
EURASIP Journal on Applied Signal Processing 2004:3, 393–411
c© 2004 Hindawi Publishing Corporation

Soft and Joint Source-Channel Decoding
of Quasi-Arithmetic Codes

Thomas Guionnet
Projet TEMICS, IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
Email: thomas.guionnet@irisa.fr

Christine Guillemot
Projet TEMICS, IRISA-INRIA, Campus Universitaire de Beaulieu, 35042 Rennes Cedex, France
Email: christine.guillemot@irisa.fr

Received 20 November 2002; Revised 7 August 2003; Recommended for Publication by Antonio Ortega

The issue of robust and joint source-channel decoding of quasi-arithmetic codes is addressed. Quasi-arithmetic coding is a reduced
precision and complexity implementation of arithmetic coding. This amounts to approximating the distribution of the source.
The approximation of the source distribution leads to the introduction of redundancy that can be exploited for robust decoding in
presence of transmission errors. Hence, this approximation controls both the trade-off between compression efficiency and com-
plexity and at the same time the redundancy (excess rate) introduced by this suboptimality. This paper provides first a state model
of a quasi-arithmetic coder and decoder for binary and M-ary sources. The design of an error-resilient soft decoding algorithm
follows quite naturally. The compression efficiency of quasi-arithmetic codes allows to add extra redundancy in the form of mark-
ers designed specifically to prevent desynchronization. The algorithm is directly amenable for iterative source-channel decoding
in the spirit of serial turbo codes. The coding and decoding algorithms have been tested for a wide range of channel signal-to-
noise ratios (SNRs). Experimental results reveal improved symbol error rate (SER) and SNR performances against Huffman and
optimal arithmetic codes.

Keywords and phrases: robust arithmetic and quasi-arithmetic coding, joint source-channel coding, soft decoding, estimation,
MAP.

1. INTRODUCTION

Entropy coding, producing variable length codewords
(VLCs), is a core component of any data compression
scheme. However, VLCs are very sensitive to channel noise:
when some bits are altered by the channel, synchroniza-
tion losses can occur at the receiver, the position of symbol
boundaries are not properly estimated, leading to dramatic
symbol error rates (SERs). This phenomenon has given mo-
mentum to extensive work on the design of procedures for
soft decoding and joint source-channel decoding of VLCs.
Soft VLC decoding ideas, exploiting residual source redun-
dancy (the so-called excess rate), have also been shown to
reduce the “desynchronization” effect as well as the resid-
ual bit error rate and SER [1, 2, 3]. Models incorporating
both VLC-encoded sources and channel codes (CCs) have
also been considered [4, 5, 6, 7].

The research effort has first focused on Huffman codes
[3, 4, 5, 8] and on reversible VLCs [6, 9, 10]. However,
arithmetic codes have gained increased popularity in practi-

cal systems, including JPEG2000, H.264, and MPEG-4 stan-
dards. Arithmetic coding allows to decouple the coding pro-
cess from the source model, hence can be used in conjunc-
tion with any probabilistic model. A good statistical model of
the source is a key element to obtain maximum compression
performance. However, the counterpart to the high compres-
sion efficiency is an increased sensitivity to noise: a single bit
error causes the internal decoder state to be in error. Meth-
ods considered to fight against noise sensitivity consist usu-
ally in reaugmenting the redundancy of the bit stream ei-
ther by introducing an error-correcting code or by insert-
ing dedicated patterns in the chain. Along those lines, the
author in [11] reintroduces redundancy in the form of par-
ity check bits embedded into the arithmetic coding proce-
dure. A probability interval not assigned to a symbol of the
source alphabet or markers inserted at known positions in
the sequence of symbols to be encoded are exploited for er-
ror detection in [12, 13, 14]. This capability can then be cou-
pled with an automatic request for retransmission (ARQ)
procedure [13, 15] or used jointly with an error-correcting

mailto:thomas.guionnet@irisa.fr
mailto:christine.guillemot@irisa.fr

394 EURASIP Journal on Applied Signal Processing

code [16]. Sequential decoding of arithmetic codes is inves-
tigated in [17] for supporting error correction capabilities.
The complexity of this approach is reduced in [18] by us-
ing trellis-coded modulation combined with a list Viterbi de-
coding algorithm. A soft decoding procedure is described in
[19]. However, one difficulty comes from the fact that the
code tree, hence the state-space dimension, or the number
of states of the model grows exponentially with the number
of symbols being encoded. A pruning technique is then used
to limit the complexity within a tractable and realistic range.
However, it brings inherent limitations when using the de-
coder in an iterative source-channel decoding structure. The
pruning of the tree to limit the complexity is such that, in
this particular case, the iterations do not bring a significant
gain.

A fast arithmetic coding procedure called quasi-arith-
metic coding has been introduced in [20]. It operates on an
integer interval [0,T[and on integer subdivisions of this in-
terval. This amounts to approximate the source distribution.
This controlled approximation allows to reduce the number
of possible coder states without significantly degrading the
compression performance. The trade-off between the state-
space dimension and the source distribution approximation
is controlled by the parameter T . If T is sufficiently small,
all state transitions and outputs can then be precomputed
and table lookups be in turn substituted for arithmetic oper-
ations. A quasi-arithmetic coder can be regarded as an arith-
metic coder governed by an approximation of the real source
distribution.

In this paper, we first revisit finite-state automaton mod-
eling of quasi-arithmetic coding and decoding processes for
M-ary sources. Notice that theM-ary source could be coded
directly with a quasi-arithmetic coder. An accurate approxi-
mation of the M-ary source distribution would however re-
quire to set the parameter T to a high value, resulting in a
high state-space dimension, hence in high decoding com-
plexity. To maintain the complexity within a tractable range,
one would have to rely on a very coarse source distribu-
tion approximation. One can instead first map the M-ary
source model into a binary model by means of a fixed-length
binary code represented as a binary tree with symbols at the
leaves. These trees are connected up to a depth function of
the source model (e.g., for an order-1 Markov source, the
depth is one). Leaves of the tree represent terminated sym-
bols and are identified with the root of the next tree. The
resulting finite binary tree can be regarded as a stochastic au-
tomaton that models the source symbol distribution. Once
the M-ary source has been converted into a binary source,
the latter can be encoded by a quasi-arithmetic coder. The
transitions on the binary model govern the quasi-arithmetic
coder. The design of an efficient estimation procedure based
on the BCJR algorithm [21] follows quite naturally. The de-
coding complexity remains within a realistic range without
the need for applying any pruning of the estimation trellis.
The estimation algorithm has been validated under various
channel conditions and for different levels of source corre-
lation. Experimental results have shown very high error re-
silience while at the same time preserving a very good com-

pression efficiency. For a comparable overall rate, in compar-
ison with Huffman codes, better compression efficiency of
quasi-arithmetic codes allows to dedicate extra redundancy
(short “soft” synchronization patterns) specifically to de-
coder resynchronization, resulting in significantly higher er-
ror resilience. The usage of CCs is also considered in order to
reduce the bit error rate seen by the source estimation algo-
rithm. The latter can then be placed in an iterative decoding
structure in the spirit of serially concatenated turbo codes,
provided that the channel decoder and the quasi-arithmetic
decoder are separated by an interleaver. Since, in contrast
with optimal arithmetic coding, the estimation can be per-
formed without pruning the trellis, the potential of the iter-
ative decoding structure can be fully exploited, resulting in a
very low SER (significantly lower than what can be obtained
with Huffman codes). Overall, the great flexibility that quasi-
arithmetic codes offer for adjusting compression efficiency,
error resilience, and complexity allows an optimal adapta-
tion to various transmission conditions and terminal capa-
bility requirements.

The rest of the paper is organized as follows. Section 2
describes the notations we use and states the problem ad-
dressed. Sections 3 and 4 review the principles of arithmetic
and quasi-arithmetic coding. Sections 5 and 6 address mod-
eling issues of, respectively, coding/decoding processes and of
the source. This material is exploited in the sequel (Sections
7 and 8) for explaining the estimation algorithm and the soft
synchronization procedure. Section 9 outlines the construc-
tion of the iterative joint source-channel decoding procedure
based on quasi-arithmetic codes. Finally, experimental re-
sults are described in Section 10.We first compare the perfor-
mance of the algorithm in terms of SER and signal-to-noise
ratio (SNR) with respect to soft Huffman and arithmetic de-
coding with theoretical Gauss-Markov sources. Simulations
results of the joint source-channel turbo decoding algorithm
in comparison with soft decoding of quasi-arithmetic codes
are also provided.

