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Spatially adaptive intensity bounds on the image estimate are shown to be an effective means of regularising the ill-posed image
restoration problem. For blind restoration, the local intensity constraints also help to further define the solution, thereby reducing
the number of multiple solutions and local minima. The bounds are defined in terms of the local statistics of the image estimate
and a control parameter which determines the scale of the bounds. Guidelines for choosing this parameter are developed in the
context of classical (nonblind) image restoration. The intensity bounds are applied by means of the gradient projection method,
and conditions for convergence are derived when the bounds are refined using the current image estimate. Based on this method,
a new alternating constrained minimisation approach is proposed for blind image restoration. On the basis of the experimental
results provided, it is found that local intensity bounds offer a simple, flexible method of constraining both the nonblind and blind
restoration problems.
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1. INTRODUCTION

Inmany imaging systems, blurring occurs due to factors such
as relative motion between the object and camera, defocus-
ing of the lens, and atmospheric turbulence. An image may
also contain random noise which originated in the formation
process, the transmissionmedium, and/or the recording pro-
cess.

The above degradations are adequately modelled by a lin-
ear space-invariant blur and additive white Gaussian noise,
yielding the following model:

g = h∗ f + v, (1)

where the vectors g, f , h, and v correspond to the lexico-
graphically ordered degraded and original images, blur, and
additive noise, respectively, which are defined over an ar-
ray of pixels (m,n). The two-dimensional convolution can
be expressed as h ∗ f = Hf = Fh, where H and F are

block-Toeplitz matrices and can be approximated by block-
circulant matrices for large images [1, Chapter 1].

The goal of image restoration is to recover the origi-
nal image f from the degraded image g. In classical image
restoration, the blur is known explicitly prior to restoration.
However, in many imaging applications, it is either costly
or physically impossible to completely characterise the blur
based on a priori knowledge of the system [2]. The recovery
of an image when the blur is partially or completely unknown
is referred to as blind image restoration. In practice, some in-
formation about the blur is needed to restore the image.

There are a number of factors which contribute to the
difficulty of image restoration. The problem is ill posed in
the sense that if the image formation process is modelled in
a continuous, infinite-dimensional space, then a small per-
turbation in the output, that is, noise, can result in an un-
bounded perturbation of the least squares solution of (1) for
the image or the blur [1]. Although the discretised inverse
problem is well posed [3], the ill-posedness of the continuous
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problem leads to the ill-conditioning of H or F. Therefore,
direct inversion of either matrix leads to excessive noise am-
plification, and regularisation is needed to limit the noise in
the solution.

The blind image restoration problem is also ill defined,
since the available information may not yield a unique so-
lution to the corresponding optimisation problem. Even if a
unique solution exists, the cost function is, with the excep-
tion of the NAS-RIF algorithm [4], nonconvex, and conver-
gence to local minima often occurs without proper initialisa-
tion. Undesirable solutions can be eliminated by incorporat-
ing more effective constraints.

In this paper, spatially adaptive intensity bounds are
therefore proposed as a means of (1) regularising the ill-
posed restoration problem; and (2) limiting the solution
space in blind restoration so as to avoid convergence to unde-
sirable solutions. The bounds are implemented in the frame-
work of the gradient projection method proposed in [5, 6].

Prior research on spatially adaptive intensity bounds
has been conducted solely in the context of classical image
restoration. Local intensity bounds were first introduced in
[7] for artifact suppression. These bounds were applied to
theWiener filtered image, that is, they were applied to a solu-
tion rather than to the optimisation problem itself. In [8], it
was shown that the constraints could be incorporated in the
Kaczmarz row action projection (RAP) algorithm [9]. How-
ever, optimality in a least squares sense is guaranteed only if
the constraints are linear [8]. Alternatively, a quadratic cost
function subject to a convex constraint � is minimised by
projecting each iteration of the steepest descent algorithm
onto the constraint provided that the step size lies within a
specified range [5]. In [10], space-variant intensity bounds
were applied using this gradient projection method. The in-
tensity bounds were updated using information from the
current image estimate, but the effect of bound update on
the convergence of the gradient projection method was not
analysed. Similarmethods have been proposed for the update
of the regularisation parameter and/or the weight matrix in
constrained least squares restoration [11, 12]. In these cases,
convergence was proven via the linearisation of the problem.

The work presented in this paper builds on previous re-
search in several respects [13, 14, 15]. In Section 2, a new
method of estimating spatially adaptive intensity bounds is
proposed. This method is distinguished both in terms of
which parameters define the bounds and, as discussed in
Section 4, how the bounds are updated from the current im-
age estimate. In Section 3, the effect of the scaling parame-
ter, which plays a similar role to the regularisation parame-
ter in classical image restoration, is examined. In Section 4,
convergence of the modified gradient projection method is
discussed. The problem definition changes slightly each time
the bounds are updated, and it is therefore important to un-
derstand how this may affect the convergence of the algo-
rithm. Lastly, in Section 5, these intensity bounds are applied
to blind image restoration. A new alternating minimisation
algorithm is established for this purpose. Section 6 contains a
discussion of the results, conclusions, and directions for fur-
ther research.

