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The technique of orthogonal frequency division multiplexing (OFDM) is famous for its robustness against frequency-selective fad-
ing channel. This technique has been widely used in many wired and wireless communication systems. In general, the fast Fourier
transform (FFT) and inverse FFT (IFFT) operations are used as the modulation/demodulation kernel in the OFDM systems, and
the sizes of FFT/IFFT operations are varied in different applications of OFDM systems. In this paper, we design and implement a
variable-length prototype FFT/IFFT processor to cover different specifications of OFDM applications. The cached-memory FFT
architecture is our suggested VLSI system architecture to design the prototype FFT/IFFT processor for the consideration of low-
power consumption. We also implement the twiddle factor butterfly processing element (PE) based on the coordinate rotation
digital computer (CORDIC) algorithm, which avoids the use of conventional multiplication-and-accumulation unit, but evalu-
ates the trigonometric functions using only add-and-shift operations. Finally, we implement a variable-length prototype FFT/IFFT
processor with TSMC 0.35 ym 1P4M CMOS technology. The simulations results show that the chip can perform (64-2048)-point
FFT/IFFT operations up to 80 MHz operating frequency which can meet the speed requirement of most OFDM standards such as

WLAN, ADSL, VDSL (256 ~ 2K), DAB, and 2k-mode DVB.

Keywords and phrases: cached FFT, mixed-scaling and rotation CORDIC, and OFDM communications.

1. INTRODUCTION

The orthogonal frequency division multiplexing (OFDM)
system is a form of multicarrier modulation (MCM) tech-
nologies [1, 2, 3]. Due to its robustness against frequency-
selective fading or narrowband interference, the OFDM
technology has been widely implemented in many digi-
tal communications such as wireless local area network
(WLAN, IEEE 801.11a/g), digital audio/video broadcasting

(DAB/DVB), asymmetric DSL (ADSL), and very-high-speed
DSL (VDSL) systems [4, 5, 6]. The most important mod-
ulation/demodulation kernel in OFDM system is the fast
Fourier transform and inverse FFT (FFT/IFFT) operations.
However, the size and execute time, Tggr, of the FFT/IFFT
processors is different for various applications of OFDM sys-
tems, as shown in Table 1 [7, 8]. For example, the FFT/IFFT
processor must execute 64 points in 3.2 microseconds for
the WLAN system, and execute 2048-point operation in
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TaBLE 1: FFT/IFFT size for OFDM-based communication systems.

Application FFT/IFFT size (points) Trer (ps)
WLAN 64 3.2
ADSL 2 X 256 231
VDSL 2xX256%x2",n=0,...,4 231

DAB 256 X 2", n=0,...,3 31 x 2"
DVB-T 8192/2048 896/224

224 microseconds for the DAB system. With the preva-
lence of multimode/multistandard communication systems,
it would be desirable to have a various points of FFT/IFFT
processor to fit most OFDM systems.

In this paper, motivated by this trend, we design and
implement a variable-length FFT/IFFT processor that can
fit various existing OFDM-based communication systems.
Firstly, we adopt the newly proposed cached-memory FFT
architecture [9] as our suggested VLSI system architecture to
lower the main memory access times to reduce the memory
power consumption. In addition, we employ mixed-scaling
rotation CORDIC (MSR-CORDIC) algorithm [10] to design
the butterfly processing element (PE). It can overcome the
problems of the long iteration number and large quantiza-
tion noise encountered in conventional CORDIC-based PE
designs. Besides, this design approach can help to reduce the
switching activities, hence to achieve low-power consump-
tion in portable communication applications. Finally, we de-
sign and implement the variable-length prototype FFT/IFFT
processor with TSMC 0.35 ym 1P4M CMOS technology. The
die area of the FFT/IFFT processor is 15.21 mm? including
204832 bits SRAM. The maximum operating frequency can
be up to 80 MHz, which can meet most existing OFDM sys-
tems using (64—2048)-point FFT/IFFT operations.