2. NOTATIONS AND PROBLEM STATEMENT

Let A = A1 · · ·AL be a sequence of quantized source sym-
bols taking their values in a finite alphabet � composed of
M = 2q symbols, � = {a1, a2, . . . , ai, . . . , aM}. The sequence
A = A1 · · ·AL is assumed to form an order-1 Markov chain.
This sequence ofM-ary symbols is converted into a sequence
of binary symbols S = S1 · · · SK , where K = q × L. This bi-
nary source is in turn coded into a sequence of information
bits U = U1 · · ·UN by means of a quasi-arithmetic coder
as depicted in Figure 1. The length N of the information bit
stream is a random-variable function of S, hence of A. The
bit stream U is sent over a memoryless channel and received
as measurements Y ; so the problem we address consists in
estimating A, given the observed values y. Notice that we re-
serve capital letters to random variables and small letters to
values of these variables. For handling ranges of variables, we
use the notation Xv

u = {Xu,Xu+1, . . . ,Xv} or X̄I , where I is the
index set {u,u + 1, . . . , v}.

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 395

M-ary source

A = A1 · · ·AL

M-ary to
binary source
conversion

Binary source

S = S1 · · · SK
Quasi-

arithmetic
coding

Coded bit stream

U = U1 · · ·UN

Figure 1: Conversions taking place in the coding chain.

3. ARITHMETIC CODING PRINCIPLES

We first review the principle of arithmetic coding on a
simple example of a source taking values in the alpha-
bet {a1, a2, a3, a4} with the stationary distribution Pa =
[0.6, 0.2, 0.1, 0.1]. The interval [0, 1[is partitioned into four
cells representing the four symbols of the alphabet. The size
of each cell is the stationary probability of the correspond-
ing symbol. The partition (hence the bounds of the differ-
ent segments) of the unit interval is given by the cumula-
tive stationary probability of the alphabet symbols. The in-
terval corresponding to the first symbol to be encoded is
chosen. It becomes the current interval and is again parti-
tioned into different segments. The bounds of the resulting
segments are driven by the model of the source. Consider-
ing an order-1 Markov chain, these bounds will be governed
by P(Al+1|Al), hence, in this particular case, will be function
of both the probability of the previous symbol and of the
cumulative probability of the alphabet symbols. Therefore,
the arithmetic coder adapts in this case to the entropy rate
H(Al+1|Al) of process A, that is, it compresses the innova-
tion of the Markov chain A.

In the example above, when the sequence a1, a4, a2, a1
has been encoded, the current interval is [0.576, 0.5832[. Any
number in this interval can be used to identify the sequence.
We consider 0.576. The decoding of the sequence is per-
formed by reproducing the coder behavior. First, the interval
[0, 1[is partitioned according to the cumulative probability
of the source. Since the value 0.576 belongs to the interval
[0, 0.6[, it is clear that the first symbol encoded has been a1.
Therefore, the first symbol is decoded and the interval [0, 0.6[
is partitioned according to the cumulative probability of the
source. The process is repeated until full decoding of the se-
quence. Practical implementations of arithmetic coding have
been first introduced in [22, 23] and developed further in
[24]. One problem that may arise when implementing arith-
metic coding is the high precision needed to represent very
small real numbers. In order to overcome this difficulty, one
can base the algorithm on the binary representation of real
numbers in the interval [0, 1[(see [25]). Any number in the
interval [0, 0.5[will have its first bit equal to 0, while any
number in the interval [0.5, 1[will have its first bit equal to 1.
Therefore, during the encoding process, as soon as the cur-
rent interval is entirely under or over 1/2, the corresponding
bit is emitted and the interval length is doubled. There is a
specific treatment for the intervals straddling 1/2. When the
current interval straddles 1/2 and is in [0.25, 0.75[, it can-
not be identified by a unique bit. Its size is therefore doubled
without emitting any bit, and the number of rescaling op-
erations taking place before emitting any bit is memorized.
When reaching an interval for which one bit Ui = ui can be

emitted, then this bit will be followed by a number of bits
Ui+1 = ui+1 · · ·Ui+n = ui+1, where n is the number of scal-
ing operations that have been performed before the emis-
sion of Ui, and where ui+1 = ui + 1mod2. The use of this
technique guarantees that the current interval always satisfies
low < 0.25 < 0.5 ≤ high or low < 0.5 < 0.75 ≤ high, where
low and high are, respectively, the lower and upper bounds
of the current interval. This avoids the problems of preci-
sion which may otherwise occur in the case of small intervals
straddling the middle of the segment [0, 1[.

4. FAST-REDUCED PRECISION IMPLEMENTATION

Arithmetic coding is near optimality in terms of compres-
sion. Error-resilient decoding solutions can be designed [19],
however, their complexity can be an issue in some contexts.
The coding process can indeed bemodeled under the form of
a stochastic automaton, where the states are defined by three
variables: low, up (denoting the bounds of the subinterval
resulting from successive subdivisions of the interval [0, 1[),
and n scl denoting the number of scalings performed since
the last emitted bit, as explained in Section 3. Subdivisions
of the interval [low, up[, hence next states, are functions of
the cumulative probability distribution of the source. With-
out the source model, the possible number of subdivisions,
hence of states, may be infinite. If the source distribution is
known, the number of states still grows exponentially with
the number of symbols being encoded.

4.1. Quasi-arithmetic coding

It is observed in [20] that controlled approximations can
reduce the number of possible states without significantly
degrading compression performance. All state transitions
and outputs can then be precomputed and table lookups
can be used instead of arithmetic operations. This fast, but
reduced precision, implementation of arithmetic coding is
called quasi-arithmetic coding [20]. Instead of using the real
interval [0, 1[, quasi-arithmetic coding is performed on an
integer interval [0,T[. The value of T controls the trade-off
between complexity and compression efficiency: if T is suffi-
ciently large, then the interval subdivisions will follow closely
the distribution of the source. In contrast, if T is small, all the
interval subdivisions can be precomputed.

Given the M-symbol alphabet �, the sequence of sym-
bols AL

1 is translated into a sequence of bits UN
1 by anM-ary

decision tree. This tree can be regarded as an automaton that
models the bit stream distribution. The encoding of a sym-
bol determines the choice of a vertex or branch in the tree.
Each node of the tree identifies a state X of the arithmetic
coder and to each transition can be associated the emission
of a sequence of bits of variable lengths. Successive branching

396 EURASIP Journal on Applied Signal Processing

Table 1: Quasi-arithmetic coder states, transitions, and outputs for T = 4.

Normal state model Simplified state model

State Xl [lowAl, upAl[P(0) (corresponding interval subdivision) 0 1 MPS LPS

Out Next Out Next Out Next Out Next

0 (start) [0, 4[
0.63 ≤ P(0) ([0, 3[) — 1 11 0 — 1 11 0

0.37 ≤ P(0) < 0.63 ([0, 2[) 0 0 1 0 0 0 1 0

P(0) < 0.37 ([0, 1[) 00 0 — 2 — — — —

1 [0, 3[
0.5 ≤ P(0) ([0, 2[) 0 0 10 0 0 0 10 0

P(0) < 0.5 ([0, 1[) 00 0 f 0 — — — —

2 [1, 4[
0.5 ≤ P(0) ([1, 3[) f 0 11 0 — — — —

P(0) < 0.5 ([1, 2[) 01 0 1 0 — — — —

on the tree (or transitions between states) follow the dis-
tribution of the source (P(Al|Al−1) for an order-1 Markov
source or P(Al) in the zeroth-order case). Let Xl denote the
state of the automaton at each symbol instant l. As in the
case of optimal arithmetic coding, the state Xl of the quasi-
arithmetic coder is defined by three variables: lowAl, upAl,
and n scll. The terms lowAl and upAl denote the bounds of
the subinterval resulting from successive subdivisions of the
interval [0,T[triggered by the encoding of the sequence Al

1.
The quantity n scll is (re)set to zero when a bit is emitted and
incremented each time a rescaling takes place. Hence, this
quantity denotes the number of scalings performed since the
last emitted bit. When a bit is emitted, it is followed by n scll
bits of opposite value (see Section 3).

Since there is a finite number of possible integer sub-
divisions of the interval [0,T[, all the possible states of the
quasi-arithmetic coder can be precomputed without knowl-
edge of the source. This is however without accounting for
the variable n scll. Indeed, the variable n scll is not bounded.
The solution is then to consider n scll as a variable result-
ing from state transitions (output variable) and not to con-
sider this variable in the precomputation of the coder states.
Table 1 gives the states, outputs, and all possible transitions
of a quasi-arithmetic coder precomputed for a binary source
with T = 4. The value of the variable n scll is not consid-
ered in this state model. Only the action of incrementing this
variable when a rescaling is taking place is signalled by the
letter f in the table, also referred to as follow up in [26]. The
coder has three states corresponding to integer subdivisions
of the interval [0, 4[. The subdivisions that can possibly take
place next are functions of the source probability distribu-
tion. They are chosen in such a way that the correspond-
ing distribution approximation will minimize the excess rate
[26]. For example, we assume that the automaton is in state
Xl = 1 (defined by the interval [lowAl, upAl[= [0, 3[).
Depending on the probability of the input binary symbol
0, the interval [0, 3[will be further subdivided into [0, 2[
corresponding to an approximated probability of 2/3 if its
probability is higher than 1/2, or into [0, 1[corresponding
to an approximated probability of 1/3 if its probability is
lower than 1/2. Both subdivisions result, after appropriate bit
emission and scaling, into the state 0. The number of possi-

ble states Xl is 3T2/16. If we take into account the different
source distributions, the number of possible transitions from
all the states Xl is 9T3/64− 6T2/32 + T/4.