2. DEVELOPMENT AND IMPLEMENTATION
OF LOCAL INTENSITY BOUNDS

2.1. Characterisation of the image

It is assumed that the estimated image f̂ belongs to the space
l2(Ω) of square-summable, real-valued, two-dimensional se-
quences defined over a finite subsetΩ ⊂ P2, where P2 � P×P
denotes the Cartesian product of nonnegative integers [7].
The associated Hilbert space is

� �
{
f̂ : f̂ ∈ l2(Ω)

}
, (2)

with inner product and norm

〈
f̂1, f̂2

〉
�

∑
(m,n)∈Ω

f̂1(m,n) f̂2(m,n),

∥∥ f̂1∥∥ = 〈 f̂1, f̂1〉1/2,
(3)

for f̂1, f̂2 ∈ �.
Typical constraints on the image estimate include non-

negativity and, in blind image restoration, finite support.
In this section, spatially adaptive intensity bounds are com-
bined with these constraints to define the solution space for
the restored image more precisely, leading to better estimates
of both the original image and the blur. Because these con-
straints define convex sets, they can be incorporated via pro-
jection methods. Additionally, a regularisation term [16] is
included in the cost function and can be adjusted to give the
image a desired degree of smoothness.

In any image restoration scheme, there is a trade-off be-
tween noise suppression and preservation of high-frequency
detail, since noise reduction is achieved by constraining the
image to be smooth. However, because the human visual sys-
tem ismore sensitive to noise in uniform regions of the image
than in areas of high spatial activity [17], space-variant im-
age constraints may be used to emphasise noise reduction in
the flat regions, and preservation of detail in edge and texture
regions [5, 7, 18, 19]. This is achieved by making the radius
of the bounds proportional to the spatial activity, measured
by an estimate σ̂2f (m,n) of the variance of the original im-
age. The local variance is more robust to noise than gradient-
based edge detectors [19].

The local mean estimate M̂ f (m,n) is used as the centre of
the bounds. Consequently, the intensity bounds average out
zero-mean noise in regions of low variance.

The local statistics are estimated from the degraded im-
age over a square window centred at pixel (m,n):

M̂ f (m,n) =Mg(m,n) = 1
Λ

∑
r=m−N :m+N
s=n−N :n+N

g(r, s), (4)

σ2g (m,n) = 1
Λ

∑
r=m−N :m+N
s=n−N :n+N

[
g(r, s)− M̂ f (m,n)

]2
, (5)

σ̂2f (m,n) = max
[
0, σ2g (m,n)− σ2v

]
, (6)

where Λ = (2N + 1)(2N + 1) and σ2v is the estimated noise
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variance. The window size over which the local statistics are
calculated may be fixed or adaptive [20, 21], but the im-
provement offered by an adaptive window was found to be
marginal, and a fixed window of size 3× 3 or 5× 5 produced
good results.

The proposed intensity bounds are then defined by∣∣ f̂ (m,n)− M̂ f (m,n)
∣∣ ≤ βσ̂2f (m,n), (7)

where β is the scaling parameter. Combining the bounds with
the support and nonnegativity constraints yields

� f �
{
f̂ ∈ � : l(m,n) ≤ f̂ (m,n) ≤ u(m,n),

(m,n) ∈ � f , f̂ (m,n) = 0, (m,n) /∈ � f

}
,

(8)

where � f ⊆ Ω is the support of the image, and

l(m,n) = max
[
0, M̂ f (m,n)− βσ̂2f (m,n)

]
,

u(m,n) = M̂ f (m,n) + βσ̂2f (m,n).
(9)

The convexity of � f is easily proven by observing that for

any f̂1, f̂2 ∈ � f and 0 ≤ γ ≤ 1,

γ f̂1(m,n) + (1− γ) f̂2(m,n)

≥ γl(m,n) + (1− γ)l(m,n) = l(m,n),

γ f̂1(m,n) + (1− γ) f̂2(m,n)

≤ γu(m,n) + (1− γ)u(m,n) = u(m,n).

(10)

The closure of � f follows from the openness of the comple-
ment �c

f .
The corresponding projection operator is

Pf f̂ (m,n)

=



l(m,n), f̂ (m,n) < l(m,n), (m,n) ∈ � f ,

f̂ (m,n), l(m,n) ≤ f̂ (m,n) ≤ u(m,n), (m,n) ∈ � f ,

u(m,n), f̂ (m,n) > u(m,n), (m,n) ∈ � f ,

0, (m,n) /∈ � f .

(11)

2.2. Constrainedminimisation via the gradient
projectionmethod

The restored image is given as the solution of the following
constrained optimisation problem:

Minimise
∥∥g−H f̂

∥∥2 + α
∥∥Cf̂∥∥2, f̂ ∈ � f , (12)

where α and C are the regularisation parameter and high-
pass regularisation operator, respectively. In the absence of
local intensity constraints, a rough estimate of α is given
by 1/BSNR, where BSNR is the signal-to-noise ratio of the

blurred image [22]. The regularisation term of (12) is some-
times modified for spatially adaptive noise smoothing by us-
ing a weighted norm [5]∥∥Cf̂∥∥2W �

∑
(m,n)∈Ω

w(m,n)
[
c(m,n)∗ f̂ (m,n)

]2
, (13)

where the weights w(m,n) are calculated according to [18,
21, 23, 24]:

w(m,n) = 1
1 + νσ̂2f (m,n)

, (14)

and ν = 1000/σ2max is a tuning parameter designed so that
w(m,n) → 1 in the uniform regions and w(m,n) → 0 near
the edges.