The rest of this paper is organized as follows. Section 2
reviews the cached FFT algorithm. We also present our pro-
posed system architecture in this section. Section 3 discusses
the MSR-CORDIC-based PE design. Section 4 discusses the
design issues of the address generator (AG) and control logic
unit (CLU), respectively. Then, in Section 5, we estimate the
word length of the FFT hardware architecture. The VLSI im-
plementation results and comparisons are made in Section 6.
Finally, we conclude this work in Section 7.

2. CACHED FFT ARCHITECTURE

2.1. Review of cached FFT architecture

There are various structures for the implementations of FFT
processor, such as single memory, dual memory, pipelined
architecture, and array type [9]. Typically, conventional FFT
algorithms are developed to minimize the number of multi-
plications and additions while maintaining a simple form.
However, the hidden memory operations are usually ig-
nored. The hidden memory operations might take half of the
power consumption of the whole FFT calculation [11]. To
reduce the number of memory access, we adopt the cached-

memory architecture [9] to realize the proposed variable-
length FFT processor. The cached FFT is designed explicitly
to operate on a processor with a hierarchical memory sys-
tem. By taking advantage of a small cache memory, the al-
gorithm enables higher operating clock frequencies and re-
duces data communication energy. On the other hand, most
of the memory can operate at lower frequency with only a
small portion operates at higher speed. This could reduce the
power dissipation.

Figure 1 shows the traditional 64-point FFT dataflow di-
agram. We can see that the whole data are read and written
back to the main memory in every stage. As the FFT size in-
creases, stage number will be increased. As a result, the data
movement will cause much power consumption and long ex-
ecution time.

The basic idea of cached FFT is to reduce the number of
main memory access as shown in Figure 2. Instead of pro-
cessing one stage of butterfly operation at a time, we store
data in local storage and process more data in one super-stage
(Pass0, Pass1, Pass2) at a period time. To achieve this, two sec-
tions of data movement operations differing from traditional
FFT are designed as shown in Figure 3. The resulting opera-
tions are still very regular and will not increase much com-
plexity. The data will read/write from the cache memory of
each super stage. Super stage can greatly reduce the number
of main memory access as the FFT size N becomes bigger.

The nomenclature of the cached FFT is defined by fol-
lowing stages [9].

(1) Stage. A stage is the part of an FFT where all N memory
locations are read, processed by a butterfly, and written
back once.

(2) Super stage. A super stage is the portion of the cached
FFT algorithm where all N-data word are loaded into a
cache, processed, and written back to the main mem-
ory once, which can be regarded as a super stage.

(3) Group. A group is the portion of a super stage where
a block of data is read from the main memory into a
cached, processed, and written back to the main mem-
ory.

(4) Pass. A pass is the portion of a group where each word
in the cache is read, processed with a butterfly, and
written back to the cache once.

The detailed operations of the cached FFT are as follows.

(1) Input data are loaded into an N-word main memory.

(2) The number C of the N words is assembled to a group.
The C words are loaded into the cache memory.

(3) The data in the cache are being processed by PE and
written back to cache. Repeat this step when all passes
in a super stage is processed.

(4) Processed data in the cache are flushed to main mem-
ory.

(5) Steps 2,3, and 4 are repeated until all N words have
been processed once in a super stage.

(6) Steps 2, 3,4, and 5 are repeated till all super stages are
finished. Then the operation of the FFT is completed.
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FiGgure 2: Cached FFT dataflow diagram [9].
Then the PE can perform the complex arithmetic operations
PE Cache Memory for the data of RAM and the coefficients stored in ROM. The
RAM will store the input data as well as the temporary com-

FIGUrEe 3: Cache-memory FFT processor architecture [9].

