppress a specified number of the scalar
channels, effectively reducing the number of users to be de-
tected by the MLSE [14]. In this context, “channel shorten-
ing” means reducing the number of scalar channels rather
than reducing the number of channel taps. In this paper, we
focus on channel shortening for ADSL systems, but the same
designs can be applied to channel shortening for the MLSE
and for multiuser detectors.

This paper examines the MSSNR and MMSE methods
of channel shortening. The structure of each solution is ex-
ploited to dramatically reduce the complexity of computing
the TEQ. Previous work on reducing the complexity of the
MSSNR design was presented in [8]. This work exploited the
fact that the matrices involved are almost Toeplitz, so the
(i + 1, j + 1) element can be computed efficiently from the
(i, j) element. Our proposed method makes use of this, but
focuses rather on determining the matrices and eigenvector
for a given delay based on the matrices and eigenvector com-
puted for the previous delay.

In addition, we examine exploiting symmetry in the TEQ
and in the target impulse response (TIR). In [15], it was
shown that the MSSNR TEQ and the MMSE TIR were ap-
proximately symmetric. In [16, 17], simulations were pre-
sented for algorithms that forced the MSSNR TEQ to be
perfectly symmetric or skew-symmetric. This paper proves
that the infinite-length MSSNR TEQ with a unit norm con-
straint on the TEQ is perfectly symmetric. We show how
to exploit this symmetry in computing the MMSE TIR,
adaptively computing the MSSNR TEQ, and in computing
the frequency-domain equalizer (FEQ) in parallel with the
TEQ.

The remainder of this paper is organized as follows.
Section 2 presents the system model and notation. Section 3
reviews the MSSNR and MMSE designs. Section 4 discusses
methods of reducing the computation of each design with-
out performance loss. Section 5 examines symmetry in the
impulse response and Section 6 shows how to exploit this
symmetry to further reduce the complexity, though with a
possible small performance loss. Section 7 provides simula-
tion results and Section 8 concludes the paper.

2. SYSTEMMODEL ANDNOTATION

The multicarrier system model is shown in Figure 1 and the
notation is summarized in Table 1. Each block of bits is di-
vided up into N bins and each bin is viewed as a QAM

Table 1: Channel shortening notation.

Notation Meaning

x(k) Transmitted signal (IFFT output)

n(k) Channel noise

r(k) Received signal

y(k) Signal after TEQ

N , ν Sizes of FFT and CP

∆ Desired delay (design parameter)

N∆ Number of possible values of ∆

h = [h0, . . . , hLh] Channel impulse response

w = [w0, . . . , wLw

]
TEQ impulse response

c = [c0, . . . , cLc] Effective channel (c = h�w)

b = [b0, . . . , bν

]
Target impulse response

L̃h = Lh + 1 Channel length

L̃w = Lw + 1 TEQ length

L̃c = Lc + 1 Length of the effective channel

H L̃c × L̃w channel convolution matrix

Hwin(∆) Rows ∆ through ∆ + ν ofH

Hwall(∆) H with rows ∆ through ∆ + ν removed

IN N ×N identity matrix

[A](i, j) Element i, j of matrix A

A∗, AT , AH Conjugate, transpose, and Hermitian

signal that will be modulated by a different carrier. An ef-
ficient means of implementing the multicarrier modulation
in discrete time is to use an inverse fast Fourier transform
(IFFT). The IFFT converts each bin (which acts as one of
the frequency components) into a time-domain signal. After
transmission, the receiver can use an FFT to recover the data
within a bit error rate tolerance, provided that equalization
has been performed properly.

In order for the subcarriers to be independent, the con-
volution of the signal and the channel must be a circular con-
volution. It is actually a linear convolution, so it is made to
appear circular by adding a CP to the start of each data block.
The CP is obtained by prepending the last ν samples of each
block to the beginning of the block. If the CP is at least as long
as the channel, then the output of each subchannel is equal
to the input times a scalar complex gain factor. The signals in
the bins can then be equalized by a bank of complex gains,
referred to as FEQ [18].

The above discussion assumes that CP length +1 is
greater than or equal to the channel length. However, trans-
mitting the CP wastes time slots that could be used to trans-
mit data. Thus, the CP is usually set to a reasonably small
value, and a TEQ is employed to shorten the channel to this
length. In ADSL and VDSL, the CP length is 1/16 of the
block (symbol) length. As discussed in Section 1, TEQ de-
sign methods have been well explored [2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12].
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Figure 1: Traditional multicarrier system model. (I)FFT: (inverse) fast Fourier transform, P/S: parallel to serial, S/P: serial to parallel, CP:
add cyclic prefix, and crossed CP: remove cyclic prefix.

One of the TEQ’s main burdens, in terms of computa-
tional complexity, is due to the parameter ∆, which is the de-
sired delay of the effective channel. The performance of most
TEQ designs does not vary smoothly with delay [19], hence
a global search over delay is required in order to compute an
optimal design. Since the effective channel has Lc + 1 taps,
there are Lc + 1 − ν locations in which one can place a win-
dow of length ν+1 of nonzero taps, hence 0 ≤ ∆ ≤ Lc−ν. For
typical downstream ADSL parameters, this means there are
about 500 delay values to examine, and an optimal solution
must be computed for each one. One of the goals of this pa-
per is to show how to reuse computations from each value of
∆ to reduce the computational cost for the following value of
∆, which greatly reduces the overall computational burden.