The unique solution of (12) is obtained by means of the
following iteration [5, 24]:

f̂k+1 = Pf
[(
I − αµCTC

)
f̂k + µHT

(
g−H f̂k

)]
= Pf G

(
f̂k
)
,

(15)

where the step size µ satisfies

0 < µ <
2

λmax
(16)

and λmax is the maximum eigenvalue of (HTH + αCTC).
Equation (15) represents the projection of the steepest de-
scent iterate onto the constraint � f , and hence is named the
gradient projection method.

The iterations are terminated when the following condi-
tion is satisfied [1, Chapter 6]:∥∥f̂k+1 − f̂k

∥∥2∥∥f̂k∥∥2 ≤ δ, (17)

where δ is typically �(10−6).

3. CHOICE OF THE SCALING PARAMETER

The scaling parameter β in (9) plays a similar role to the
regularisation parameter α in the classical constrained least
squares approach [16]. If β is too large, then the intensity
bounds fail to prevent noise amplification. However, if β is
very small, then much detail is lost.

In this section, an optimal value of the bound scaling pa-
rameter is chosen by maximising the improvement in signal-
to-noise ratio (ISNR) of the restored image in terms of β,
when α is constant. The ISNR is defined as

ISNR = 10 log


∑

(m,n)∈� f

[
f (m,n)− g(m,n)

]2∑
(m,n)∈� f

[
f (m,n)− f̂ (m,n)

]2
. (18)

The effects of the noise level, blur type, and image charac-
teristics are used to develop guidelines for choosing β when
the original image f is unavailable for comparison with the

restored image f̂ .
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(a) Original. (b) Degraded.

(c) Restoration using uniform
regularisation: ISNR = 0.90 dB.

(d) Restoration using additional local
bounds: ISNR = 2.15 dB.

Figure 1: Restoration of Cameraman image, degraded by 1× 9 Gaussian blur, BSNR = 20 dB.

To illustrate the effect of β on the ISNR, the 256 × 256
Cameraman image in Figure 1a was degraded by a 1×9 point
spread function (PSF) with truncated Gaussian weights and
20 dB additive white Gaussian noise, as shown in Figure 1b.
The local statistics were estimated over a 3× 3 window from
the degraded image. The image was then restored for differ-
ent α and β values. Figure 2a plots the ISNR as a function of
β for various values of the regularisation parameter α in (12).

It can be seen from Figure 2a that the ISNR varies
smoothly as a function of β, with a well-defined maximum
for small α. The plot for α = 0 shows the ISNR when only
the intensity bounds are used to regularise the problem. As
α is increased, the optimal value of β also increases, most
noticeably for large α (α � 1/BSNR = 0.01). This is be-
cause the problem is already over-regularised. However, for
α ≤ 1/BSNR, both the optimal scaling parameter and its cor-
responding ISNR do not vary significantly with α. In all in-
stances, the flattening out of the ISNR for β > 104 indicates
that only the bounds for which σ̂2f (m,n) = 0, as defined by
(5), are active.

When the local statistics of the original image are known,
the Miller regularisation term does not improve the peak
ISNR, as indicated in Figure 2b by comparison of the graphs

for α = 0 and α > 0. In fact, the peak ISNR deteriorates
as α becomes very large. Furthermore, the location of the
peak does not vary significantly with α. Similar results are
obtained for weighted regularisation, as shown in Figure 2c.

These results indicate that if good estimates of the lo-
cal statistics are available, then, with the proper choice of
β, the intensity bounds are more effective than classical least
squares methods in constraining the solution. Even when the
statistics are estimated from the degraded image, the loca-
tion and value of the peak ISNR do not change significantly
for α ≤ 1/BSNR. Therefore, the case α = 0 can serve as a
guideline for the choice of the scaling parameter.

The question is how to determine the optimal value of β
without reference to the original image. A possible criterion
is the noise level. Figure 3 plots the ISNR as a function of the

residual error at the solution, ‖g − H f̂(β)‖2, corresponding
to α = 0 in Figures 2a and 2b. The squared norm of the noise,
ε2 ≈ Npixelsσ2v , where Npixels is the total number of image pix-
els, is indicated by the vertical line through the graph. It can
be seen that the peak closely corresponds to the point where
the residual error is equal to the squared noise norm.

The general validity of this criterion is indicated by an
examination of Table 1, which compares the residual error
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Figure 2: ISNR as a function of β: local statistics estimated from
(a) the degraded image with uniform regularisation, (b) the original
image with uniform regularisation, and (c) the original image with
weighted regularisation.
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Figure 3: ISNR as a function of ‖g−H f̂(β)‖2 for Figure 1b.

and the noise norm for various noise levels, blur types, and
images (Lena or the Cameraman). The two blur types tested
were the horizontal Gaussian PSF described previously and
a 5 × 5 pill-box blur, that is, a rectangular PSF with equal
weights. The results are listed for bounds derived from both
the exact image statistics and the degraded-image statistics.
It can be observed that in all cases, the value of the residual
error approaches the squared noise norm when β maximises
the ISNR.