The number of states can be further reduced by identify-
ing the symbols as more probable (MPS) and less probable
(LPS) rather than as 1 and 0. This amounts to reducing the
number of possible combinations of the binary source prob-
abilities, the MPS being either the symbol 0 or the symbol
1. This allows to combine transitions and eliminate states as
shown in Table 1. The sequence X0 · · ·XL is a Markov chain
and the output of the coder is the function of transitions of
this chain. This state representation can help designing a ro-
bust maximum a posteriori (MAP) decoder. For a deeper un-
derstanding of quasi-arithmetic coding, the reader may refer
to [20].

4.2. Quasi-arithmetic decoding

We first consider the operation of an optimum arithmetic
decoder. A sequence of arithmetically coded bitsUN

1 is trans-
lated into a sequence of symbols AL

1 by a binary decision
tree. Each bit determines the choice of a vertex in the tree.
Each node ν of the tree identifies a state of the arithmetic
decoder and corresponds to a tuple Un−1

1 from which two
transitions are possible: Un = 0 or Un = 1. The state of
the decoder is specified by two intervals: [lowUn, upUn[and
[lowALn , upALn[. The interval [lowUn, upUn[defines the
segment of the interval [0, 1[selected by a given input bit se-
quence Un

1 . The interval [lowALn , upALn[relates to the sub-
division obtained when the symbolALn can be decoded with-
out ambiguity. Both intervals must be scaled appropriately
in order to avoid numerical precision problems. However, in
contrast to the coding process, there is no need to keep track
of the scalings that have been performed.

We now consider the interval [0,T[and finite interval
subdivisions. The quasi-arithmetic decoder can also be ex-
pressed in the form of an automaton. Let Xn be its state
at bit instant n; Xn stores the four variables [lowUn, upUn[
and [lowALn , upALn[. Since there is a finite number of pos-
sible subdivisions of the interval [0,T[, there is a finite num-
ber of states for the quasi-arithmetic decoder which can be
pre-computed. Table 2 gives the states, transitions, and out-
puts of the quasi-arithmetic decoder for a binary source

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 397

Table 2: Quasi-arithmetic decoder states, transitions, and outputs for T = 4.

State Xn State variables P(MPS) (corresponding subdivision of [lowALn , upALn[)
Un = 0 Un = 1

Out Next Out Next

0 (start)
[lowUn, upUn[=[0, 4[0.63 ≤ P(MPS) ([0, 3[) MPS, MPS 0 — 1

[lowALn , upALn[=[0, 4[0.37 ≤ P(MPS) < 0.63 ([0, 2[) MPS 0 LPS 0

1
[lowUn, upUn[=[2, 4[0.63 ≤ P(MPS) ([0, 3[) MPS, LPS 0 LPS 0
[lowALn , upALn[=[0, 4[

and T = 4, with the MPS/LPS simplification. The decoder
in this particular example has two states. Further subdivi-
sions that will lead to transitions to next states are func-
tions of the source probability distribution (e.g., P(MPS) in
Table 2). We assume, for example, that the automaton is in
state Xn = 0 (defined by the two intervals [lowUn, upUn[=
[0, 4[and [lowALn , upALn[= [0, 4[), and that the input is
Un = 0. Depending on the probability of the source to be
coded (hence here of the MPS and LPS symbols), the inter-
val [0, 4[will be further subdivided into [0, 3[(if MPS prob-
ability is higher than 0.63) or into [0, 2[(if MPS probabil-
ity is lower than 0.63), both subdivisions resulting into the
state 0.

4.3. Source distribution approximation

Arithmetic coding realizes a conversion of source distribu-
tions: in the general case, it realizes a conversion of a se-
quence of symbols of anM-ary source of a given distribution
into a sequence of symbols of a binary source with an inde-
pendent and uniform distribution. A quasi-arithmetic coder
does not produce a sequence of independently and uniformly
distributed bits due to the approximation of the source dis-
tribution that it realizes. It has been shown in [26] that this
approximation does not induce a significant increase in code
length. This however depends on the source statistics. This
statement is true if the symbol probabilities are comprised
between 1/t and (t − 1)/t, where t is the width of the current
interval to be subdivided. Hence, the choice of the value of
T may depend on the source distribution. The excess rate re-
sulting from the approximation can be computed as follows.
Let a be a symbol taking its value in �, P(a) the probability
of the event a, and Q(a) the approximation of P(a) made by
the quasi-arithmetic coder. The entropy of the source is given
by

H = −
aM∑

a=a1
P(a) log2 P(a). (1)

The performance of the quasi-arithmetic coder can then be
measured by

R = −
aM∑

a=a1
P(a) log2Q(a). (2)

The excess rate induced by the quasi-arithmetic coder can
hence be expressed as

E = R−H

=
aM∑

a=a1
P(a) log2

P(a)
Q(a)

= D
(
P‖Q),

(3)

whereD(P‖Q) is the Kullback-Leibler distance or relative en-
tropy between the approximate distribution Q and the true
distribution P.

5. SOURCEMODEL

For a binary source, the variable T can be limited to a small
value (down to 4) at a small cost in terms of compression
[26]. This motivates a conversion of the M-ary source into
a binary source to be then encoded by the quasi-arithmetic
coder. This conversion amounts to a fixed-length binary cod-
ing of the source.

We first assume that the source quantized on M = 2q

symbols is an order-0 Markov source. It can then be repre-
sented by a binary tree of depth q, as shown in Figure 2a for
M = 4. The transition probabilities on the binary tree can be
computed easily from the distribution of the source. The re-
sulting binary tree can be seen as an automaton that models
the M-ary source stationary distribution. A complete model
of the source can be obtained by connecting the successive lo-
cal models. One possible solution consists in identifying the
leafnodes of the binary tree with the rootnode of the next
tree. This leads to the three states automaton of Figure 2b in
the particular case of an order-0 Markov source withM = 4.
In Figure 2c, the same automaton is shown in the form of a
trellis, with the probability of each bit indicated on the cor-
responding transition. Relying on this stochastic automaton
model, the sequence of the resulting binary symbols can be
modeled as a function of a hidden Markov model. Let Ck de-
note the state ν of the automaton after k binary symbols have
been produced. The sequence C0, . . . ,CK is a Markov chain,
and the resulting sequence of binary symbols is a function of
transitions of this chain, that is, Sk = φ(Ck−1,Ck).

We now assume that the source is an order-1 Markov
source. To take into account the correlation present in the
M-ary source, in the model construction, one must in addi-
tion keep track of the last M-ary symbol coded. In order to
do so, one could define the state variable Ck as a pair (ν, σ),
where σ is the value of the last completed symbol Al and
ν is the current state of the stochastic automaton describ-
ing the construction of the next M-ary symbol, following

398 EURASIP Journal on Applied Signal Processing

0

0

1

1 0

1

a1(0.1)

a2(0.4)

a3(0.4)

a4(0.4)

(a)

0

0 1

0

1

1

(b)

0(0.5)
1(0.5)

0(0.2)
1(0.8)

0(0.8)
1(0.2)

(c)

Figure 2: Graphical representation under the form of (a) a tree, (b) a stochastic automaton, and (c) a trellis of the binary model of the
order-0 Markov source. Black dots correspond to leafnodes identified to rootnodes of next trees. White dots correspond to intermediate
nodes of the binary representation of theM-ary symbols (M = 4).

0

0
a1

0

0

a2
1

1 0

1
1 0

1

a1

a2

a3

a4
a3

a4

(a)

0

0
a1

0

1
1

0

a2

1
0

1
0

a3

1

1
a4

(b)

Figure 3: Graphical representation under the form of (a) a tree and (b) a stochastic automaton of the binary model of the order-1 Markov
source (M = 4).