3. REVIEWOF THEMSSNR ANDMMSE DESIGNS

This section reviews the MSSNR and MMSE designs for
channel shortening.

3.1. TheMSSNR solution

Consider MSSNR TEQ design [5]. This technique attempts
to maximize the ratio of the energy in a window of the effec-
tive channel over the energy in the remainder of the effective
channel. Following [5], we define

Hwin

=




h(∆) h(∆− 1) · · · h
(
∆− L̃w + 1

)
...

...
. . .

...

h(∆ + ν) h(∆ + ν− 1) · · · h
(
∆ + ν− L̃w + 1

)


 ,

(1)

Hwall

=




h(0) 0 · · · 0
...

. . .
...

h(∆− 1) h(∆− 2) · · · h
(
∆− L̃w

)
h(∆ + ν + 1) h(∆ + ν) · · · h

(
∆ + ν− L̃w + 2

)
...

. . .
...

0 · · · 0 h
(
Lh
)




.

(2)

Thus, cwin = Hwinw yields a window of length ν + 1 of
the effective channel, and cwall = Hwallw yields the remain-
der of the effective channel. The MSSNR design problem
can be stated as “minimize ‖cwall‖ subject to the constraint
‖cwin‖ = 1,” as in [5]. This reduces to

min
w

(
wTAw

)
subject to wTBw = 1, (3)

where

A = HT
wallHwall, B = HT

winHwin. (4)

The L̃w × L̃w matrices A and B are real and symmetric. How-
ever, A is invertible, but B may not be [20]. An alternative
formulation that addresses this is to “maximize ‖cwin‖ sub-
ject to the constraint ‖cwall‖ = 1,” [20] which works well even
when B is not invertible. The alternative formulation reduces
to

max
w

(
wTBw

)
subject to wTAw = 1, (5)

where A and B are defined in (4). Solving (3) leads to a TEQ
that satisfies the generalized eigenvector problem

Aw = λ̃Bw, (6)

and the alternative formulation in (5) leads to a related gen-
eralized eigenvector problem

Bw = λAw. (7)

The solution for w will be the generalized eigenvector cor-
responding to the smallest (largest) generalized eigenvalue
λ̃ (λ), respectively. Section 4 shows how to obtain most of
B(∆ + 1) from B(∆), how to obtain A(∆) from B(∆), and
how to initialize the eigensolver for w(∆ + 1) based on the
solution for w(∆).

3.2. TheMMSE solution

The system model for the MMSE solution [3] is shown in
Figure 2. It creates a virtual TIR b of length ν + 1 such that
the MSE, which is measured between the output of the ef-
fective channel and the output of the TIR, is minimized. In
the absence of noise, if the input signal is white, then the op-
timal MMSE and MSSNR solutions are identical [6]. A uni-
fied treatment of the MSSNR and noisy MMSE solutions was
given in [15].



1282 EURASIP Journal on Applied Signal Processing

Target impulse response (TIR)

z−∆
x(k − ∆)

b
d(k)

−+

e(k)
+

y(k)
w

TEQ
r(k)

+

n(k)

h
x(k)

Figure 2: MMSE system model. The symbols h, w, and b are the
impulse responses of the channel, the TEQ, and the target, respec-
tively. Here, ∆ represents transmission delay. The dashed lines indi-
cate a virtual path, which is used only for analysis.

The MMSE design uses a TIR b that must satisfy [2]

Rrxb = Rrw, (8)

where

Rrx = E







r(k)
...

r
(
k − Lw

)



[
x(k − ∆) · · · x(k − ∆− ν)

]


(9)

is the channel input-output cross-correlation matrix and

Rr = E







r(k)
...

r
(
k − Lw

)



[
r(k) · · · r

(
k − Lw

)]

 (10)

is the channel output autocorrelation matrix. Typically, b is
computed first, and then (8) is used to determinew. The goal
is that h�w, the convolution of h andw, approximates a de-
layed version of b. The TIR is the eigenvector corresponding
to the minimum eigenvalue of [3, 4, 7]

R(∆) = Rx − RxrR−1r Rrx. (11)

Section 4 addresses how to determine most of R(∆ + 1) from
R(∆), and how to use the solution for b(∆) to initialize the
eigensolver for b(∆ + 1).

4. EFFICIENT COMPUTATION

There is a tremendous amount of redundancy involved in the
brute force calculation of the MSSNR design. This has been
addressed in [8]. This section discusses methods of reusing
even more of the computations to dramatically decrease the
required complexity. Specifically, for a given delay ∆,

(1) A(∆) can be computed from B(∆) almost for free,
(2) B(∆ + 1) can be computed from B(∆) almost for free,

(3) a shifted version of the optimal MSSNR TEQw(∆) can
be used to initialize the generalized eigenvector solu-
tion for w(∆ + 1) to decrease the number of iterations
needed for the eigenvector computation,

(4) R(∆ + 1) can be computed from R(∆) almost for free,
(5) a shifted version of the optimal MMSE TIR b(∆) can

be used to initialize the generalized eigenvector solu-
tion for b(∆ + 1) to decrease the number of iterations
needed for the eigenvector computation.