The main drawback of using this criterion to choose β
is that the image must be restored in order to compare the
residual error with the noise norm. The process of adapting β
may require several restorations before the appropriate value
is found. In order to reduce the number of computations,
Table 1 can provide an initial estimate of β. For each refine-
ment, the final image estimate from the previous stage can be
used to initialise the next restoration.

It should be mentioned that in the 30 dB case, the reason
that the optimal value of β estimated from the degraded im-
age statistics is much larger than that from the exact image
statistics is that for low noise levels, the penalty for underes-
timating the edge variances due to blurring in the degraded
image takes precedence over noise amplification. Therefore,
when the degraded statistics are used, the optimal value of β
is very large so that the bounds are active only in the uniform
regions and consequently the edges are retained. However,
when the exact image statistics are used, the edges are not af-
fected by underestimation of the edge variance, and so it is
possible to suppress more noise by decreasing β.

4. INTENSITY-BOUNDUPDATE

When the intensity bounds are calculated from the statis-
tics of the degraded image, the edge variances are underes-
timated because of blurring. Therefore, the restored image
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Table 1: Heuristic estimate of the optimal scaling parameter.

Exact statistics Degraded-image statistics

Image PSF BSNR (dB) β ISNR (dB) Res. β ISNR (dB) Res. ε2

Cam. Gauss. 10 2 5.73 391.69 4 3.06 369.64 393.40

Lena Gauss. 10 2 6.93 266.32 5 3.49 251.50 270.90

Lena P.-box 10 2 7.41 251.76 9 3.25 254.97 254.99

Cam. Gauss. 20 5 3.84 39.99 16 1.79 38.89 39.34

Lena Gauss. 20 4 4.39 26.25 19 1.74 26.59 27.09

Lena P.-box 20 3 5.76 25.13 23 2.19 28.86 25.50

Cam. Gauss. 30 11 4.26 4.75 300 3.54 2.54 3.93

Lena Gauss. 30 7 4.83 3.08 320 3.66 1.59 2.71

Lena P.-box 30 5 6.28 2.71 720 4.28 1.94 2.55

tends to be overly smooth in these areas. This is seen, for ex-
ample, around the pillars of the domed building in Figure 1d.
A more sophisticated approach is to use the additional infor-
mation obtained during the iterative restoration process to
reestimate the intensity bounds. In this section, we evaluate
several methods of bound update.

4.1. Method 1

The most obvious way to update the intensity bounds is to
calculate the local statistics of the image estimate at each iter-
ation and then to use these statistics to generate new bounds
[10, 13, 15].

In this case, the local intensity bounds at iteration k be-
come

lk(m,n) = max
[
0, M̂ f ,k(m,n)− βσ̂2f ,k(m,n)

]
,

uk(m,n) = M̂ f ,k(m,n) + βσ̂2f ,k(m,n),
(19)

where

M̂ f ,k(m,n) = 1
(2N + 1)2

∑
r=m−N :m+N
s=n−N :n+N

f̂k(r, s),

σ̂2f ,k(m,n)

= max

0, 1
(2N + 1)2

×
∑

r=m−N :m+N
s=n−N :n+N

[
f̂k(r, s)− M̂ f ,k(m,n)

]2 − σ2v

,
(20)

and f̂k is the current image estimate. If σ̂2f ,0(m,n) = 0, then
the bounds at (m,n) are not updated, since the local statis-
tics are not expected to change significantly in the uniform
regions.

Updating the bounds in this manner has an iterative ef-
fect in that the activation of the constraints on neighbouring

pixels leads to a decrease in the local activity, and hence
the reestimated bound radius βσ̂2f ,k(m,n) is also smaller. The
continual decrease of the bound radii in the low-variance re-
gions results in loss of detail.

4.2. Method 2

Since the loss of detail occurs where the bounds have been
activated over a neighbourhood of pixels, a simple modifica-
tion of the proposed method is to reestimate only the inac-
tive bounds. While this limits iterative smoothing, the edge
sharpness can only improve marginally since the initial un-
derestimation of the edge variances produces relatively tight
bounds which, once activated, cannot be further improved.

4.3. Method 3

A third method of bound update monitors the convergence
of the local variance estimates in order to determine when
the local intensity constraints are applied at a given pixel. In
the uniform regions, the original and degraded images dif-
fer only by the additive noise, and the variance estimates in
these regions converge very quickly. Consequently, the inten-
sity bounds are applied at an early stage of the algorithm,
limiting noise amplification in these relatively uniform re-
gions where it is most noticeable. At the edges, the inversion
of the blurring process leads to a significant change in the
edge variances during the first iterations. Thus, the intensity
bounds near the edges are applied at a late stage of the algo-
rithm, thereby increasing the edge sharpness. The additional
noise is masked by the edges.

