EURASIP Journal on Applied Signal Processing 2004:3, 340-346
(© 2004 Hindawi Publishing Corporation

Using Mel-Frequency Cepstral Coefficients

in Missing Data Technique

Zhang Jun

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China

School of Electronic and Communication Engineering, South China University of Technology, Guangzhou 510640, China

Email: zhj_angun@sina.com.cn

Sam Kwong

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China

Email: cssamk@cityu.edu.hk

Wei Gang

School of Electronic and Communication Engineering, South China University of Technology, Guangzhou 510640, China

Email: ecgwei@scut.edu.cn

Qingyang Hong

Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong, China

Email: qyhong@cs.cityu.edu.hk

Received 19 February 2003; Revised 16 June 2003; Recommended for Publication by Mukund Padmanabhan

Filter bank is the most common feature being employed in the research of the marginalisation approaches for robust speech
recognition due to its simplicity in detecting the unreliable data in the frequency domain. In this paper, we propose a hybrid
approach based on the marginalisation and the soft decision techniques that make use of the Mel-frequency cepstral coefficients
(MFCCs) instead of filter bank coefficients. A new technique for estimating the reliability of each cepstral component is also
presented. Experimental results show the effectiveness of the proposed approaches.
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1. INTRODUCTION

In spite of many years of efforts, the robustness of speech
recognition in the noisy environment is still a fundamen-
tal unsolved issue in today’s automatic speech recognition
(ASR) systems. Recently, missing data theory [1, 2, 3, 4] is
proposed as an operationalization to improve the robustness
of the ASR decoding process. Experimental results show that
it can significantly restore the ASR performance with little
prior assumptions made about the characteristics of the envi-
ronment noises. However, most of the previous marginalisa-
tion approaches are only derived and tested for the filter bank
features due to the convenience of detecting the unreliable
data in the frequency domain. Most often, cepstral features
are the parameterisation of choice for many speech recog-
nition applications. For example, the Mel-frequency cepstral
coefficient (MFCC) [5] representation of speech is proba-
bly the most commonly used representation in speech recog-

nition and recently being standardized for the distributed
speech recognition (DSR) [6]. Generally, cepstral features
are more compactible, discriminable, and most importantly,
nearly decorrelated such that they allow the diagonal covari-
ance to be used by the hidden Markov models (HMMs) ef-
fectively. Therefore, they can usually provide higher base-
line performance over filter bank features. Applying miss-
ing data techniques to cepstral features is obviously attractive
and natural.

Unfortunately, while decorrelating, the cepstral trans-
form also smears localized spectral uncertainty over global
cepstral uncertainty. This defect dose not only bring the dif-
ficulty to the detection of the unreliable cepstral components
but also seems to contradict the basic assumption of miss-
ing data theory that some part of the feature vector should
be untainted by the noise [4]. However, when the distortions
are not too severe, there will be some cepstral components
that are less affected and can provide correct discrimination
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information while using the clean speech models. If we re-
gard these components as reliable data, then the marginal-
isation approach should also be applied to the cepstral fea-
tures. Its performance will depend on how severely the noise
distorts the cepstral feature. Fortunately, it can be seen that
even the full band features that smear distortions over the
entire vector are much more affected by band-limited noises
than those features that localize the spectral distortions, they
do perform well in many full band noises. This phenomenon
is also reported in [7, 8, 9]. It means that in many cases, the
full band features are not more affected by the noise than the
subband ones. Therefore, it can be expected that the cepstral
marginalisation will also perform well under such situations.

To implement the cepstral marginalisation approach, we
propose a new technique to evaluate the reliability of each
feature component in the Mel-cepstrum domain. Two cri-
teria for detecting the reliable cepstral components are pre-
sented and combined together to form a more accurate joint
decision. Then the marginalisation approach is applied to the
MFCCs by using this combined criterion. Based on the pro-
posed cepstral marginalisation approach, a cepstral soft de-
cision approach is also developed to further improve the ro-
bustness of the MFCC recognizer.

2. CEPSTRAL MARGINALISATION

2.1. Detection of the reliable cepstral features

The major difficulty of the cepstral marginalisation is how to
determine the reliable/unreliable components of the speech
data. In this paper, we propose two ways to estimate the in-
fluence of noises on the cepstral component. One is based on
the speech enhancement and the other is based on a noise
mask model. By setting the threshold, a criterion for select-
ing the reliable data can be obtained from each method. Af-
ter that, we combine these two criteria together and propose
a soft technique to determine the final reliable/unreliable de-
cision for each cepstral component.