We now discuss each of these points in turn.

4.1. ComputingA(∆) fromB(∆)

Let C = HTH and recall that A = HT
wallHwall and B =

HT
winHwin. Note that

H =



H1

Hwin

H2


 , Hwall =


H1

H2


 . (12)

Thus,

C = HT
1H1 +HT

winHwin +HT
2H2

= (HT
1H1 +HT

2H2
)

︸ ︷︷ ︸
A

+
(
HT

winHwin
)

︸ ︷︷ ︸
B

. (13)

To emphasize the dependence on the delay ∆, we write

C = A(∆) + B(∆). (14)

Since C is symmetric and Toeplitz, it is fully determined
by its first row or column:

C(0:Lw,0) = HT
[
hT , 0(1×Lw)

]T = (H(0:Lh,0:Lw)
)T
h. (15)

Thus, C can be computed using less than L̃2h multiply-adds
and its first column can be stored using L̃w memory words.
SinceC is independent of∆, we only need to compute it once.
Then each time ∆ is incremented and the new B(∆) is com-
puted, A(∆) can be computed from A(∆) = C − B(∆) us-
ing only L̃2w additions and nomultiplications. In contrast, the
“brute force” method requires L̃2w(Lh − ν) multiply-adds per
delay, and the method of [8] requires about L̃w(Lw + Lh − ν)
multiply-adds per delay.

4.2. ComputingB(∆ + 1) fromB(∆)

Recall that B(∆) = HT
win(∆)Hwin(∆), where Hwin(∆) is de-

fined as in (1).
The key observation is that

[
Hwin(∆ + 1)

]
(0:ν, 1:Lw)

= [Hwin(∆)
]
(0:ν, 0:Lw−1). (16)

This means that

[
B(∆ + 1)

]
(1:Lw, 1:Lw) =

[
B(∆)

]
(0:Lw−1, 0:Lw−1), (17)
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so most of B(∆ + 1) can be obtained without requiring any
computations. Now, partition B(∆ + 1) as

B(∆ + 1) =

α gT

g B̂


 , (18)

where B̂ is obtained from (17). Since B(∆ + 1) is almost
Toeplitz, α and all of the elements of g save the last can be
efficiently determined from the first column of B̂ [8]. Com-
puting each of these Lw elements requires two multiply-adds.
Finally, to compute the last element of g,

gLw =
([
Hwin

]
(0:ν,Lw)

)T[
Hwin

]
(0:ν,0), (19)

ν + 1 multiply-adds are required.

4.3. ComputingR(∆ + 1) fromR(∆)

Recall that for the MMSE design, we must compute

R(∆) = Rx − RxrR−1r Rrx, (20)

where

Rx = E
[
xk xTk

]
,

Rrx = E
[
rk xTk

]
,

xk =
[
x(k − ∆), . . . , x(k − ∆− ν)

]T
,

rk =
[
r(k), . . . , x

(
k − Lw

)]T
.

(21)

Note that Rx does not depend on ∆ and is Toeplitz. Thus,

[
Rx(∆ + 1)

]
(0:ν−1, 0:ν−1) =

[
Rx(∆)

]
(0:ν−1, 0:ν−1)

= [Rx(∆)
]
(1:ν, 1:ν).

(22)

Let P(∆) = RxrR−1r Rrx. Observing that

[
Rrx(∆ + 1)

]
(0:Lw, 0:ν−1) =

[
Rrx(∆)

]
(0:Lw, 1:ν), (23)

we see that

[
P(∆ + 1)

]
(0:ν−1, 0:ν−1) =

[
P(∆)

]
(1:ν, 1:ν). (24)

Combining (22) and (24),

[
R(∆ + 1)

]
(0:ν−1, 0:ν−1) =

[
R(∆)

]
(1:ν, 1:ν). (25)

The matrix Rr is symmetric and Toeplitz. However, the in-
verse of a Toeplitz matrix is, in general, not Toeplitz [21].
This means that R(∆) has no further structure that can be
easily exploited, so the first row and column of R(∆ + 1)
cannot be obtained from the rest of R(∆ + 1) using the tricks
in [8]. Even so, (25) allows us to obtain most of the ele-
ments of each R(∆) for free, so only ν + 1 elements must
be computed rather than (ν + 1)(ν + 2)/2 elements. In ADSL,
ν = 32; in VDSL, ν can range up to 512; and in DVB, ν
can range up to 2048. Thus, the proposed method reduces

the complexity of calculating R(∆) by factors of 17, 257, and
1025 (respectively) for these standards.

4.4. Intelligent eigensolver initialization

Letw(∆) be the MSSNR solution for a given delay. If we were
to increase the allowable filter length by 1, then it follows that

ŵ(∆ + 1) = z−1w(∆) = [0,wT(∆)
]T

(26)

should be a near-optimum solution, since it produces the
same value of the shortening SNR as for the previous de-
lay. From experience, we suggest that the TEQ coefficients are
small near the edges, so the last tap can be removed without
drastically affecting the performance. Therefore,

ŵ(∆ + 1) =
[
0,
[
wT(∆)

]
(0:Lw−1)

]T
(27)

is a fairly good solution for the delay ∆ + 1, so this should
be the initialization for the generalized eigenvector solver for
the next delay. Similarly, for the MMSE TIR,

b̂(∆ + 1) =
[
0,
[
bT(∆)

]
(0:ν−1)

]T
(28)

should be the initialization for the eigenvector solver for the
next delay.