The procedure can be described as follows.
(1) The intensity bounds are initialised to[

l0(m,n), u0(m,n)
]

=


[0, 0], (m,n) /∈ � f ,[
M̂ f ,0(m,n), M̂ f ,0(m,n)

]
, σ̂2f ,0(m,n)=0, (m,n)∈� f ,[

0,∞), otherwise.
(21)
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(a) Original. (b) Degraded.

(c) Method 1: ISNR = 2.63 dB. (d) Method 3: ISNR = 3.36 dB.

Figure 4: Restoration of Lena image, degraded by 5× 5 pill-box blur and 20 dB noise, by bound update methods (α=0.1, β=(c) 25, (d) 7).

Define � f ,0 � {(m,n) : σ̂2f ,0(m,n) = 0 or (m,n) /∈ � f }.
(2) At each iteration, the local variance σ2f ,k(m,n) of the

current image estimate is calculated. Let � f ,k denote the set
of pixels for which the local variance converges at iteration k,
that is,

� f ,k �
{
(m,n) :

∣∣σ̂2f ,k(m,n)− σ̂2f ,k−1(m,n)
∣∣

σ̂2f ,k−1(m,n)
≤ τ,

(m,n) /∈ � f ,r , r < k

}
.

(22)

Define the intensity bounds for (m,n) ∈ � f ,k as

lk(m,n) = max
[
0, M̂ f ,k(m,n)− βσ̂2f ,k(m,n)

]
,

uk(m,n) = M̂ f ,k(m,n) + βσ̂2f ,k(m,n).
(23)

(3) Find the next iterate according to

f̂k+1 = Pf ,kP f ,k−1 · · ·Pf ,0G
(
f̂k
)
, (24)

where

Pf ,0 f̂ (m,n)

=


M̂ f ,0(m,n), σ̂2f ,0(m,n) = 0, (m,n) ∈ � f ,

f̂ (m,n), f̂ (m,n) ≥ 0, (m,n) ∈ � f ,

0, otherwise;

Pf ,k f̂ (m,n)

=


lk(m,n), f̂ (m,n) < lk(m,n), (m,n) ∈ � f ,k,

uk(m,n), f̂ (m,n) > uk(m,n), (m,n) ∈ � f ,k,

f̂ (m,n), otherwise.

(25)

4.4. Comparison of themethods

The Lena image in Figure 4a was blurred by a 5 × 5 pill-box
blur with 20 dB BSNR, as shown in Figure 4b. The degraded
image was restored using the various bound update meth-
ods and the results are shown in Figure 5, which plots the
ISNR as a function of β for each method. The Lena image
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Figure 5: Comparison of bound update methods (α = 0.1).

was chosen because the large amount of blurring, particu-
larly in the texture region of the feathers, emphasised un-
derestimation of the variance. A 5 × 5 window was used to
calculate the local statistics. In Method 1, iterative smooth-
ing was most noticeable at low β, as illustrated in Figure 5
by the sharp decrease in the ISNR as β becomes very small.
Figure 4c shows the loss of detail resulting from this iterative
process, combined with severe noise amplification in some
regions. In terms of the ISNR, there was no improvement
over the fixed bounds. Method 2 produced similar results to
the fixed-bound method, as the edge bounds which had al-
ready been activated could not be improved. Method 3 gave
a significant improvement in terms of the maximum ISNR.
The decrease in the optimal β indicates that the statistics used
in the intensity bounds were closer to those of the original
image, as seen by a comparison of the peak location in Fig-
ures 2a and 2b. The best restoration is shown in Figure 4d.

4.5. Convergence of the updatemethods

When the intensity bounds are updated from the current im-
age estimate, the iteration of (15) is no longer guaranteed to
converge since the projection operator changes with the iter-
ation k. In practice, because the image estimate is initialised
to the degraded image, which is a reasonable approximation
to the solution, the image estimate changes very little be-
tween iterations, and the corresponding adjustment of the
bounds is also small.

In the simulations, the iterations converged according to
the criterion of (17), for δ = 10−6, albeit at a slower rate
than with fixed bounds. The change in convergence rate was
the greatest for Method 3 since many areas of the image were
initially allowed to converge towards the unconstrained so-
lution and only later were the bounds added. The difference
was, of course, dependent on the relative importance of the
regularisation parameter α and the scaling parameter β.

Some insight into how bound update affects convergence
can be obtained by adopting the linearisation approach in
[11, 12]. To begin, the projection operator at iteration k is

(a)

(b)

Figure 6: (a) Cameraman and (b) Lena images degraded by 5 × 5
pill-box blur, BSNR = 30 dB.

divided into three separate operators:

f̂k+1 = Pf ,posPf ,fixPf ,update
[
G
(
f̂k
)]
, (26)

where Pf ,pos is the positivity operator, Pf ,fix denotes the pro-

jection onto the bounds which are not updated from f̂k,
Pf ,update denotes the projection onto the updated bounds,
and G(·) is the steepest descent operator. The indices of
the constraints fixed at iteration k form the set �fix, and
the indices of the updated constraints form �update, where
�fix ∩�update = ∅.