2.2. Proposed system architecture of the
variable-length FFT processor

Based on the design concept of the cached FFT, we propose a
variable-length FFT/IFFT processor architecture for OFDM
application communication systems. It consists of three de-
sign units: CLU, AG, and PE, as shown in Figure 4. The CLU
decides the forward/inverse FFT operation and the number
of points that FFT will perform, based on the control word.
The AG unit can generate the address that RAM and ROM
accesses need. With the address, the coefficient ROM can
output the twiddle factor to butterfly processing element.

puted data and also play the role of the cache. The outputs of
the FFT/IFFT results are also stored in the RAM for access.
The following sections will discuss the design issues of those
major functional units.

3. PROCESSING ELEMENT (PE) DESIGN

The coordinate rotational digital computer (CORDIC) algo-
rithm is a well-known VLSI arithmetic unit. The basic con-
cept of CORDIC is to decompose the desired rotation angles
into several easy-to-be-implemented subangles [12, 13, 14].
The subangles can be implemented by the shift-and-add. In
the traditional FFT hardware implementation, it needs many
multipliers and adders to achieve the complex multiplica-
tions. This will always cause very large hardware require-
ment. In order to reduce the hardware complexity, many FFT
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tation operations can be performed easily. Besides, the hard- « Product of the scaling factor
ware requirement of CORDIC is very simple. It also has po-
tential advantage of low switching activity for low-power op- Pt = Pn X Puit; (5)
erations. End

3.1. Review of MSR-CORDIC algorithm

In the conventional CORDIC algorithm [12], the scaling fac-
tor is always greater than 1. Therefore, it is necessary to scale
down the norm of the input vector to its initial value af-
ter the rotation mode is finished. Furthermore, the signal-
to-quantization-noise ratio (SQNR) will be reduced due to
the growth of the scaling factor. To avoid the overhead of
the scaling operation, the product of the scaling factors must
be equal to 1. To overcome these problems, the range of the
scaling factors must be greater and less than 1. The MSR-
CORDIC algorithm [10] reformulates the iterative arith-
metic as in Algorithm 1, where y;, 4; € {—1,0,1};Iand J de-
note the number of SPT terms of x(n) and y(n), respectively,
and they are referred to as the extending factors; 8, is the ele-
mentary angle and the initial value; p,+1 denotes the product
of the scaling factors in nth iteration. The initial value of p;
is 1; N are denoted as the number of SPT terms used in
performing (1), which is the sum of I and J; N denotes the
total number of iteration; s, € {0, 1,..., S} and S denotes the
number of maximum shift.

In the conventional CORDIC [12] and EEAS-CORDIC
[15] algorithm, the norms of both schemes are enlarged af-
ter the micro-rotation operations. That is, the norm is am-
plified as illustrated in Figures 5a and 5b and Rm denotes
the total iteration number of CORDIC. On the contrary, in
MSR-CORDIC algorithm, (4) shows that the factor P, can be
either greater or less than 1. In Figures 5¢ and 5d, we depict
the reachable points in 2D plane to emphasize the feature of
P,.

ALGORITHM 1

From Figure 5, some other interesting features of the pro-
posed scheme are discussed below.

(1) According to (2), the angles in MSR-CORDIC is much
denser than the conventional CORDIC and EEAS-
CORDIC, hence, the MSR-CORDIC can reach the tar-
get angle with fewer iteration as shown in Figure 5d.
Furthermore, if we design the parameters, si, ui, ap-
propriately so that both the quantization error of ro-
tation angles and norms meet the system performance
requirement at the same time, then the scaling oper-
ation can be avoided. Since we do not need the extra
scaling operations, the MSR-CORDIC is faster in com-
putational speed and the corresponding hardware cost
is reduced.

(2) In some applications, the rotation angles are larger
than /4, such as the twiddle factors in FFT. It is dif-
ficult for the conventional CORDIC to perform such
a rotation angle. In MVR-CORDIC [16], the authors
utilize the prerotation strategy to overcome the prob-
lem and have the improvement of error performance.
However, extra hardware costs and also the comput-
ing speed decrease. On the contrary, in the newly pro-
posed MSR-CORDIC algorithm, the reachable angles
are distributed from 0 to 2.
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(c)

FiGure 5: Constellation of reachable points under the rotation process. (a) Conventional CORDIC with N = Rm = 4. (b) EEAS-CORDIC
with maximum shift range S = 4 and Rm = 2. (¢) MSR-CORDIC withI = 2,] = 1,and N = 1. (d) MSR-CORDIC with I = 2,] = 1, and

N =2 for 1/3 £ Pn < 3 with maximum shift range S = 4.