4.5. Complexity comparison

Table 2 shows the (approximate) number of computations
for each step of the MSSNR method, using the “brute force”
approach, the method in [8], and the proposed approach.
Note that N∆ refers to the number of values of the delay that
are possible (usually equal to the length of the effective chan-
nel minus the CP length). For a typical downstream ADSL
system, the parameters are L̃w = Lw + 1 = 32, L̃h = Lh + 1 =
512, Lc = Lw + Lh = 542, ν = 32, and N∆ = L̃c − ν = 511.
The “example” lines in Table 2 show the required complex-
ity for computing all of the A’s and B’s for these parameters
using each approach. Observe that [8] beats the brute force
method by a factor of 29, the proposed method beats [8] by a
factor of 140, and the proposed method beats the brute force
method by a factor of 4008.

Table 3 shows the (approximate) computational re-
quirements of the “brute force” approach and the pro-
posed approach for computing the matrices R(∆), ∆ ∈
{∆min, . . . ,∆max}. The “example” line shows the required
complexity for computing the R(∆) matrices using each
method for the same parameter values as the example in
Table 2. The proposed method yields a decrease in complex-
ity by a factor of the channel shortener length over two,
which in this case is a factor of 16.

It is also interesting to compare the complexity of the
MSSNR design to that of the MMSE design. There are sev-
eral steps that add to the complexity: the computation of the
matrices A, B, and R(∆), as addressed in Tables 2 and 3; and
the computation of the eigenvector or generalized eigenvec-
tor corresponding to the minimum eigenvalue of R(∆) or
minimum generalized eigenvalue of (A,B). If “brute force”
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Table 2: Computational complexity of various MSSNR implementations. MACs are real multiply-and-accumulates and adds are real addi-
tions (or subtractions).

Step Brute force
MACs

Wu et al. [8]
MACs

Proposed
MACs

Proposed
adds

C 0 0 L̃hL̃w 0
B(∆min) L̃2w(ν + 1) L̃w(Lw + ν) L̃w(Lw + ν) 0
A(∆min) L̃2w(Lh − ν) L̃w(Lc − ν) 0 L̃2w
Each B(∆) L̃2w(ν + 1) L̃w(Lw + ν) 2Lw + ν + 1 0
Each A(∆) L̃2w(Lh − ν) L̃w(Lc − ν) 0 L̃2w
Total L̃2wL̃hN∆ L̃w(Lw + Lc)N∆ (2L̃w + ν)(N∆ − 1) + L̃hL̃w L̃2wN∆

Example 267,911,168 9,369,696 66,850 523,264

Table 3: Computational complexity of various MMSE implemen-
tations. MACs are real multiply-and-accumulates.

Step Brute force
MACs

Proposed
MACs

R(∆min) L̃3w L̃3w
Each R(∆) L̃3w 2L̃2w
Total N∆L̃3w L̃2w(2(N∆ − 1) + L̃w)

Example 16,744,448 1,077,248

designs are used, then the computation of the MSSNR ma-
trices costs Lh/L̃w times more than the computation of the
MMSE matrices, or 16 times more in the example; and if
the proposed methods are used, then the computation of the
MSSNR matrices costs roughly (2L̃w + ν)/2L̃2w times as much
as the computation of the MMSEmatrices, or 16 times less in
the example. However, both solutions also require the com-
putation of an eigenvector for each delay, and the cost of this
step depends heavily on both the type of eigensolver used and
the values of the matrices involved, so an explicit comparison
cannot be made.

5. SYMMETRY IN THE IMPULSE RESPONSE

This section discusses symmetry in the TEQ impulse re-
sponse. It is shown that the MSSNR TEQ with a unit-norm
constraint on the TEQ will become symmetric as the TEQ
length goes to infinity, and that in the finite length case, the
asymptotic result is approached quite rapidly.

5.1. Finite-length symmetry trends

Consider the MSSNR problem of (3), in which the all-zero
solution was avoided by using the constraint ‖cwin‖ = 1.
However, someMSSNR designs use the alternative constraint
‖w‖ = 1. For example, in [22], an iterative algorithm is
proposed which performs a gradient descent of ‖cwall‖2. Al-
though it is not mentioned in [22], this algorithm needs a
constraint to prevent the trivial solution w = 0. A natu-
ral constraint is to maintain ‖w‖ = 1, which can be imple-
mented by renormalizing w after each iteration. Similarly, a
blind, adaptive algorithm was proposed in [10], which is a
stochastic gradient descent on ‖cwall‖2, although it leads to

a window of size ν instead of ν + 1. (In this case, A still has
the same size, but the elements may be slightly different.) For
these two algorithms, the solution must satisfy

min
w

(
wTAw

)
subject to wTw = 1. (29)

This leads to a TEQ that must satisfy a traditional eigenvector
problem

Aw = λw. (30)

In this case, the solution is the eigenvector corresponding to
the smallest eigenvalue. Henceforth, we will refer to the solu-
tion of (30) as the MSSNR unit norm TEQ (MSSNR-UNT)
solution.