Let the combined mapping Pf ,updateG be denoted by T .
Then∥∥f̂k+1 − f̂k

∥∥ = ∥∥Pf ,posPf ,fixT
(
f̂k
)− Pf ,posPf ,fixT

(
f̂k−1

)∥∥
≤ ∥∥Pf ,fixT

(
f̂k
)− Pf ,fixT

(
f̂k−1

)∥∥
≤ ∥∥T(f̂k)− T

(
f̂k−1

)∥∥
(27)

because the projections Pf ,pos and Pf ,fix do not change be-
tween iterations k and k − 1, and any projection is, by defi-
nition, nonexpansive, that is, for f1, f2 ∈ �, ‖Pf1 − Pf2‖ ≤
‖f1 − f2‖.



Spatially Adaptive Intensity Bounds for Image Restoration 1175

(a) Restored image: ISNR = 3.73 dB.
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(b) Estimated blur: ∆h = 0.15.

(c) Restored image: ISNR = 6.39 dB.
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(d) Estimated blur: ∆h = 8.0× 10−16.

Figure 7: Restoration of Figure 6a with (a), (b) uniform regularisation only (α = 0.09): 204 image updates in 17 cycles; (c), (d) updated
bounds (β = 30, α = 0.05): 748 image iterations in 20 cycles.

The nonlinear operator T is linearised by means of the
Jacobian matrix JT :

T
(
f̂k
)− T

(
f̂k−1

) ≈ JT
(
f̂k
)(
f̂k − f̂k−1

)
. (28)

The (m,n)th element of the Jacobian JT is given by

[
JT
]
mn =

∂Tm
(
f̂
)

∂ f̂n
, (29)

where Tm is the mth element of the vector T(f̂) and f̂n is the

nth element of the vector f̂ .
The matrix JT is derived by dividing the pixels into three

sets which represent the possible outcomes at each iteration.
(1) The first set is

�grad=�fix∪
{
m∈�update :

Mf̂ (m)−βσ2
f̂
(m)≤Gm(f̂)≤Mf̂ (m)+βσ2

f̂
(m)

}
.

(30)

In this case,m corresponds to a pixel at which the bounds are
fixed between iterations k− 1 and k, or the iterate lies within
the updated bounds. Therefore, Tm represents the steepest
descent step

Tm
(
f̂
) = Gm

(
f̂
)

= f̂ (m) + µg(m)∗ h(−m)

− µ
[
h(m)∗ h(−m) + αc(m)∗ c(−m)

]∗ f̂ (m),
(31)

and hence,[
JT
]
mn = δ(m− n)

− µ
[
h(m− n)∗ h(n−m)

+ αc(m− n)∗ c(n−m)
]
, m ∈ �grad.

(32)

(2) The second set is

�high = {m ∈ �update : Gm(f̂) > Mf̂ (m) + βσ2
f̂
(m)}. (33)
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(a) Restored image: ISNR = 3.18 dB.
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(b) Estimated blur: ∆h = 0.24.

(c) Restored image: ISNR = 5.38 dB.
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(d) Estimated blur: ∆h = 4.7× 10−4.

Figure 8: Restoration of Figure 6b with (a), (b) uniform regularisation only (α = 0.12): 172 image updates in 17 cycles; (c), (d) updated
bounds (β = 30, α = 0.05): 978 image iterations in 20 cycles.

The steepest descent iterate lies above the upper bound,
which has been updated from the previous image estimate.
The operator Tm becomes

Tm
(
f̂
) =Mf̂ (m) + βσ2

f̂
(m)

= 1
Λ

∑
r∈�win(m)

f̂ (r)

+ β

 1
Λ

∑
r∈�win(m)

f̂ 2(r)−
[
1
Λ

∑
r∈�win(m)

f̂ (r)

]2
,
(34)

where �win(m) denotes the window of Λ pixels over which
the local statistics at the mth pixel are measured. Then, for
m ∈ �update

[
JT
]
mn =


1
Λ

{
1 + 2β

[
f̂ (n)−Mf̂ (m)

]}
, n ∈ �win(m),

0, n /∈ �win(m).
(35)

(3) The third set is

�low =
{
m ∈ �update : Gm(f̂) < Mf̂ (m)− βσ2

f̂
(m)

}
. (36)

The steepest descent iterate lies below the lower bound, and
therefore, form ∈ �low,

[
JT
]
mn =


1
Λ

{
1− 2β

[
f̂ (n)−Mf̂ (m)

]}
, n ∈ �win(m),

0, n /∈ �win(m).
(37)
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Since∥∥T(f̂k)− T
(
f̂k−1

)∥∥ ≈ ∥∥JT(f̂k)(f̂k − f̂k−1
)∥∥

≤ ∥∥JT(f̂k)∥∥ · ∥∥f̂k − f̂k−1
∥∥, (38)

a sufficient (but not necessary) condition for convergence is

‖JT(f̂k)‖ < 1, k = 1, 2, . . . ,∞, where ‖ · ‖ represents the L2
norm [25]. While this condition cannot be satisfied for all
possible f̂k, some observations can be made about the typical
behaviour of the bound update schemes when the degraded
image is used to initialise the iteration.