Assume that the noise is added in the time domain. Let
¢, (i) and ¢, (i) denote the ith MFCC components of the noisy
speech and the clean speech, respectively, where 1 < i < I,
I is the dimension of the MFCC vector. Then c, (i) can be
expressed as follows:

¢y (i) = cx(i) — cu(i), (1)

where ¢, (i) can be viewed as the noise in the cepstrum do-
main. If ¢, (i) can be estimated, then the impact of the noise
to the clean feature can also be determined. Let Y (j), X(j),
and N(j) denote the jth filter bank outputs of the linear
power spectra of the noisy speech, clean speech, and noise,
respectively. Then ¢, (i) can be expressed as

J-1
i) = cx(i) — ¢, (i) = > aij(log (X(j)) —log (Y(j)))
j=0
X(j)

. 2)
= jgoaij IOg Wj),

where 0 < j <] — 1, ] is the number of filter bank channels,
and a;; is the DCT coefficients. Using some kinds of the en-
hancement techniques like the spectral subtraction, X () can
be estimated, so the estimation of ¢, (i) can be given by the
following:

= X(j)
cn(z)—jgéa”log )’ (3)

where X(j) and ¢, (i) denote the estimation of X () and ¢, (i).
When ¢&,(i) is larger than a given threshold, ¢, (i) can be re-
garded as unreliable. So the first criterion for choosing a reli-
able component can be given by the following:

ley() ] > Bilén(@)]. (4)

Obviously, speech enhancement algorithms cannot al-
ways give accurate estimations of the clean features, espe-
cially when the SNR 1is low. It can be seen that an unreliable
component with a small ¢,(i), which is caused by the inac-
curacy of the enhancement, cannot be detected using (4). To
overcome this defect, we propose to use another method to
estimate the influence of the noises. For additive noises, c, (i)
can be expressed as

J-1 J-1
(i) = Zafj log (Y(j)) = zaij log (X(j)+N(j)). (5)
=0 =0

Assume that either the clean speech or the noise will domi-
nate in each filter bank channel and the channel output can
be approximated to the dominating one. For each channel, a
threshold can be applied to determine which signal is domi-
nating. Then Y (j) can be expressed as

Y()~ 1x< i YG) > aN(j),

Y(j) < aN(j), ©)

N(j),

where N(}) is the estimation of the noise, « is an empirical
threshold factor which can be determined in the experiment.
Substituting (6) in (5), we have the following:

¢y(i) = Z

7Y (j)>aN(j)

ajlog (X(j)) + >

7Y ()=aN(j)

aijlog (N(j)).
(7)

According to (7), another criterion for choosing the reliable
components can be given by

> laijlog (Y(j))| > B2 >

Y ()>aN(j) Y ()=aN(j)

laijlog (Y(j)) |
(8)
Combining (8) with (4), the unreliable components with

a small ¢,(i) can also be detected. It is more accurate to use
a joint decision than an individual one. We can simply adopt
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an “and” operation to achieve such a decision, that is, a com-
ponent will be considered as reliable when conditions (4) and
(8) are satisfied.

2.2, Detection of the reliable delta cepstral coefficients

In traditional ASRs, the time derivatives are usually added to
the static parameters to enhance the recognizer performance.
The marginalisation approach can also be applied to these
coefficients. In the filter bank marginalisation, one solution
to this problem is called the “strict mask” [10]. It treats the
derivatives as missing if any of the features involved in their
calculations are missing. The strict mask is sufficient for fil-
ter bank features because the reliable features tend to be clus-
tered into time-frequency blocks. However, it may not be fea-
sible for cepstral features since the missing mask pattern is
more random. Applying the strict mask will cause the sparse-
ness of the reliable derivatives, thus, we propose to use an-
other way to detect the reliable derivatives. It is also based on
the combination of the enhancement and noise mask meth-
ods that are described in Section 2.1.

Usually, the delta coefficients can be calculated using the
following expression:

Si_pte(i+t)
thsz t2

The noise of the delta cepstral coefficients can be ex-
pressed as

Ac(i) = 9)

Acy(i) = Acx(i) — Acy (i)

Sl rteditt) — o (i+D)

St (10)
S rteli+b)
XtT;T 7

When the cepstral noise ¢,(i) is estimated using the en-
hancement, Aé,(i) can be given as

T A /s

D rtéa(i+t)

=
DI =

So, one criterion for choosing the reliable delta cepstral
components can be given by

Aé,(i) = (11)

[Acy(i)] > B3| Aéa(i)]. (12)

On the other hand, with the noise mask approximation,
Acy (i) can be expressed as

1

T
m Z Z taij log (X(j+t))

t==T j Y (j)>aN(j)

Acy (i) =

T
+ > > tajlog(N(j+1) |
t==T j Y (j)<aN(j)
(13)

So, another criterion for choosing the reliable delta cep-
stral components can be given by

T
2. 2
t==T j Y (j)>aN(j)

BSOS

t==T j y(j)<aN(j)

|taijlog (Y(j +1))|
(14)
|taijlog (Y(j+1))].

Combining these two criteria, a delta cepstral component
can be decided as reliable when conditions (12) and (14) are
satisfied.