P(Al+1|Al). Alternately, one can take into account the con-
ditional distribution P(Al+1|Al), by connecting M + 1 trees
of depth q as shown in Figure 3a, and define the state vari-
able Ck as a node ν in the resulting tree. The complete model
of the source is then obtained by additional transitions from
leaves to intermediate nodes as shown in Figure 3b. In this
particular case, the model leads to a state space of dimension
15. The state-space dimension for an order-nMarkov source
quantized onM symbols is given byMn+1 − 1. For both state
models (Ck = (ν, σ) and Ck = (ν)), the sequence C1 · · ·CK

is a Markov process, the transitions of which produce the se-
quence S of binary symbols.

Remark 1. The construction of the binary model, that is, the
assignment of the binary codewords to the different sym-

bols, has a strong impact on the reliability of the estimation.
The transition probabilities on the binary tree are indeed
defined by this symbol-to-leave assignment. Increased esti-
mation reliability can be obtained when the different paths
(or branches) on the model have a highly nonuniform like-
lihood, that is, when the uncertainty of some branches is
much lower than for others. The assignment of binary code-
words to symbols must hence be such that the expression∑

X P(X)H(X) is minimized, where P(X) is the probability
of the state X of the model and where H(X) is the entropy
of the transitions leaving X . For small source alphabets, the
minimization can be achieved by a simple exhaustive search
approach. However, for larger size alphabets, the exhaustive
search among all possible index assignments rapidly becomes
untractable. This complexity can be reduced by limiting the

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 399

search space to a subset of index assignments. In the experi-
ments reported here, this subset has been obtained by a sim-
ple circular shift of an initial index assignment. This initial-
ization has an impact on the resulting SER and SNR perfor-
mances. A lexicographic index assignment to symbols ranked
by decreasing probability values turned out to provide good
performance.

6. MODELING BIT STREAMDEPENDENCIES

In order to design efficient algorithms for estimating the se-
quence of symbols that has been emitted, one has now to
build a model of bit stream dependencies. For this, we con-
sider the product (in the sense of product on automata or of
tensor product of stochastic models) of the source and coder
or source and decoder models. Estimation algorithms can be
defined for both models. However, in Section 7, the estima-
tion is performed only on the product of the source and de-
coder models, since with the source and coder models, han-
dling the n sclk variable can increase dramatically the number
of states. For the source, in the sequel, we consider the binary
source model described in Section 5.

6.1. Productmodel: source and coder

The state of the product system must gather state informa-
tion of two automata: the automaton modeling the source
distribution and the coder model. Hence, the state Xk of the
product system is defined as Xk = (low Sk, up Sk,Ck). One
could expect the dimension of the resulting state space to
be the product of dimensions of the states spaces of the two
models (source and coder). However, simplifications occur.
Again, this is better explained with the simple source and
coder examples of Table 1 and Figure 2.

The system resulting from the product of the coder of
Table 1 and the order-0 Markov source model of Figure 2c
is illustrated in Table 3 and Figure 4, respectively. For T = 4
and using the MPS/LPS simplification, the transitions do not
lead to rescalings of the interval [low Sk, up Sk[. For different
values of T , rescaling of the interval could occur and would
then be signaled with the same notation f as in Table 1. Since
the coder model has 2 states and the binary source model has
3 states, the dimension of the resulting state space should in
principle be 6. However, it turns out that in general, fewer
states are necessary (only 4 states instead of 6 in the sim-
ple coder and source examples of Table 1 and Figure 2). This
simplification results from the fact that the transitions in the
codermodel are a function of the source probability distribu-
tion. Depending on the stationary probabilities of the input
binary source, the general coder model given in Table 1 sim-
plifies as shown in Figure 5. The probabilities of the binary
symbols resulting from the conversion of the M-ary source
depend on the previous state of the source model. Therefore,
transitions on the source model will trigger the use of one of
the two quasi-arithmetic trellis of Figure 5. In the example of
Figure 5b, it can be verified easily that some states will never
be reached, hence reducing the state-space dimension from 6
to 4.

Table 3: Source-coder product model: states, outputs, and transi-
tions.

State State Variables MPS LPS

0 (start)
[0, 4[output: 0 output: 1

C = 0 next state: 1 next state: 2

1
[0, 4[output: — output: 11

C = 1 next state: 3 next state: 0

2
[0, 4[output: — output: 11

C = 2 next state: 3 next state: 0

3
[0, 3[output: 0 output: 10

C = 0 next state: 1 next state: 2

0
MPS (0)

LPS (1)

1

LPS (11)

MPS (−)

2

LPS (11)

MPS (−)

3

MPS (0)

LPS (10)

Figure 4: Source-coder product model: trellis representation.

Xk = 0
LPS (11)

MPS (−)

Xk = 1

MPS (0)

LPS (10)

(a)

Xk = 0
MPS (0)

LPS (1)

Xk = 1

MPS (0)

LPS (10)

(b)

Figure 5: Quasi-arithmetic coder model: (a) 0.63 ≤ P(MPS) and
(b) 0.5 ≤ P(MPS) < 0.63.

In general, the state-space dimension cannot be known a
priori; it must be computed, given T and the binary source
model. If NC is the number of states of the binary source
model, the maximum number of states is 3T2NC/16.

The number of bits produced by each transition on
the above model being random, the structure of dependen-
cies between the sequence of measurements and the model
states is random. In order to capture this randomness, we
actually consider the augmented Markov chain (X ,N) =
(X1,N1) · · · (XK ,NK). This yields the structure of depen-
dencies graphically depicted in Figure 6. Using this model,
a sequence of binary symbols SK1 is translated into a se-
quence of bits UNK

1 , where NK is the number of bits emit-
ted when K symbols have been encoded. Given a state Xk

and an input symbol Sk+1, the automaton specifies the bits

400 EURASIP Journal on Applied Signal Processing

S1 S2

(X0, N0) (X1, N1) (X2, N2)

Ū1 Ū2

Ȳ1 Ȳ2

· · ·

Sk

(Xk,Nk)

Ūk

UNk−1+1 · · · UNk

YNk−1+1
· · ·

YNk

· · ·

SK

(XK ,NK)

ŪK

ȲK

Figure 6: Source-coder product model (Nk ≥ Nk−1). White and black dots represent, respectively, the hidden and observed variables.

Ūk+1 = UNk+1
Nk+1 that have to be emitted and the next state

Xk+1. Notice that no bits may be emitted by a transition. The
probabilities of successive branchings (e.g., of transitions be-
tween (Xk,Nk) = (low Sk, up Sk,Ck,Nk) and (Xk+1,Nk+1) =
(low Sk+1, up Sk+1,Ck+1,Nk+1)) in the trellis are given by the
binary source model, that is, P(Ck+1|Ck) = P(Sk+1|Ck). Mea-
surements Ȳk on the bits Ūk are gathered at the output of the
transmission channel.

6.2. Productmodel: source and decoder

A product model of source and decoder can be con-
structed similarly. The state of the product system must
gather state information of the source and decoder mod-
els. Hence, the state Xn of the product system is defined as
Xn = (lowUn, upUn, low SKn , up SKn ,CKn). The system re-
sulting from the product of the decoder of Table 2 and the
simple source model of Figure 2c is illustrated in Table 4 and
Figure 7, respectively. Again, the state space dimension de-
pends on the coder precision parametrized by T and of the
source model.

The number of symbols being produced by each tran-
sition on the above model is random. Therefore, the struc-
ture of dependencies between the sequence of measure-
ments and the sequence of decoded symbols is random.
This is handled by considering the augmented Markov chain
(X ,K) = (X1,K1) · · · (XN ,KN) with the structure of depen-
dencies graphically depicted in Figure 8. Using this model,
a sequence of bits UN

1 is translated into a sequence of sym-
bols SKN

1 , where KN is the number of symbols decoded when
N bits have been received. Given a state Xn and an input
bit Un+1, the automaton produces the sequence of symbols
S̄n+1 = SKn+1

Kn+1 and the next state Xn+1. The probabilities of suc-
cessive branchings (i.e., of transitions between (Xn,Kn) and
(Xn+1,Kn+1)) in the trellis depend on the binary sourcemodel
and are given by

Kn+1∏

k=Kn+1

P
(
Sk|Ck−1

)
. (4)

Table 4: Source-decoder product model: states, outputs, and tran-
sitions.

State State variables 0 1

0 (start)

[0, 4[
output: MPS output: LPS

[0, 4[
next state: 1 next state: 2

C = 0

1

[0, 4[
output: MPS, MPS output: —

[0, 4[
next state: 1 next state: 3

C = 1

2

[0, 4[
output: MPS, MPS output: —

[0, 4[
next state: 1 next state: 4

C = 2

3

[2, 4[
output: MPS, LPS output: LPS

[0, 4[
next state: 2 next state: 0

C = 1

4

[2, 4[
output: MPS, LPS output: LPS

[0, 4[
next state: 2 next state: 0

C = 2

0 0 (MPS)

1 (LPS)

1
0 (MPS, MPS)

1(−)

2
0 (MPS, MPS)

1(−)

3
1 (LPS)

0 (MPS, LPS)

4

1 (LPS)
0 (MPS, LPS)

Figure 7: Source-decoder product model: trellis representation.