3.2. VLS architecture of MSR-CORDIC for twiddle
factor operation

To realize the twiddle factor PE, we use the MSR-CORDIC-
based VLSI architecture as shown in Figure 6. In order to en-
hance the speed, we arrange two-level pipeline in CORDIC
design. The important differences from the conventional
CORDIC design are the parameter sequence arrangement,
physical consideration, and circuit speedup because of no-
scaling operations. Based on (2), both of x(n+1) and y(n+1)
are linear combination of their prior x(n) and y(n). All the
coefficients of x(n) and y(n) are power of two numbers with
the signs p; and p;, respectively. Hence, two Barrel shifter
arrays (BSAs) are used to perform shifting operations. The
number of the output signal is Ny in each BSA. To perform
the summation of the outputs, 2(Ngp — 1) add/subtract oper-
ations must be performed and 2(Np, — 1) adders/subtractors
are used or required to finish the process in one clock cycle.
Therefore, in each MSR-CORDIC module, only 2(Ngp — 1)
additions/subtractions are required.

3.3. Low switching activity of PE unit

The switching activity of coefficient may cause much power
consumption in two’s complement representation system. In
CORDIC representation system, the representation of lower
switching activity can be achieved. In Figure 7, we can see the
different of switching activity between two’s complement and
CORDIC representations. The switching activity in CORDIC
representation is lower than two’s complement representa-
tion.

4. DESIGN OF ADDRESS GENERATOR UNIT
AND CONTROL LOGIC UNIT

4.1. Cached FFT/IFFT address generation [9]

For a traditional radix-r N-point FFT, the stage number is
S = log,(N). By closely examining the data access pattern,
we can recognize that butterflies are clustered into “Groups.”
We can represent the memory address by making use of two
virtual counters:



VLSI Design of a Variable-Length FFT/IFFT Processor

1311

x(n)

Barrel shifter array

y(n)

Barrel shifter array

Reg.| |Reg.

ROM and

. Reg. Adder/subtrator
control unit

Adder/subtrator

Reg. Reg.

Reg

|

x(n+1)

Adder/subtrator

Adder/subtrator

l

y(n+1)

FIGURE 6: MSR-CORDIC-(Nspt = 3,1 = 2,and ] = 1) based PE structure with two-level pipeline.

Rational sequence (p)
of CORDIC

two’s complement
representation

1 (0000, 0000, 0001) 1 (0000, 0000, 0001)

| |

—1(1111,1111,1111) —1(1000, 0000, 0000)

FIGURE 7: Switch activity in two’s complement representation and
CORDIC representation.

(1) Group counter: counts the groups of butterflies;
(2) Butterfly counter: counts butterfly in a group.

The cached FFT/IFFT address generation circuit can be
viewed as a modified version of the traditional FFT. What
we need to do is to find a grouping of the memory accesses
such that a portion of the full FFT can be calculated using
less than N words of memory. Fixing the number of bits in
the group and butterfly counters, and keeping the positions
of the group counter digits fixed across a super stage allows
a subset of the FFT to be calculated in memory locations.
The Wy coefficients are generated by using the same method
that the traditional FFT uses, except that the new group and
butterfly mappings are used.