A centrosymmetric matrix has the property that when
rotated 180◦ (i.e., flip each element over the center of the ma-
trix), it is unchanged. If a matrix is symmetric and Toeplitz
(constant along each diagonal), then it is also centrosymmet-
ric [21]. By inspecting the structure of A, it is easy to see
that it is symmetric, and nearly Toeplitz. (In fact, the near-
Toeplitz structure is the idea behind the fast algorithms in
[8], in which Ai+1, j+1 is computed from Ai, j with a small
tweak.) Hence, A is approximately a symmetric centrosym-
metric matrix. The eigenvectors of such matrices are either
symmetric or skew-symmetric, and in special cases the eigen-
vector corresponding to the smallest eigenvalue is symmetric
[23, 24, 25]. Thus, we expect the MSSNR-UNT TEQ to be
approximately symmetric or skew-symmetric, since it is the
eigenvector of the symmetric (nearly) centrosymmetric ma-
trix A corresponding to the smallest eigenvalue. Oddly, it ap-
pears that the MSSNR-UNT TEQ is always symmetric as op-
posed to skew-symmetric, and the point of symmetry is not
necessarily in the center of the impulse response.

To quantify the symmetry of the finite-length MSSNR-
UNT TEQ design for various parameter values, we com-
puted the TEQ for carrier serving area (CSA) test loops [26]
1 through 8, using TEQ lengths 3 ≤ L̃w ≤ 40. For each
TEQ, we decomposed w into wsym and wskew, then com-
puted ‖wskew‖2/‖wsym‖2. A plot of this ratio (averaged over
the eight channels) for the MSSNR-UNT TEQ is shown in
Figure 3. The symmetric part of each TEQ was obtained by
considering all possible points of symmetry and choosing the
one for which the norm of the symmetric part divided by the
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Figure 3: Energy in the skew-symmetric part of the TEQ over the
energy in the symmetric part of the TEQ, for ν = 32. The data was
delay-optimized and averaged over CSA test loops from 1 to 8.

norm of the perturbation wasmaximized. For example, if the
TEQ were w = [1, 2, 4, 2.2], then wsym = [0, 2.1, 4, 2.1] and
wskew = [1,−0.1, 0, 0.1]. The value of ∆ was the delay which
maximized the shortening SNR. The point of Figure 3 is not
to prove that the infinite-length MSSNR-UNT TEQ is sym-
metric (that will be addressed in Section 5.2), but rather to
give an idea of how quickly the finite-length design becomes
symmetric.

Observe that the MSSNR-UNT TEQ (Figure 3) becomes
increasingly symmetric for large TEQ lengths. For parame-
ter values that lead to highly symmetric TEQs, the TEQ can
be initialized by only computing half of the TEQ coefficients.
For MSSNR, MSSNR-UNT, and MMSE solutions, this effec-
tively reduces the problem from finding an eigenvector (or
generalized eigenvector) of an N̂ × N̂ matrix to finding an
eigenvector (or generalized eigenvector) of a �N̂/2� × �N̂/2�
matrix, as shown in [23], where we use N̂ to mean L̃w for the
MSSNR TEQ computation and to mean ν for theMMSE TIR
computation. This leads to a significant reduction in com-
plexity, at the expense of throwing away the skew-symmetric
portion of the filter. Reduced complexity algorithms are dis-
cussed in Section 6.

5.2. Infinite-length symmetry results

This section examines the limiting behavior of A and B, and
the resulting limiting behavior of the eigenvectors of A (i.e.,
the MSSNR-UNT solution). We will show that

lim
Lw→∞

∥∥HTH− A
∥∥
F

‖A‖F = 0, (31)

where ‖·‖F denotes the Frobenius norm [27]. Since HTH
is symmetric and Toeplitz (and thus centrosymmetric), its
eigenvectors are symmetric or skew-symmetric. Thus, as
Lw →∞, we can expect the eigenvectors of A to become sym-

metric or skew-symmetric. Although this is a heuristic argu-
ment, the more rigorous sin(θ) theorem1 [28] is difficult to
apply.

First, consider a TEQ that is finite, but very long. Specif-
ically, we make the following assumptions:

A1: ∆ > Lh > ν,
A2: Lw > ∆ + ν.

Such a large ∆ in A1 is reasonable when the TEQ length is
large. Now, we can partition H as

H =



H1 HL2 HL1 0 0

0 HU3 HM HL3 0

0 0 HU1 HU2 H2


 . (32)

The row blocks have heights ∆, (ν+1), and (Lh+Lw−ν−∆);
and the column blocks have widths (∆ − Lh), (ν + 1), (Lh −
ν− 1), (ν + 1), and (Lw − ν−∆). The sections [HL2,HL1] and
HL3 are both lower triangular and contain the “head” of the
channel, [HU1, HU2] and HU3 are both upper triangular and
contain the “tail” of the channel, H1 and H2 are tall chan-
nel convolution matrices, and HM is Toeplitz. Then Hwin is
simply the middle row (of blocks) ofH, andHwall is the con-
catenation of the top and bottom rows.