Assuming that most pixels belong to �grad, that is, the

bounds have not been updated from f̂k or the iterate falls
within the updated bounds, the matrix JT will have the pre-
dominant form of the block-circulant matrix I − µ(HTH +
αCTC). The L2 norm of this matrix is maxm |1−µλm|, where
λm denotes an eigenvalue ofHTH +αCTC. The desired norm
θ < 1 can be obtained if there exists a µ which satisfies

1− θ

λmin
< µ <

1 + θ

λmax
. (39)

The rows belonging to �high or �low have the structure
of the pill-box blur convolution matrix, with additive zero-
mean fluctuations. These fluctuations are small because the
bounds are activated in the regions of relatively low variance.
Therefore, the norm of a matrix formed from a combination
of these rows will be approximately 1, closely corresponding
to the all-one eigenvector.

The pixels in �high, �low, or �grad are usually clustered
together in regions whose dimensions greatly exceed those of
the window used to calculate the local statistics. Thus, JT can
be partitioned into nearly block-circulant submatrices corre-
sponding to neighbouring pixels in either sets. Because the
nonzero elements of the submatrices correspond to a small
window around the current pixel m, they do not overlap
significantly column-wise or row-wise, and the norm of JT
can be approximated by the largest norm of the submatrices.
From the previous discussion, this is close to 1 if µ satisfies
(39). Simulations indicate that small violations of the con-
vergence condition ‖JT‖ < 1 are partially compensated by
the operators Ppos and Pfix.

5. BLIND IMAGE RESTORATION

In the previous sections, spatially adaptive intensity bounds
were used in nonblind image restoration to limit noise am-
plification due to the ill-conditioning of the blur matrix. In
this section, the intensity bounds are applied to blind im-
age restoration in order to further define the solution and to
reduce noise. An alternating minimisation approach, which
switches between constrained optimisation of the image and
the blur, is used. This approach has the advantage that the
methods described in Section 4 can easily be extended to
blind image restoration.

5.1. Characterisation of the blur

The constraints on the blur presented in this section are in-
tended to describe a large class of degradations. It is assumed

that the blur estimate ĥ belongs to the Hilbert space � de-
fined previously. Like the image, the estimated blur coeffi-

cients are constrained to be nonnegative, that is, ĥ(m,n) ≥ 0,
(m,n) ∈ Ω. It is further assumed that the blurring process

preserves energy, and therefore,
∑

(m,n)∈Ω ĥ(m,n) = 1 [26,
page 69].

Typically, the blur is negligible outside a small region of
support �h which is not known precisely. Therefore, a con-
servatively large support is used to initialise the blur estimate.
At the end of each blur optimisation, the estimated support
is pruned such that a rectangular support is maintained. In

truncating the support, an estimate ĥ(m,n) on a row/column
bordering the PSF is assumed to be negligible if it is an order
of magnitude smaller than its nearest neighbour in the adja-
cent row/column [1, Chapter 6].

Within the estimated support, the PSF is assumed to be
symmetric [27], that is,

h(m,n) = h(−m,−n), (40)

where h(−m,−n) � h(Lm − m,Ln − n), and the image is
of dimension Lm × Ln. In this case, the phase of the discrete
Fourier transform of the blur is either 0 or ±π.

Experience indicates that it is necessary to impose
smoothness constraints on the blur itself. Previously, this was
done in the form of a second regularisation term via an ex-
tension of either the constrained least squares approach [23]
or the total variation method [28]. The disadvantage of this
method is that the knowledge of the blur support is im-
plicitly needed to determine the blur regularisation param-
eter [28]. Therefore, an alternative monotonicity constraint
is proposed, which states that the blur should be nonincreas-
ing in the direction of the positive blur axes. This constraint
describes many common blurs, such as the pill-box blur and
the Gaussian blur, and is expressed mathematically as

ĥ(m + 1, n) ≥ ĥ(m,n), m ≥ 0, (m + 1, n) ∈ �h,

ĥ(m,n + 1) ≥ ĥ(m,n), n ≥ 0, (m,n + 1) ∈ �h.
(41)

The monotonicity constraint is extended to the entire sup-
port by means of the symmetry constraint.

5.2. Alternatingminimisation approach

The proposed alternating minimisation algorithm follows
the general framework of projection-based blind deconvolu-
tion [6] but differs in the procedure used to optimise the blur.
In contrast to the algorithms proposed in [23, 28], the con-
straints are incorporated directly in the optimisation rather
than applied at the end of each minimisation with respect to
either the image or the blur.

Since both f̂ and ĥ are unknown, the cost function be-
comes

J
(
f̂ , ĥ
) = ∥∥g− f̂ ∗ ĥ

∥∥2 + α
∥∥Cf̂∥∥2. (42)

Equation (42) is convex with respect to either f̂ or ĥ, but
not jointly convex. Therefore, the cost function is minimised
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most easily by fixing one estimate and optimising with re-
spect to the other. The roles are then reversed and the process
is repeated until the algorithm converges to a local minimum
[6].

Since the spatially adaptive intensity bounds have a well-
defined projection operator, the image optimisation step is
implemented using the constrained steepest descent algo-
rithm (gradient projection method) described in [5]. The
advantage of this method is its simplicity and ease of imple-
mentation. The introduction of intensity bounds increases
the linear convergence rate of the steepest descent algorithm
because the bounds impose tight constraints on the solution
[29, 30]. Furthermore, the degraded image provides a good
initial estimate of the original image.