Similar to the traditional FFT case, we can map the
above derivations into hardware realization by using an outer
counter and inner counter. The former responds to the main
memory address and the latter is to calculate the cache ad-
dress. In any FFT transform, the length (N) and radix (r)
must be specified. The cached FFT also requires the selec-

tion of number of super stage (E). So we define some terms,
the size N of FFT and the number r of radix-r FFT; the
number of passes per group P = log,(N/E); the cache size
C = r'°&N/E = /Nj; the number of groups per super stage,
g = N/C; the number of butterflies per pass b = C/r. Then
the generalized form of memory and coefficient addresses
for cached FFT [9] can be realized with some parameters.
In order to perform (64-2048)-point FFT successfully, we
choose the radix = 2. The radix-2 FFT can perform 64, 128,
256,512, 1024, and 2048-point operations without any mod-
ification in the FFT hardware architecture. However, other
radices FFT cannot perform all these points operations. For
example, the radix-4 FFT can just perform 64, 256, and 1024-
point FFT operations and cannot meet the specification of
OFDM applications. Table 2 illustrates the address generated
by AG for the 64-point radix-2 FFT.

4.2. Variable-length cached FFT/IFFT
address generation

In order to achieve the address for the need of various point
FFT operations, we will use the methodology of the address
shared with the discarding operation. It means that the lower
point FFT operations will discard some digits of the gener-
ated address and then share the rest of the generated address
in the highest FFT operations. We just need to design the sin-
gle address generator for the highest point FFT operations.
For example, x[0], x[1],...,x[7] in Figure 8 is the data ac-
cessed from memory, and X[0], X[1],..., X[7] is the corre-
sponding operated data after FFT operations. It is obvious
that the hardware operating x[0], x[2], x[4], and x[6] in 8-
point FFT is as the same as the hardware in 4-point FFT. If
we discard the LSB digit in the generated address of the 8-
point FFT processor in Figure 8a, the final address for the
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TABLE 2: Memory and coefficient addresses for a 64-point, r = 2, and E = 2 cached FFT.

Super stage (E) Pass Memory address Cache address ROM address
0 bs by bs by by by by by by 00000
1 bs by bs by by by by by by by0000
2 bs by bs by by by bo by by b1 b 000
0 by by by bs by bs by by by bs by b3 00
1 by bo by bs by bs by by by bo bs by b3 0
2 bo by by bs by bs bo by by by bg bs by bs

[000] x[0] © Q

(100] x[4] ©

[010] x[2] ©

(110] x[6] O

[001] x[1] ©

(101] x[5] ©

[011] x[3] ©

[111] x[7] ©

[00] x[0] O©

(10] x[2] O

[01] x[1] ©

(11] x[3] O

()
O X[1]
v -1
Wy
WZ
:><Z NS \ X[0]
W -1

FIGURE 8: (a) The generated address in 8-point FFT. (b) The generated address after discarding the LSB in 4-point FFT.

4.3. Control Logic Unit (CLU) design
The topmost CLU is composed of the following individual

4-point FFT in Figure 8b can be generated. In the variable-
length FFT processor, one addresses that the generator of the
2048-point FFT is necessary. Then we will discard some LSB
digits depending on the operating FFT size.

(1) FFT/IFFT operation selection: there is a 1-bit input
which determines that the FFT or the IFFT transform
should be computed. This will affect the coefficient de-
sign and is described in Section 5.

(2) FFT size selection: 3-bit FFT size selecting inputs de-
cides which length of the FFT should be calculated.
The size options include 64, 128, 256, 512, 1024, and

2048-point operations.
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Cache read | MSR-CORDIC 1 | MSR-CORDIC 2

MSR-CORDIC 3 | add/sub | Cache write

FIGURE 9: Six-stage cache-PE-cache pipelining scheme.

(3) Data movement: the processing kernel, PE, and cache
main memory can operate at different frequency to
further reduce the power consumption.

(4) Pipeline of PE: because the state of the FFT proces-
sor is independent of datum values, a deeply pipelined
FFT processor is much less sensitive to pipeline haz-
ards than general-purpose processor. Therefore, the
clock speed and throughput rate can be dramati-
cally increased with deeper pipelines. We have two-
level pipeline, cache-PE-cache, and memory-cache-
memory, as discussed below.