Under the two assumptions above, HU3, HM , and HL3

will be constant for all values of ∆ and Lw. As such, the limit-
ing behavior of B = HT

winHwin is

B = [0,HU3,HM,HL3, 0
]T[

0,HU3,HM,HL3, 0
]

�
[
0,H

T
3 , 0
]T[

0,H
T
3 , 0
]
,

(33)

where H3 is a size (ν + L̃h) × (ν + 1) channel convolution
matrix formed from Jh, the time-reversed channel. Since B
is a zero-padded version of H3H

T
3 , it has the same Frobenius

norm. Also, the values of Lw and ∆ affect the size of the zero
matrices in (33) but not H3 (assuming that our assumptions
hold), so Lw and ∆ do not affect the Frobenius norm of B.
Therefore,

‖B‖2F = constant � BF (34)

whenever our two initial assumptions A1 and A2 are met.
The limiting behavior for A is determined by noting that

A =




HT
1H1 · · · 0

HT
L2H1 · · · 0

HT
L1H1 · · · HT

U1H2

0 · · · HT
U2H2

0 · · · HT
2H2



. (35)

1The sin(θ) theorem is a commonly used bound on the angle between
the eigenvector of a matrix and the corresponding eigenvector of the per-
turbed matrix. This bound is a function of the eigenvalue separation of the
matrix, which is not explicitly known in our problem; hence, the theorem
cannot be directly applied.
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(Only the top-left and bottom-right blocks are of interest for
the proof.) Thus, a lower bound on the Frobenius norm of A
can be found as follows:

‖A‖2F ≥
∥∥HT

1H1
∥∥2
F +
∥∥HT

2H2
∥∥2
F

≥ ‖h‖42 ·
((
∆− Lh

)
+
(
Lw − ν− ∆

))
= ‖h‖42 ·

(
Lw − Lh − ν

)
,

(36)

which goes to infinity as Lw → ∞. In the second inequal-
ity, we have dropped all of the terms in the Frobenius norms
except for those due to the diagonal elements of HT

1H1 and
HT

2H2.
Now, let C � HTH, and recall from (14) that C = A + B.

Thus,

‖C− A‖2F
‖A‖2F

= ‖B‖2F
‖A‖2F

≤ BF

‖h‖42 ·
(
Lw −

(
Lh + ν

)) , (37)

which goes to zero as Lw → ∞. Thus, in the limit, A ap-
proaches C, which is a symmetric centrosymmetric matrix.
Heuristically, this suggests that in the limit, the eigenvectors
of A (including the MSSNR-UNT solution) will be symmet-
ric or skew-symmetric. However, for special cases (such as
tridiagonal matrices), the eigenvector corresponding to the
smallest eigenvalue is always symmetric as opposed to skew-
symmetric [23]. Every single MSSNR TEQ that we have ob-
served for ADSL channels has been nearly symmetric rather
than skew-symmetric, suggesting (not proving) that the infi-
nite length TEQ will be exactly symmetric. Thus, constrain-
ing the finite-length solution to be symmetric is expected to
entail no significant performance loss, which is supported
by simulation results. Essentially, if v is an eigenvector in
the eigenspace of the smallest eigenvalue, then Jv is as well
(where J is the matrix with ones on the cross diagonal and
zeros elsewhere) so (1/2)(v + Jv) (which is symmetric) is as
well, even if the smallest eigenvalue has multiplicity larger
than 1.

Note that in the limit, B does not become centrosymmet-
ric (refer to (33)), although it is approximately centrosym-
metric about a point off of its center. Thus, we cannot make
as strong of a limiting argument for the MSSNR solution as
for theMSSNR-UNT solution. Symmetry in the finite-length
MSSNR solution is discussed in [15].

6. EXPLOITING SYMMETRY IN TEQ DESIGN

In [15], it was shown that theMMSE target impulse response
becomes symmetric as the TEQ length goes to infinity, and
in Section 5.2, it was shown that the infinite-length MSSNR-
UNT TEQ is an eigenvalue of a symmetric centrosymmetric
matrix, and is expected to be symmetric. In [16, 17], sim-
ulations were presented for forcing the MSSNR TEQ to be
perfectly symmetric or skew-symmetric. This section present
algorithms for forcing the MMSE TIR to be exactly symmet-
ric in the case of a finite length TEQ, and for forcing the
MSSNR-UNT TEQ to be symmetric when it is computed in

a blind, adaptive manner via the MERRY algorithm [10]. It
is also shown that when the TEQ is symmetric, the TEQ and
FEQ designs can be done independently (and thus in paral-
lel).

Consider forcing the MSSNR-UNT TEQ to be symmet-
ric as ameans of reducing the computational complexity. The
MSSNR-UNT TEQ arises, for example, in the MERRY algo-
rithm [10], which is a blind, adaptive algorithm for comput-
ing the TEQ; or in the algorithm in [22] (if the constraint
used is a UNT TEQ), which is a trained, iterative algorithm
for computing the TEQ. We focus here on extending the
MERRY algorithm to the symmetric case. Briefly, the idea
behind the MERRY algorithm is that the transmitted sig-
nal inherently has redundancy due to the CP, so that redun-
dancy should be evident at the receiver if the channel is short
enough. The measure of redundancy is the MERRY cost,

JMERRY = E
[∣∣y(Mk + ν + ∆)− y(Mk + ν +N + ∆)

∣∣2],
(38)

where M = N + ν is the symbol length, k is the symbol in-
dex, and ∆ is a user-defined synchronization delay. This cost
function measures the similarity between a data sample and
its copy in the CP (N samples earlier). TheMERRY algorithm
is a gradient descent of (38).