The intensity bounds are reinitialised according to (21),
at the beginning of each image optimisation. During the
minimisation cycle, they are applied as the variance estimates
converge.

For the blur optimisation, the slow convergence rate of
the gradient projection method poses a severe problem since
the blur may be initialised far from the actual solution. Fur-
thermore, an explicit expression for the projection operator
Ph is not readily available as �h is defined by the intersection
of several convex sets which are not easily combined.

The structure of the blur optimisation problem is bet-
ter suited to quadratic programming (QP) because (42) is

quadratic with respect to ĥ, subject to the linear equality and
inequality constraints described in Section 5.1. (A good de-
scription of QP can be found in [31].) The assumed support
of the blur is usually quite small relative to the image, and so
the QP algorithm can easily handle the number of variables.

The resulting blind image restoration algorithm is de-
scribed below.

(1) Choose a conservatively large estimate for the PSF sup-
port−Nm ≤ m ≤ Nm and−Nn ≤ n ≤ Nn. Initialise the
image and blur estimates to (f̂0, ĥ0) = (Pf g, e1), where
e1 denotes the unit vector corresponding to the two-
dimensional δ-function. Set the cycle number k = 1.

(2) Minimise with respect to the blur using the QP algo-

rithm to obtain ĥk = arg{minĥ∈�h
J(f̂k−1, ĥ)}.

(3) Truncate the estimated PSF support according to the
following conditions.

(i) If Nm > 0 and ĥ(Nm, n) ≤ 0.1ĥ(Nm − 1, n),−Nn

≤ n ≤ Nn, then Nm = Nm − 1.
(ii) If Nn > 0 and ĥ(m,Nn) ≤ 0.1ĥ(m,Nn − 1), −Nm

≤ m ≤ Nm, then Nn = Nn − 1.
(iii) Renormalise the truncated blur.

(4) Minimise with respect to the image to obtain f̂k =
arg{min f̂∈� f

J(f̂ , ĥk)}. Set f̂0k = f̂k−1 and initialise the

intensity bounds according to (21). Iterate

f̂n+1k =Pn
f P

n−1
f · · ·P0

f

[(
I − αµCTC

)
f̂nk + µHT

k

(
g−Hk f̂nk

)]
,

(43)

where Hk is a block-Toeplitz matrix of the shifted blur
vectors and the step size µ satisfies (16). The projec-
tions Pr

f , r = 0, . . . , n, are defined in a manner similar

to (25) with k → n. Terminate when∥∥f̂n+1k − f̂nk
∥∥2∥∥f̂nk ∥∥2 ≤ δ (44)

or n > 100.
(5) Repeat steps (2), (3), and (4) until∥∥(f̂k+1, ĥk+1)− (f̂k, ĥk)∥∥2∥∥(f̂k, ĥk)∥∥2 ≤ δ (45)

or k > 20.

5.3. Experimental results

The Cameraman and Lena images, superimposed on a black
background, were degraded by a 5 × 5 pill-box blur with
30 dB noise, as shown in Figures 6a and 6b.

A uniform smoothness constraint was used in conjunc-
tion with the intensity bounds. A moderate value of α1 =
0.05 was chosen for the regularisation parameter. The scaling
parameter β = 30 was found to give good restorations, but
no attempt was made to fine-tune this value. For compar-
ison, the images were restored using uniform regularisation
only. In this case, the suggested value of α = ‖g−Hf‖2/‖Cf‖2
was used [22], even though these quantities are not usually
known precisely.

The image and blur estimates are shown in Figures 7 and
8. The ISNR was calculated over the image support only. The
quality of the blur estimate was measured as follows:

∆h =

√∑
(m,n)∈�h∪�ĥ

[
h(m,n)− ĥ(m,n)

]2√∑
(m,n)∈�h∪�ĥ

[
h(m,n)

]2 . (46)

It can be seen that the addition of intensity constraints
significantly improved both estimates. Furthermore, the blur
estimate is very precise due to the proper application of
constraints such as positivity, energy preservation, circular
symmetry, and monotonicity. In particular, the monotonic-
ity constraint, which has not been used in previous blind
restoration schemes, significantly improves the blur estimate.
The main drawback of the bound update algorithm was the
increase in the number of iterations required for the image
optimisation. This can be seen by comparing the number of
image updates for fixed bounds and updated bounds in Fig-
ures 7 and 8.

6. DISCUSSION AND CONCLUSIONS

This paper presented a new method of defining and incor-
porating spatially adaptive intensity bounds in both blind
and nonblind image restoration. The intensity bounds were
initially estimated from the local statistics of the degraded
image and were updated from the current image estimate
to produce more accurate constraints. It was found that if
the bound scaling parameter β was chosen properly, then
the addition of intensity bounds significantly improved the
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restoration, with the largest improvement resulting from the
proposed bound-update methods. General guidelines for the
choice of the scaling parameter were presented.

While the intensity bounds were implemented in the
context of the gradient projectionmethod, a number of blind
restoration algorithms could be easily modified to incorpo-
rate the bounds. Further research needs to be done on the
effectiveness of the intensity bounds in these algorithms.
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