Cache-PE-cache pipeline

We have six-stage pipeline as shown in Figure 9. In the first
stage, the input operands are read form the appropriate cache
set and coefficient from ROM. Stages two to four are the
three-stage CORDIC computation. Stage five will calculate
the addition/subtract operation. The final stage will write
back the result to the cache.

Memory-cache-memory pipeline

The cached FFT architecture significantly reduces the re-
quired movement of data to and from the main memory.
The main memory arrays can be accessed at low frequency
or with idle cycles. The cache is read in the first C stages
and the data is written in the main memory. In the second
C stages, the operation is the reverse operations of cache-
memory pipeline.

5. FIXED-POINT SIMULATION

The FFT/IFFT processor is designed to perform various
lengths of FFT/IFFT operations. For finite word-length def-
inition, we have to do fixed-point simulation in the worst
case. Based on the specification of OFDM system, the 8192-
point FFT will suffer the largest quantization error as it has
the most fixed-point calculation. Thus, we will perform sys-
tem simulations to decide the finite word length of the hard-
ware implementation with 8192-point FFT/IFFT operations.
However, there are different channels and specifications for
various OFDM applications and the channel models are usu-
ally not available. Therefore, we will consider the channel
with only additive white Gaussian noise (AWGN). We will
also refer to some academic and commercial works to choose
parameter to decide the final word length. The simulation
environment is shown in Figure 10. The transmitters are usu-
ally defined in the standards and have loose requirement than
the receivers. Hence, we will only consider the FFT part in the
receiver side. First, the signal x(¢) passes through the IFFT
block and then through the channel with AWGN. The above

Channel
AWGN

IFFT

|

|

| FFT
(floating point) [ |

|

|

|

|

(fixed point)

Fe———-—-

Transmitter

Ficure 10: Fixed-point simulation environment.
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SNR =40dB

40

SNR =30dB
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SNR =20dB
20
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SNR=10dB

0 2 4 6 8 10 12 14 16
Word length

FiGure 11: Fixed-point simulation of data word length.

operations have floating point precision. In the receiver side,
the receiver signal is cut to B bits and performs the fixed-
point FFT calculation.

We perform the system simulation of 8192-point FFT
and then get the relationship between the output signal-to-
noise ratio (SNR) and word length B, as shown in Figure 11.
It is obvious that the FFT needs wider data word length
when the signal-to-channel noise is better. That is because
the quantization noise effect will become more important if
the signal-to-channel noise is better. In the worst case of the
signal to channel noise, 40 dBc, the 16-bit wide data word
length can meet the requirement with 2-bit design margins.
However, in the DVB-T receiver designs [17, 18, 19], the 16-
bit wide data word length is adopted. Hence, we will choose
the data word length as 16-bit wide. Figure 12 is the re-
lationship between the coefficient word length and output
SNR. The 12-bit coefficient word length could be a suit-
able implementation parameter. After referring to the de-
signs [17, 18, 19], we choose the coefficient word length as
12-bit wide.
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TaBLE 3: Implementation results of the variable-length FFT proces-
SOr.

Technology TSMC 0.35 yum 1P4M CMOS
Voltage 3.3V

Word length 16 bits

Gate counts 14,732

Memory 2 % 1024 Word SRAM (32 bits)
Die size 3.9 X 3.9 mm?

Core size 2.6 X 2.6 mm?

Max frequency 80 MHz

Power range 126-574 mW

Power range per MHz 9.56-10.8 mW/MHz

8192-point FFT

40

30

20

Output SNR (dB)

10

0 . . . . . . .
0 2 4 6 8 10 12 14 16

Word length

Fi1GuUre 12: Fixed-point simulation of coefficient word length.

6. IMPLEMENTATION RESULT AND COMPARISON

The prototype FFT/IFFT processor is implemented with
TSMC 0.35um 1P4M CMOS technology. The die area is
3.9 x 3.9 mm? with 2048-word memory, each is 32 bits wide.
The power normalized by the operating frequency ranges
from 9.56 to 10.8 mW/MHz. The microphotograph of the
processor is shown in Figure 13.