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 401

SK1
1 SK2

K1+1

(X0, K0) (X1, K1) (X2, K2)

U1 U2

Y1 Y2

· · ·

SKn
Kn−1+1

(Xn,Kn)

Un

Yn

· · ·

S
KN
KN−1+1

(XN ,KN)

UN

YN

Figure 8: Source-decoder product model. White and black dots represent, respectively, the hidden and observed variables.

6.3. Source distribution approximation

The entropy of the M-ary source computed on the binary
model in Section 6 (e.g., Figure 2c) is given by

H
(
S|C) = −

NC−1∑

c=0
P(c)

∑

s=0,1
P
(
s|c) log2 P

(
s|c), (5)

where C denotes the state variable of the source model, c
the indices of the possible values it can take, and NC the di-
mension of the state space. The performance of the quasi-
arithmetic coder when applied on this binary source for a
given value of the parameter T can be measured by

R
(
S|X) = −

NX−1∑

x=0
P(x)

∑

s=0,1
P
(
s|x) log2Q

(
s|x), (6)

where X denotes the state variable of the product model
(source + coder), x represents the possible indices taken by
the variable X , and NX is the dimension of the state-space
function of T . The quasi-arithmetic coder realizes an approx-
imation of the distribution of the binary source, hence of the
M-ary source. This approximation is, however, for a given
value of the parameter T , more accurate than when apply-
ing the quasi-arithmetic coder directly on theM-ary source.
Here, the excess rate for a given value of T is given by

E
(
S|X) = R

(
S|X)−H

(
S|X)

=
NX−1∑

x=0
P(x)

∑

s=0,1
P
(
s|x) log2

P
(
s|x)

Q
(
s|x)

= D
(
P
(
s|x)‖Q(s|x)),

(7)

where D(P(s|x)‖Q(s|x)) is the conditional relative entropy
between theapproximate conditional distribution Q and the
true conditional distribution P. One may notice that several
states of the quasi-arithmetic coder can correspond to a given
state c of the binary source model. Hence, several different
approximationsQ(s|x) of P(s|c) can exist (see, e.g., the states
0 and 3 of Table 3). The excess rate can be considered as a
measure of the bit stream redundancy.

7. ESTIMATION ALGORITHM

The above models of dependencies can be exploited to help
the estimation of the bit stream (hence of the symbol se-
quence). The MAP estimation criterion corresponds to the
optimal Bayesian estimation of a process X , given available
measurements Y :

X̂ = argmax
x

P
(
X = x|Y). (8)

However, if the mean square error (MSE) is the perfor-
mance measure, the MAP criterion is suboptimal. The con-
ditional mean or minimum MSE (MMSE) is in this case
the optimal decoder. The decoder then seeks a sequence
of symbol reproductions that will minimize the expected
distortion, given the sequence of observations denoted by
E[D(Â,A)|Y]. These expected distortions can be computed
in a very straightforward way, given the MAP estimates, pro-
vided the probability measures on the sequence of binary
symbols S are converted into probability measures on the se-
quence ofM-ary symbols A. In Section 10, only the MAP es-
timates have been considered.

The optimization is performed over all possible sequences
x. This applies directly to the estimation of the hidden states
of the processes (X ,N) (symbol-clock model of source +
coder) and (X ,K) (bit-clock model of source + decoder),
given the sequence of measurements. The estimation is run
on the source-decoder product model in order to avoid han-
dling the n sclk variable.

Estimating the set of hidden states (X ,K) = (X1,K1) · · ·
(XN ,KN) is equivalent to estimating the associated sequence
of decoded symbols S = S1 · · · SKn · · · SKN , given the mea-
surements YN

1 at the output of the channel. The best se-
quence (X ,K) can be obtained from the local probabilities
on the pairs (Xn,Kn) by the equation

P
(
X ,K|Y) =

N∏

n=1
P
(
Xn,Kn|Y

)
. (9)

The computation of the entity P(Xn,Kn|Y) can be organized
around the factorization

P
(
Xn,Kn|Y

)∝ P
(
Xn,Kn|Yn

1

) · P(YN
n+1|Xn,Kn

)
, (10)

402 EURASIP Journal on Applied Signal Processing

where ∝ denotes a renormalization factor. The Markov
property allows a recursive computation of both terms of the
right-hand side, using the BCJR algorithm [21]. The forward
sweep concerns the first term

P
(
Xn = xn,Kn = kn|Yn

1

)

=
∑

(xn−1,kn−1)

P
(
Xn−1 = xn−1,Kn−1 = kn−1|Yn−1

1

)

· P(Xn = xn,Kn = kn|Xn−1 = xn−1,Kn−1 = kn−1
)

· P(Un = u(xn−1,kn−1)(xn,kn)|Yn
)
.

(11)

The terms on the right-hand side of the equation are, re-
spectively, the recursive term, the transition probability given
by the product model (see Section 6), and the probability
to have emitted the bit Un triggering the transition between
Xn−1 = xn−1 and Xn = xn, given the measure Yn (channel
model). The process is initialized at the starting state (0, 0)
and allows to compute P(Xn,Kn|Yn

1) for all possible states
(xn, kn) and for each bit-clock instant n = 1, . . . ,N .

The backward sweep provides the second term in (10):

P
(
YN
n+1|Xn = xn,Kn = kn

)

=
∑

(xn+1,kn+1)

P
(
YN
n+2|Xn+1 = xn+1,Kn+1 = kn+1

)

· P(Xn+1 = xn+1,Kn+1 = kn+1|Xn = xn,Kn = kn
)

· P(Un+1 = u(xn,kn)(xn+1,kn+1)|Yn+1
)
.

(12)

The process is initialized for all possible “last” states (xN , kN)
and allows to compute P(YN

n+1|Xn,Kn) for all possible states
(xn, kn) and for each bit-clock instant consecutively from N
to 1.

As in [2, 5], a termination constraint can be introduced;
one can ensure that the decoder produces the right number
of symbols (KN = K) (if known). All the paths in the trellis
which do not lead to a valid sequence length are suppressed.
The trellis on which the estimation is performed can be pre-
computed, with all transitions and outputs stored. Figure 9
shows the trellis computed with the example product model
of Figure 7 for a sequence of K = 7 symbols producing N =
6 bits.

8. SOFT SYNCHRONIZATION

Termination constraints mentioned in Section 7 can be re-
garded as means to force synchronization at the end of the
sequence; they indeed constrain the decoder to have the right
number of symbols (KN = K) (if known) after decoding
the estimated bit stream Û . These constraints ensure syn-
chronization at the end of the bit stream, but do not ensure
synchronization in the middle of the sequence. One can in-
troduce extra information specifically to help the resynchro-
nization “in the middle” of the sequence. For this, we con-
sider here the introduction of extra bits at some known po-

sitions Is = {i1, . . . , is} in the symbol stream. This extra in-
formation takes the form of dummy binary symbols (in the
spirit of the techniques described in [11, 12, 14, 17, 18]) in-
serted in the binary symbol stream at some known symbol-
clock positions after the conversion of theM-ary source into
the binary source. Since these dummy symbols are inserted at
some known symbol-clock instants, the position of the cor-
responding extra bits in the coded bit stream depends on the
sequence of symbols encoded, hence is random.

Models and algorithms above have to account for this ex-
tra information. Inserting an extra dummy symbol at known
positions in the symbol stream amounts to add a section
with deterministic transitions in the binary tree model of
the source. The presence of this extra information can be ex-
ploited by the estimation. During the estimation process, the
variable Kn indicates when a marker should be expected. The
corresponding transition probabilities in the estimation trel-
lis are updated accordingly. A null probability is given to all
transitions that do not emit the expected sequence of binary
symbols, while a probability of one is set to the others. There-
fore, some paths in the estimation trellis become forbidden
and can be suppressed, leading to a reduction of the number
of states.

9. ITERATIVE CC-AC DECODING ALGORITHM

The soft synchronization mechanism described above in-
creases significantly the reliability of the segmentation and
estimation of the sequence of symbols. One can however
consider, in addition, the usage of an error correction code,
for example, of a systematic convolutional CC. Both codes
can be concatenated in the spirit of serial turbo codes. Adopt-
ing this principle, one can therefore work on each model
(quasi-arithmetic coder and channel coder) separately and
design an iterative estimator, provided an interleaver is in-
troduced between the models. The structure of dependencies
between the variables involved is outlined in Figure 10.