In practical applications, the TEQ length is even, due to
a desired efficient use of memory. Thus, a symmetric TEQ
has the form wT = [vT , (Jv)T]. (An even TEQ length is not
necessary; a similar partition can be made in the odd-length
case, as will be done for the MMSE target impulse response
later in this section.) The TEQ output is

y(Mk + i) =
Lw∑
j=0

w( j) · r(Mk + i− j), (39)

which can be rewritten for a symmetric TEQ as

y(Mk + i)

=
L̃w/2−1∑
j=0

v( j) · (r(Mk + i− j) + r
(
Mk + i− Lw + j

))
.

(40)

The Sym-MERRY update is a stochastic gradient descent
of (38) with respect to the half-TEQ coefficients v, with
a renormalization to avoid the trivial solution v = 0. See
Algorithm 1 where

u(i)

=
[
r(i) + r

(
i− Lw

)
, . . . , r

(
i− L̃w

2
+ 1

)
+ r

(
i− L̃w

2

)]T
.

(41)

Compared to the regular MERRY algorithm in [10], the
number of multiplications has been cut in half for Sym-
MERRY, though some additional additions are needed to
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For symbol k = 0, 1, 2, . . . ,

ũ(k) = u(Mk + ν + ∆)− u(Mk + ν +N + ∆),

e(k) = vT(k)ũ(k),

v̂(k + 1) = v(k)− µe(k)ũ∗(k),

v(k + 1) = v̂(k + 1)∥∥v̂(k + 1)
∥∥
2

.

Algorithm 1

compute ũ. Simulations of Sym-MERRY are presented in
Section 7.

Now, consider exploiting symmetry in the MMSE target
impulse response in order to reduce computational complex-
ity. Recall that in the MMSE design, first, the TIR b is com-
puted as the eigenvector of R(∆) [as defined in (11)], and
then the TEQ w is computed from (8). The MSE (which we
wish to minimize) is given by

E
[
e2
] = bTR(∆)b. (42)

Typically, the CP length ν is a power of 2, so the TIR length
(ν + 1) is odd. This is the case, for example, in ADSL [29],
IEEE 802.11a [30] andHIPERLAN/2 [31] wireless LANs, and
DVB [32]. To force a symmetric TIR, partition the TIR as

bT = [vT , γ, (Jv)T], (43)

where γ is a scalar and v is a real (ν/2)×1 vector. Now rewrite
the MSE as

[
vT , γ, vTJ

]


R11 R12 R13

R21 R22 R23

R31 R32 R33





v

γ

Jv


 = [√2vT , γ]R̂


√2v

γ


 ,
(44)

where

R̂ =



1
2

(
R11 + R13J + JR31 + JR33J

) 1√
2

(
R12 + JR32

)
1√
2

(
R21 + R23J

)
R22


 .
(45)

For simplicity, let v̂T = [
√
2vT , γ]. In order to prevent the

all-zero solution, the nonsymmetric TIR design uses the con-
straint ‖b‖ = 1. This is equivalent to the constraint ‖v̂‖ = 1.
Under this constraint, the TIR that minimizes the MSE must
satisfy

R̂v̂ = λv̂, (46)

where λ is the smallest eigenvalue of R̂. Since both R and R̂
are symmetric, solving (46) requires 1/4 as many compu-
tations as solving the initial eigenvector problem. However,

the forced symmetry could, in principle, degrade the perfor-
mance of the associated TEQ. Simulations of the Sym-MMSE
algorithm are presented in Section 7.

Another advantage of a symmetric TEQ is that it has a
linear phase with known slope, allowing the FEQ to be de-
signed in parallel with the TEQ. A symmetric TEQ can be
classified as either a type I or type II FIR linear phase system
[33, pages 298–299]. Thus, for a TEQ with Lw + 1 taps, the
transfer function has the form

W
(
e jω
) =M(ω) exp

(
− j

Lw
2
ω + jβ

)
, (47)

where M(ω) = M(−ω) is the magnitude response. The DC
response is

M(0)e jβ =
Lw∑
k=0

w(k). (48)

Since the TEQ is real, e jβ must be real, so

β =



0,

∑
k

w(k) > 0,

π,
∑
k

w(k) < 0.
(49)

If
∑

k w(k) = 0, the DC response does not reveal the value
of β. In this case, one must determine the phase response at
another frequency, which is more complicated to compute.
The response at ω = π is fairly easy to compute and will also
reveal the value of β.

From (47), (48), and (49), given the TEQ length, the
phase response of a symmetric TEQ is known up to the fac-
tor e jβ, even before the TEQ is designed. The phases of the
FEQs are then determined entirely by the channel phase re-
sponse. Thus, if a channel estimate is available, the two pos-
sible FEQ phase responses could be determined in paral-
lel with the TEQ design. Similarly, if the TIR is symmet-
ric and the TEQ is long enough that the TIR and effec-
tive channel are almost identical, then the phase response
of the effective channel is known, except for β. If differen-
tial encoding is used, then the value of β can arbitrarily be
set to either 0 or π since a rotation of exactly 180 degrees
does not affect the output of a differential detector. Further-
more, if 2-PAM or 4-QAM signaling is used on a subcarrier,
the magnitude of the FEQ does not matter, and the entire
FEQ for that tone can be designed without knowledge of the
TEQ.