Table 3 lists the implementation result of this variable-
length prototype FFT/IFFT. We can set the operating fre-
quency that is based on the execute time of OFDM applica-
tions. For example, we have to set the operating frequency to
65 MHz if we want to apply it to the 802.11a WLAN system.
The detailed information about the FFT sizes, the respective
operating frequency, and the power consumption are listed
in Table 4.

In order to eliminate the factor of different fabrication
technology, we proposed the normalize index about the chip
area and the power consumption. The first normalized in-
dex is a normalized area per FFT. Based on this normalized
area index, the chip size has to be normalized by the tech-
nology process and the FFT size. This area normalized index
can evaluate the area requirement per point FFT operation.
In this work, we will use normalized area for the FFT design

1K word SRAM

1K word SRAM

FIGURE 13: Layout of the FFT/IFFT processor.

based on 0.35 ym CMOS technology process to perform fair
comparisons. That is,

normalized area per FFT
- Area <1000,
(Technology/0.35 ym)? - FFT Size '

In addition, we also proposed the second normalized index
about the power consumption, normalized power per FFT.
Based on this normalized index, we can consider the effect of
the supply voltage, FFT sizes, and operating frequency and
then do comparisons with other FFT works very fairly, as
follows:

normalized power per FFT
7
- Power « 1000, )
(Voltage)? - (FFT Size) - Frequency

According to these two normalize indexes, we compare
the proposed scheme with several existing FFT designs in
Table 5. As we can see, the area requirement and power con-
sumption for this work is lower than the works of Baas [9]
and Hui et al. [20]. On the other hand, the variable-length
FFT/IFFT prototype processor can work at higher operating
frequency than the works by Bidet etal. [17] and Jia et al. [21]
and can meet various specifications in OFDM applications. It
means that we can apply it on the multimode/multistandard
OFDM communication systems under the very low imple-
mentation cost.

7. CONCLUSIONS

The OFDM technique is really very important in many
wired and wireless communication systems. In order to im-
plement the multimode/multistandard OFDM communica-
tion systems, we design and implement the variable-length
FFT/IFFT processor. For the consideration of low-power
consumption, we choose cached-memory architecture and
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TaBLE 4: FFT size, Trer, frequency, power consumption, and power efficiency.

Application WLAN (IEEE 802.11a) ADSL, VDSL, DAB VDSL, DAB VDSL, DAB, DVB-T
FFT Size (point) 64 512 1024 2048

Trer (ps) 3.2 62 128 224
Operating frequency (MHz) 65 12.5 25 60

Power consumption (mW) 545 126 253 574

4Simulated results are based on 4K-word embedded SRAM.

TasLE 5: Comparison of various FFT/IFFT processors.

Processor CMOS tech. (um)  FFT size (points)  Freq. (MHz) Area (mm?) EZ;IEZ?;?F ch?vfrIg‘a::::(;FT Multimode
This Work 0.35 64-2048 60 15.21 7.43 4.67 Yes

Baas [9] 0.6 1024 173 42.88 14.25 4.76 No
Bidet et al. [17] 0.5 8192 20 100 5.98 3.67 No
Colin [20] 0.6 64 36 62.4 331.77 434.03 No
Lihong [21] 0.6 8192 20 140 5.82 3.97 No
then we define the hardware architecture. We also adopted [5] S.Hara, M. Mouri, M. Okada, and N. Morinaga, “Transmis-

the newly proposed MSR-CORDIC algorithm to improve
the rotation number and quantization noise for PE design
without scaling operations. Moreover, the PE designs can
have the low cost and low power of the advantage. The CLU
and AG designs can control the number of points (64—2048)
that FFT operations will perform. Finally, the variable-length
FFT/IFFT processor is implemented with TSMC 0.35uym
CMOS technology process. The chip size is 15.21 mm? and
power consumption ranges between 126-574 mW based on
the operating points. The post-layout simulation results
show that the variable-length prototype FFT/IFFT can han-
dle 64-2048-point OFDM communication systems success-
fully.
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