Such a scheme requires extrinsic information on the bits
Un to be transmitted by the CC to the soft arithmetic decoder
and reciprocally. The extrinsic information on a bit Un rep-
resents the modification induced by the introduction of the
rest of the observations Yn−1

1 , YN
n+1 on the conditional law of

Un given Yn. The extrinsic information can be expressed as

ExtUn

(
Y |Yn

)∝ P
(
Un|Y

)

P
(
Un|Yn

) . (13)

The iterative estimation proceeds by first running a BCJR al-
gorithm on the channel coder model. The extrinsic informa-
tion on the useful bits Un is a direct subproduct of the BCJR
algorithm. These measurements can in turn be used as in-
put for the estimation run on the quasi-arithmetic decoder
model described above.

The result of the quasi-arithmetic soft decoding proce-
dure is the a posteriori probabilities on the states (Xn,Kn)
of the estimation trellis, given the observations P(Xn,Kn|Y).
These a posteriori probabilities must then be converted into
extrinsic information on bits Un. The probability of having a

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 403

(0, 0)
0

1

(1, 1)

(2, 1)

0

1
0

1

(1, 3)

(3, 1)

(4, 1)

0

1

0

1
0
1

(1, 5)

(3, 3)

(2, 3)

(0, 2)

1

0

1

0

1

0

1

(3, 5)

(2, 5)

(0, 4)

(1, 5)

(4, 3)

(1, 3)

(2, 3)

1

1

0
1

1
0

0

0

(0, 6)

(4, 5)

(1, 5)

(2, 5)

(3, 5)

0
1
0

0

0

0

(1, 7)

(2, 7)

Figure 9: Example of trellis for K = 7 symbols and N = 6 bits.

SK1
1 SK2

K1+1 SKn
Kn−1+1 S

KN
KN−1+1

· · · · · ·
(X0, K0) (X1, K1) (X2, K2) (Xn,Kn) (XN ,KN)

U1 U2 Un UN

Y1 Y2 Yn YN

Interleaver

U′1 U′2 U′n U′N

X′0 X′1 X′2 X′n X′N· · · · · ·

R1 R2 Rn RN

Z1 Z2 Zn ZN

Figure 10: Graphical representation of dependencies in the joint arithmetic-channel coding chain.

bit Un = un given Y is the sum of the transition probabili-
ties between all states (xn−1, kn−1) and (xn, kn) for which this
transition exists and is triggered by un. Thus, the a posteriori
probability of a bit Un given the observations is obtained by
the equation

P
(
Un = un|Y

)∣∣
un=0,1

=
∑

(xn−1,kn−1)

P
(
xn−1, kn−1|Y

)

· P
(
succun

(
xn−1, kn−1

)|Y)∑
un=0,1 P

(
succun

(
xn−1, kn−1|Y

)) ,

(14)

where succun(xn−1, kn−1) is the state (xn, kn) reached by the
transition from (xn−1, kn−1) triggered by the bit Un = un.

10. EXPERIMENTAL RESULTS

To evaluate the performance of the soft quasi-arithmetic
decoding procedure, a set of experiments has been per-
formed on a first-order Gauss-Markov source, with zero-
mean, unit-variance, and different correlation factors ρ. The
source is quantized with an eight-level uniform quantizer
(3 bits) on the interval [−3, 3]. We consider sequences of
K = 200 symbols with different source correlation factors.
All the simulations have been performed assuming an addi-
tive white Gaussian channel with a binary phase shift keying
(BPSK) modulation. The results are averaged over 3000 real-
izations.

The first experiment aimed at comparing the perfor-
mances in terms of soft decoding of Huffman codes [7],

404 EURASIP Journal on Applied Signal Processing

arithmetic codes [19], and quasi-arithmetic codes withT = 4
for comparable overall rates. When the source correlation in-
creases, the compression efficiency of the arithmetic coder
increases; soft synchronization patterns are inserted in the
arithmetically encoded stream up to a comparable overall
rate. Figures 11 and 12 show the residual SERs and SNR ob-
tained for different channel Eb/N0 for, respectively, ρ = 0.5
and ρ = 0.9. For sources with low correlation (ρ = 0.5
and under) and for values of Eb/N0 lower than 5dB (i.e., for
high bit error rates), quasi-arithmetic coding outperforms
both arithmetic and Huffman coding. However, for sources
with high correlation, the quasi-arithmetic coder and de-
coder turn out to be slightly less efficient than the optimal
arithmetic coder for this range of Eb/N0. The reason is that
excess rate induced by quasi-arithmetic coding increases with
the source correlation (see Section 4.3). The optimal arith-
metic coding fully exploiting the source correlation, one can
then insert a higher amount of soft synchronization pat-
terns, for the same overall rate, resulting in an improved
error resilience. The same trend has been observed for dif-
ferent rates. The gain brought on soft quasi-arithmetic de-
coding by synchronization markers is illustrated in Figures
13 and 14, respectively, for ρ = 0.5 and ρ = 0.9. Notice
that, even for high correlation sources, the performances of
the quasi-arithmetic decoder would obviously increase if one
would allow a higher complexity, that is, a higher value for
the parameter T . In order to compare fairly the three meth-
ods, one must also consider their complexity. It can be mea-
sured by the size of the trellis used for the estimation. Con-
sidering a sequence of 200 symbols, soft decoding of Huff-
man codes needs two trellises with about 900 states, respec-
tively, per bit-clock and symbol-clock instants. The complex-
ity of soft decoding of arithmetic codes is limited to 100 states
per symbol-clock instant, using pruning. Finally, the soft de-
coding of quasi-arithmetic codes leads to a trellis containing
about 2400 states per bit-clock instant, hence being the most
complex of the three. Pruning may be considered to reduce
this complexity.

The second experiment aimed at evaluating the perfor-
mance of the iterative channel/quasi-arithmetic decoding al-
gorithm. Figures 15 and 16 depict the SER and SNR per-
formances in comparison with the decoding approach with
soft synchronization, respectively, for ρ = 0.5 and ρ = 0.9.
The first observation is that the iterations bring significant
improvements and higher gain is being obtained when the
source correlation is high (see Figure 16). Nevertheless, if the
source correlation is low, the soft synchronization outper-
forms the iterative scheme. In this range of channel SNRs,
the CC cannot correct all the errors, and the desynchro-
nization phenomenon prevails. It is therefore preferable to
dedicate redundancy within the source to fight against these
desynchronizations. In contrast, when the source correlation
is high (ρ = 0.9), the SER is lower with the iterative solu-
tion due to a proper exploitation of the intersymbol corre-
lation for segmenting and estimating the bit stream. It can
also be observed that the gain brought by the iterations de-
pends on the degree of redundancy present on both sides of

the interleaver. Figures 17 and 18 show the performances ob-
tained when combining synchronization markers and chan-
nel coding, respectively, for ρ = 0.5 and ρ = 0.9. Three ap-
proaches are compared, with equal or sufficiently close over-
all rates. In the first one, only channel coding (k/n = 2/3
and 4 iterations) is used to add redundancy. In the second
one, channel coding (k/n = 5/6 and 4 iterations) is com-
bined with synchronization markers. Finally, in the third ap-
proach, only synchronization markers are used. For sources
with high correlation, channel coding leads to higher per-
formance since the correlation present in the source is al-
ready exploited efficiently to fight against desynchroniza-
tions. For sources with low correlation and for values of
Eb/N0 lower than 3dB, on the contrary, the combination
of channel coding and synchronization markers has been
found to be the best strategy. It has also been observed that,
in this case, iterations bring a higher gain than in other
cases.

In another set of experiments, the influence of the length
of the sequence on the system performance is considered.
Figures 19 and 20 depict the SER and SNR performances
with three different lengths, respectively, for ρ = 0.5 and
ρ = 0.9. As expected, the performance decreases when the
length of the sequence increases. This can be explained by
the exploitation of the termination constraint which con-
tributes to the decoder resynchronization. The length of the
sequence has also an influence on the complexity of the de-
coding. Indeed, this complexity depends on the size of the es-
timated trellis, which depends mainly on the excursion, that
is, the possible values, of the variable Kn. The excursion is
higher in the middle than at the extremities of the sequence.
Hence, it reaches higher values with longer sequences. We
have measured experimentally the average number of states
of the trellis per bit-clock instant n. The values obtained are
557, 1177, and 2376, respectively, for sequences of 50, 100,
and 200 symbols. Pruning techniques may be required for
longer sequences.