For an ADSL system, 4-QAM signaling is used on all of
the subcarriers during training. Thus, the FEQ can be de-
signed for the training phase by only setting its phase re-
sponse. The magnitude response can be set after the TEQ is
designed. The benefit here is that if the FEQ is designed all
at once (both magnitude and phase), then a division of com-
plex numbers is required for each tone. However, if the phase
response is already known, determining the FEQ magnitude
only requires a division of real numbers for each tone. This
can allow for a more efficient implementation.
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Figure 4: Performance of Sym-MERRY versus time for CSA loop 4.
(a) MERRY cost. (b) Achievable bit rate.

7. SIMULATIONS

This section presents simulations of the Sym-MERRY and
Sym-MMSE algorithms. The parameters used for the Sym-
MERRY algorithm were an FFT of size N = 512, a CP length
of ν = 32, a TEQ of length L̃w = 16 (8 taps get updated, then
mirrored), and an SNR of σ2x‖h‖2/σ2n = 40dB, with white
noise. The channel was CSA loop 4 (available at [34]). The
DSL performance metric is the achievable bit rate for a fixed
probability of error

B =
∑
i

log2

(
1 +

SNRi

Γ

)
, (50)

where SNRi is the signal to interference and noise ratio in
frequency bin i. (We assume a 6 dB margin and 4.2 dB cod-
ing gain; for more details, refer to [9].) Figure 4 shows per-
formance versus time as the TEQ adapts. The dashed line
represents the solution obtained by a nonadaptive solution
to the MERRY cost (38), without imposing symmetry, and
the dotted line represents the performance of the MSSNR
solution [5]. Observe that Sym-MERRY rapidly obtains a
near-optimal performance. The jittering around the asymp-
totic portion of the curve is due to the choice of a large
step size.
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Figure 5: Achievable bit rate in Mbps of MMSE (solid) and Sym-
MMSE (dashed) designs versus TEQ length, averaged over eight
CSA test loops.

Table 4: Achievable bit rate (Mbps) for MMSE and Sym-MMSE,
using 20-tap TEQs and 33-tap TIRs. The last column is the perfor-
mance of the Sym-MMSE method in terms of the percentage of the
bit rate of the MMSE method. The channel has an additive white
Gaussian noise but no crosstalk.

Loop # MMSE Sym-MMSE Relative

CSA1 8.6323 7.9343 91.91%

CSA2 9.1396 9.1721 100.36%

CSA3 8.5877 8.3360 97.07%

CSA4 8.3157 5.6940 68.47%

CSA5 8.4821 6.3433 74.78%

CSA6 8.8515 9.0016 101.70%

CSA7 7.5244 5.8360 77.56%

CSA8 7.2037 7.4878 103.94%

The simulations for the Sym-MMSE algorithm are
shown in Figure 5 and in Table 4. In Figure 5, TEQs were de-
signed for CSA loops from 1 to 8, then the bit rates were aver-
aged. The TEQ lengths that were considered were 3 ≤ L̃w ≤
128. For TEQs with fewer than 20 taps, the bit rate perfor-
mance of the symmetric MMSE method is not as good as
that of the unconstrained MMSE method. However, asymp-
totically, the results of the two methods agree; and for some
parameters, the symmetric method achieves a higher bit rate.
Table 4 shows the individual bit rates achieved on the 8 chan-
nels using 20 tap TEQs, which is roughly the boundary be-
tween good and bad performance of the Sym-MMSE de-
sign in Figure 5. On average, for a 20-tap TEQ, the Sym-
MMSE method achieves 89.5% of the bit rate of the MMSE
method, with a significantly lower computational cost, but
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the performance (at this filter length) varies significantly de-
pending on the channel. Thus, it is suggested that the sym-
metric MMSE design should only be used for TEQs with at
least 20 taps, and preferably more than that.

8. CONCLUSIONS

The computational complexity of two popular channel
shortening algorithms, the MSSNR and MMSE methods,
has been addressed. A method was proposed which reduces
the complexity of computing the A and B matrices in the
MSSNR design by a factor of 140 (for typical ADSL param-
eters) compared to the methods of Wu et al. [8], for a total
reduction of a factor of 4000 compared to the brute force
approach, without degrading performance. A similar tech-
nique was proposed to reduce the complexity of comput-
ing the R(∆) matrix used in the MMSE design by a fac-
tor of 16 (for typical ADSL parameters). It was also shown
that the infinite length MSSNR TEQ with a unit norm
TEQ constraint has a symmetric impulse response. Algo-
rithms for reducing complexity by exploiting symmetry in
the TEQ and target impulse response were derived, and sim-
ulations were used to show that the symmetric algorithms
incur only a minor performance penalty. The Matlab code
to reproduce the figures in this paper is available online at
http://bard.ece.cornell.edu/matlab/martin/index.html.
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