In the last experiment, the impact of the precision of the
quasi-arithmetic coder parameterized by the variable T has
been analyzed. Figure 21 provides the SER and SNR perfor-
mances for T = 4 and T = 8 without extra redundancy, and
for T = 8 with soft synchronization patterns added to obtain
a bit rate comparable to the case where T = 4 (ρ = 0.5). The
lower precision coder (T = 4) due to the presence of residual
redundancy is more resilient to errors. However, the coder
with a higher precision (T = 8) allows, by better exploiting
the source statistics, to obtain higher compression efficiency
and in turn dedicate redundancy to resynchronize the decod-
ing process. Then the overall performances appear to be sim-
ilar for Eb/N0 larger than 4dB. Once again, the complexity is
an issue. Indeed, increasing the value of T leads necessarily to
a higher number of states. In this experiment, we have found
the following average number of states of the estimated trellis
per bit-clock instant: 1193 when T = 4, 4736 when T = 8,
and 4297 when T = 8 with the insertion of synchronization
markers. Therefore, it is highly desirable to choose T as small
as possible.

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 405

100

10−1

10−2

10−3

10−4

SE
R

0 2 4 6
Eb/N0

Soft Huffman 2.53 bpss
Soft arithmatic 2.53 bpss
Soft Q-arithmatic 2.53 bpss

(a)

50

45

40

35

30

25

20

15

10

5

SN
R

0 2 4 6
Eb/N0

Soft Huffman 2.53 bpss

Soft arithmatic 2.53 bpss
Soft Q-arithmatic 2.53 bpss

(b)

Figure 11: SER and SNR performances of (i) soft Huffman decod-
ing, (ii) soft arithmetic decoding, and (iii) soft quasi-arithmetic de-
coding (ρ = 0.5, 200 symbols, 3000 channel realizations).

100

10−1

10−2

10−3

10−4

SE
R

0 2 4 6
Eb/N0

Soft Huffman 2.53 bpss
Soft arithmatic 2.43 bpss
Soft Q-arithmatic 2.43 bpss

(a)

45

40

35

30

25

20

15

10

SN
R

0 2 4 6
Eb/N0

Soft Huffman 2.53 bpss

Soft arithmatic 2.43 bpss
Soft Q-arithmatic 2.43 bpss

(b)

Figure 12: SER and SNR performances of (i) soft Huffman decod-
ing, (ii) soft arithmetic decoding, and (iii) soft quasi-arithmetic de-
coding (ρ = 0.9, 200 symbols, 3000 channel realizations).

406 EURASIP Journal on Applied Signal Processing

100

10−1

10−2

10−3

SE
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.43 bpss
Soft Q-arithmatic 2.53 bpss
Soft Q-arithmatic 2.73 bpss

(a)

35

30

25

20

15

10

5

SN
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.43 bpss
Soft Q-arithmatic 2.53 bpss
Soft Q-arithmatic 2.73 bpss

(b)

Figure 13: SER and SNR performances of soft quasi-arithmetic de-
coding for different rates (ρ = 0.5, 200 symbols, 3000 channel real-
izations).

100

10−1

10−2

10−3

10−4

SE
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.02 bpss
Soft Q-arithmatic 2.53 bpss
Soft Q-arithmatic 2.73 bpss

(a)

45

40

35

30

25

20

15

10

SN
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.02 bpss

Soft Q-arithmatic 2.53 bpss
Soft Q-arithmatic 2.73 bpss

(b)

Figure 14: SER and SNR performances of soft quasi-arithmetic de-
coding for different rates (ρ = 0.9, 200 symbols, 3000 channel real-
izations).

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 407

100

10−1

10−2

10−3

10−4

SE
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.91 bpss
Soft Q-arithmatic + CC 2.90 bpss, iteration 1
Soft Q-arithmatic + CC 2.90 bpss, iteration 4

(a)

50

45

40

35

30

25

20

15

10

5

SN
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.91 bpss

Soft Q-arithmatic + CC 2.90 bpss, iteration 1
Soft Q-arithmatic + CC 2.90 bpss, iteration 4

(b)

Figure 15: SER and SNR performances of (i) soft quasi-arithmetic
decoding with soft synchronization and (ii) turbo quasi-arithmetic/
channel decoding (ρ = 0.5, 200 symbols, 3000 channel realizations).

100

10−1

10−2

10−3

10−4

10−5

SE
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.69 bpss
Soft Q-arithmatic + CC 2.69 bpss, iteration 1
Soft Q-arithmatic + CC 2.69 bpss, iteration 4

(a)

50

45

40

35

30

25

20

15

SN
R

0 2 4 6
Eb/N0

Soft Q-arithmatic 2.69 bpss
Soft Q-arithmatic + CC 2.69 bpss, iteration 1

Soft Q-arithmatic + CC 2.69 bpss, iteration 4

(b)

Figure 16: SER and SNR performances of (i) soft quasi-arithmetic
decoding with soft synchronization and (ii) turbo quasi-arithmetic/
channel decoding (ρ = 0.9, 200 symbols, 3000 channel realizations).

408 EURASIP Journal on Applied Signal Processing

100

10−1

10−2

10−3

10−4

SE
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic + CC 3.65 bpss
Soft Q-arithmatic + CC + M 3.65 bpss
Soft Q-arithmatic + M 3.65 bpss

(a)

50

45

40

35

30

25

20

15

10

SN
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic + CC 3.65 bpss

Soft Q-arithmatic + CC + M 3.65 bpss
Soft Q-arithmatic + M 3.65 bpss

(b)

Figure 17: SER and SNR performances of (i) turbo quasi-
arithmetic/channel decoding, (ii) turbo quasi-arithmetic/channel
decoding with soft synchronization, and (iii) soft quasi-arithmetic
decoding with soft synchronization (ρ = 0.5, 200 symbols, 1500
channel realizations).

10−1

10−2

10−3

10−4

10−5

SE
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic + CC 3.10 bpss
Soft Q-arithmatic + CC + M 3.25 bpss
Soft Q-arithmatic + M 3.21 bpss

(a)

55

50

45

40

35

30

25

20

SN
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic + CC 3.10 bpss

Soft Q-arithmatic + CC + M 3.25 bpss
Soft Q-arithmatic + M 3.21 bpss

(b)

Figure 18: SER and SNR performances of (i) turbo quasi-
arithmetic/channel decoding, (ii) turbo quasi-arithmetic/channel
decoding with soft synchronization, and (iii) soft quasi-arithmetic
decoding with soft synchronization (ρ = 0.9, 200 symbols, 1500
channel realizations).

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 409

100

10−1

10−2

SE
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic 50 symbols
Soft Q-arithmatic 100 symbols
Soft Q-arithmatic 200 symbols

(a)

22

20

18

16

14

12

10

SN
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic 50 symbols

Soft Q-arithmatic 100 symbols
Soft Q-arithmatic 200 symbols

(b)

Figure 19: SER and SNR performances of soft quasi-arithmetic de-
coding for, respectively, 50, 100, and 200 symbols (ρ = 0.5, 3000
channel realizations).

100

10−1

10−2

10−3

SE
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic 50 symbols
Soft Q-arithmatic 100 symbols
Soft Q-arithmatic 200 symbols

(a)

34

32

30

28

26

24

22

20

18

16

SN
R

0 1 2 3 4
Eb/N0

Soft Q-arithmatic 50 symbols

Soft Q-arithmatic 100 symbols
Soft Q-arithmatic 200 symbols

(b)

Figure 20: SER and SNR performances of soft quasi-arithmetic de-
coding for, respectively, 50, 100, and 200 symbols (ρ = 0.9, 3000
channel realizations).

410 EURASIP Journal on Applied Signal Processing

100

10−1

10−2

10−3

SE
R

0 2 4 6
Eb/N0

T = 4 2.43 bpss

T = 8 2.30 bpss

T = 8 2.43 bpss

(a)

30

25

20

15

10

5

SN
R

0 2 4 6
Eb/N0

T = 4 2.43 bpss
T = 8 2.30 bpss
T = 8 2.43 bpss

(b)

Figure 21: SER and SNR performances of (i) soft quasi-arithmetic
decoding (T = 4), (ii) soft quasi-arithmetic decoding (T = 8), and
(iii) soft quasi-arithmetic decoding (T = 8) with soft synchroniza-
tion (ρ = 0.5, 100 symbols, 3000 channel realizations).

11. CONCLUSION

Arithmetic codes are becoming more and more popular
in practical compression systems and emerging standards.
Their well-known drawback is however their very high sen-
sitivity to noise. MAP estimators running on the coding
tree can help to fight against errors and possible decoder
desynchronization but at the expense of rather high com-
plexity. The coding tree grows exponentially with the num-
ber of symbols in the sequence to be coded. Here, we have
considered an alternate solution based on reduced-precision
arithmetic codes, called quasi-arithmetic codes. A quasi-
arithmetic coder can be viewed as a finite-state stochastic
automaton. One can then run MAP estimators on the re-
sulting model. For the sake of clarity, we have considered
simple source models in the examples. The results reported
have been obtained considering an order-1 Markov source.
However, the approach extends very easily to higher-order
source models. The state model of the coding and decod-
ing process is of finite size. Its size depends on the accept-
able approximation of the source distribution. The decod-
ing complexity remains within a realistic range without the
need for applying any pruning. Placed in an iterative de-
coding structure in the spirit of serially concatenated turbo
codes, the estimation process can then benefit from the iter-
ations. Overall, the flexibility they offer for adjusting com-
pression efficiency, complexity, and error resilience allows an
optimal adaptation to various transmission conditions and
terminal capabilities. Notice that, for low complexity, a very
good trade-off compression-noise resilience can be achieved
with quasi-arithmetic codes for low correlation sources. This
emphasizes the interest of the above solution for practical
systems, where the coder is applied on quantized decorre-
lated sequences of symbols.

REFERENCES

[1] K. P. Subbalakshmi and J. Vaisey, “On the joint source-
channel decoding of variable-length encoded sources: the BSC
case,” IEEE Trans. Communications, vol. 49, no. 12, pp. 2052–
2055, 2001.

[2] M. Park and D. J. Miller, “Joint source-channel decoding for
variable-length encoded data by exact and approximate MAP
sequence estimation,” IEEE Trans. Communications, vol. 48,
no. 1, pp. 1–6, 2000.

[3] M. Park and D. J. Miller, “Decoding entropy-coded symbols
over noisy channels by MAP sequence estimation for asyn-
chronous HMMs,” in Proc. Annual Conference on Information
Sciences and Systems (CISS ’98), pp. 477–482, Princeton, NJ,
USA, March 1998.

[4] A. H.Murad and T. E. Fuja, “Joint source-channel decoding of
variable length encoded sources,” in Proc. Information Theory
Workshop (ITW ’98), pp. 94–95, Killarney, Ireland, June 1998.

[5] N. Demir and K. Sayood, “Joint source/channel coding
for variable length codes,” in Proc. IEEE Data Compression
Conference (DCC ’98), pp. 139–148, Snowbird, Utah, USA,
March–April 1998.

[6] R. Bauer and J. Hagenauer, “Turbo FEC/VLC decoding and its
application to text compression,” in Proc. 34th Annual Confer-
ence on Information Sciences and Systems (CISS ’00), pp.WA6–
WA11, Princeton, NJ, USA, March 2000.

[7] A. Guyader, E. Fabre, C. Guillemot, and M. Robert, “Joint

Soft and Joint Source-Channel Decoding of Quasi-Arithmetic Codes 411

source-channel turbo decoding of entropy-coded sources,”
IEEE Journal on Selected Areas in Communications, vol. 19, no.
9, pp. 1680–1696, 2001.

[8] R. Bauer and J. Hagenauer, “Iterative source/channel decod-
ing based on a trellis representation for variable length codes,”
in Proc. IEEE International Symposium on Information Theory
(ISIT ’00), p. 117, Sorrento, Italy, June 2000.

[9] Y. Takishima, M. Wada, and H. Murakami, “Reversible vari-
able length codes,” IEEE Trans. Communications, vol. 43, no.
4, pp. 158–162, 1995.

[10] J. Wen and J. D. Villasenor, “Reversible variable length codes
for efficient and robust image and video coding,” in Proc. IEEE
Data Compression Conference (DCC ’98), pp. 471–480, Snow-
bird, Utah, USA, March–April 1998.

[11] G. F. Elmasry, “Embedding channel coding in arithmetic cod-
ing,” IEE Proceedings-Communications, vol. 146, no. 2, pp. 73–
78, 1999.

[12] C. Boyd, J. G. Cleary, S. A. Irvine, I. Rinsma-Melchert, and
I. H.Witten, “Integrating error detection into arithmetic cod-
ing,” IEEE Trans. Communications, vol. 45, no. 1, pp. 1–3,
1997.

[13] G. F. Elmasry, “Joint lossless-source and channel coding using
automatic repeat request,” IEEE Trans. Communications, vol.
47, no. 7, pp. 953–955, 1999.

[14] I. Sodagar, B. B. Chai, and J. Wus, “A new error resilience
technique for image compression using arithmetic coding,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP ’00), pp. 2127–2130, Istanbul, Turkey, June 2000.

[15] J. Chou and K. Ramchandran, “Arithmetic coding-based con-
tinuous error detection for efficient ARQ-based image trans-
mission,” IEEE Journal on Selected Areas in Communications,
vol. 18, no. 6, pp. 861–867, 2000.

[16] I. Kozintsev, J. Chou, and K. Ramchandran, “Image transmis-
sion using arithmetic coding based continuous error detec-
tion,” in Proc. IEEE Data Compression Conference (DCC ’98),
pp. 339–348, Snowbird, Utah, USA, March–April 1998.

[17] B. D. Pettijohn, M. W. Hoffman, and K. Sayood, “Joint
source/channel coding using arithmetic codes,” IEEE
Trans. Communications, vol. 49, no. 5, pp. 826–836, 2001.

[18] C. Demiroglu, M. W. Hoffman, and K. Sayood, “Joint source
channel coding using arithmetic codes and trellis coded mod-
ulation,” in Proc. 11th IEEE Data Compression Conference
(DCC ’01), pp. 302–311, Snowbird, Utah, USA, March 2001.

[19] T. Guionnet and C. Guillemot, “Soft decoding and synchro-
nization of arithmetic codes: application to image transmis-
sion over noisy channels,” IEEE Trans. Image Processing, vol.
12, no. 12, pp. 1599–1609, 2003.

[20] P. G. Howard and J. S. Vitter, “Practical implementations of
arithmetic coding,” in Image and Text Compression, pp. 85–
112, Kluwer Academic, Norwell, Mass, USA, 1992.

[21] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding
of linear codes for minimizing symbol error rate,” IEEE Trans-
actions on Information Theory, vol. 20, pp. 284–287, March
1974.

[22] J. J. Rissanen, “Generalized Kraft inequality and arithmetic
coding,” IBM Journal of Research and Development, vol. 20,
no. 3, pp. 198–203, 1976.

[23] R. Pasco, Source coding algorithms for fast data compression,
Ph.D. thesis, Department of Electrical Engineering, Stanford
University, Stanford, Calif, USA, 1976.

[24] J. J. Rissanen, “Arithmetic codings as number representa-
tions,” Acta Polytechnica Scandinavica, vol. 31, pp. 44–51, De-
cember 1979.

[25] I. H. Witten, R. M. Neal, and J. G. Cleary, “Arithmetic coding
for data compression,” Communications of the ACM, vol. 30,
no. 6, pp. 520–540, 1987.

[26] P. G. Howard and J. S. Vitter, “Design and analysis of fast text
compression based on quasi-arithmetic coding,” in Proc. IEEE
Data Compression Conference (DCC ’93), pp. 98–107, Snow-
bird, Utah, USA, March–April 1993.

Thomas Guionnet received his B.S. de-
gree from the University of Newcastle Upon
Tyne, UK, in computer science in 1997. He
obtained the Engineer Degree in computer
science and image processing and the Ph.D.
degree from the University of Rennes 1,
France, respectively, in 1999 and 2003. He is
currently a Research Engineer at INRIA and
is involved in the French national project
RNRT VIP and in the JPEG 2000 Part 11-
JPWL ad hoc group. His research interests include image process-
ing, coding, and joint source and channel coding.

ChristineGuillemot is currently “Directeur
de Recherche” at INRIA, in charge of a re-
search group dealing with image modelling,
processing, and video communication. She
holds a Ph.D. degree from École Na-
tionale Supérieure des Télécommunications
(ENST) Paris. Her research interests are sig-
nal and image processing, coding, and joint
source and channel coding. From 1985 to
October 1997, she has been with France
Telecom/CNET at CCETT, where she has been involved in various
projects in the domain of coding for TV, HDTV, and multimedia
applications. From January 1990 to mid 1991, she has worked at
Bellcore, NJ, USA. She serves as an Associate Editor for IEEE Trans-
action on Image Processing and is a member of the IEEE Image and
Multidimensional Signal Processing (IMDSP) committee.

	1. INTRODUCTION
	2. NOTATIONS AND PROBLEM STATEMENT
	3. ARITHMETIC CODING PRINCIPLES
	4. FAST-REDUCED PRECISION IMPLEMENTATION
	4.1. Quasi-arithmetic coding
	4.2. Quasi-arithmetic decoding
	4.3. Source distribution approximation

	5. SOURCE MODEL
	6. MODELING BIT STREAM DEPENDENCIES
	6.1. Productmodel: source and coder
	6.2. Productmodel: source and decoder
	6.3. Source distribution approximation

	7. ESTIMATION ALGORITHM
	8. SOFT SYNCHRONIZATION
	9. ITERATIVE CC-AC DECODING ALGORITHM
	10. EXPERIMENTAL RESULTS
	11. CONCLUSION
	REFERENCES