2.3. Marginalisation

Using (4), (8) and (14), the reliable cepstral and delta cepstral
components can be picked out from the whole feature vec-
tors. For the continuous density HMM (CDHMM) recogni-
tion system with diagonal-only covariance, the marginalised
probability of observations can be given by

N
P(X|Cm) = z Winn 1—[ N(xi),umn(i))o-rznn(i)): (15)
n=1

i,reliable

where x is the observation vector, C,, is the mth state of the
HMM model, w,,, is the weight factor associated with the
nth Gaussian component of the state C,,, and g, and 02,
are the mean and variance of the Gaussian PDF.

3. SOFT DECISION
3.1. Noisy speech model

Due to the cepstral transformation, even a little noise that ex-
ists in some frequency bands will affect all the feature compo-
nents. So, in a noisy environment, each cepstral component
will always have a portion of the noise in the clean speech.
Obviously, it is more sensible to adjust the weight of each
component according to its influence level than using a bi-
nary decision of reliable or unreliable.

Given a noisy observation, the components that are less
affected by the noise will have distributions close to the clean
ones while those severely affected will be more uncertain and
might have much different characteristics. According to [4],
the distribution of a noisy observation can be modeled as a
weighed sum of a known distribution that is obtained dur-
ing the training process and an unknown distribution for the
uncertain data. We model the noisy speech in a similar way.
While using the diagonal-only covariance, the probability of
a noisy observation can be given by

(eip1(xi| Cy 1) + (1 — &) p2 (1)),
1
(16)

N 1
p(xICy) = z Wnn

n=1 i

where p;(x;|Cy,, n) denotes the clean distribution as

pl (xi|cma 1’[) = N(xia[/lmn(i)a Oﬁm(i))) (17)
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and where p,(x;) denotes the distribution of uncertain data.
When no prior knowledge about this distribution is avail-
able, it can be assumed that the uncertain data will have a
uniform distribution in the range of values observed during
training as

pal) = — (18)

Ximax — Xi,min

where X; max and x; min are the maximum and minimum val-
ues of the ith component observed in the training data.

In the acoustic backing-off approach, ¢; refers to the prior
probability of observing a reliable datum and needs to be de-
termined in advance. It is obviously that this assumption is
not suitable for real world applications. Instead of setting up
a static value in advance, we adjust ¢; according to the noise
level of each cepstral component. These levels are estimated
using the two methods described in Section 2.

3.2. Weights adjustment

Let ¢ and ¢; denote the weights for the ith cepstral and delta
cepstral components, respectively. Using the enhancement
method, we can adjust them by

o &) |

P E@ ]+l 19)
. | AG.(i) |

&1 =

[ AG ()] +y2| A& G) |

Using the noise mask method, the weights can be ad-
justed as

&2i
> laylog (Y()]
_ 7Y (j)>aN(j)
> laylog(Y()) [+ys > laylog(Y()|
7Y (j)>aN(j) 7,Y(j)<aN(j)
&

S

t==T jY(j)>aN(j)

|taijlog (Y (j+1)) |

T
X Z Z | taijlog (Y (j+1))]

t==T j Yy (j)>aN(j)

+Y4i >

t==T jy(j)<aN(j)

| taijlog(Y (j + 1) |
(20)

These weights can also be combined together to improve
the performance. We calculate the combined weights by

& = min (e1;, &),
, o, (21)
& = min (&, &;).

4. EXPERIMENTS

Clean speech data for training and testing are taken from
the TI46 speaker-dependent isolated word corpus. Digits 0—
9 spoken by all male speakers are used. There are 26 utter-
ances of each digit from each speaker: 10 of these utterances
are designated as training tokens and the other 16 are desig-
nated as testing tokens. Speech data are sampled at 12500 Hz
and linearly quantified with 12 bits. Four noises from the
NOISEX-92 [11] database with distinct characteristics: white
noise, F16 noise, pink noise, and factory noise, are artificially
added to the clean speeches with different SNRs.

Each digit is modeled by an HMM which composes
of five no-skip straight-through emitting states. Each state
has three diagonal Gaussian mixtures. Both filter bank co-
efficients and MFCCs are used in the experiments. Input
speeches are segmented into overlapping frames with 25 mil-
liseconds length and 10 milliseconds shift. Twenty triangular
filters are uniformly distributed on a Mel-frequency scale and
their log energy outputs form the 20-dimension filter bank
coefficients. Twelve MFCCs are computed using DCT trans-
formation on these filter bank coefficients. The delta coeffi-
cients are computed and appended to the basic acoustic vec-
tors in the front-end. We use the HTK tools 3.0 [12] for both
the feature extraction and the HMM model training.

4.1. Evaluation of the proposed approaches

The performance of the proposed approaches is evaluated
with the four types of noises. For the cepstral marginalisa-
tion and soft decision approaches, a simple nonadaptive lin-
ear spectral subtraction in (22) is employed as an enhance-
ment preprocess:

X(j) = max (Y(j) - N(j),AY(j)), (22)

where A is the flooring factor, which is set to 0.05 in the ex-
periments. The first 20 frames of noisy speeches are assumed
to be the noises. Their average power spectra are used to es-
timate N(j). We empirically set a, f1—f4, and y1—y4 to 1.0.
The HTK recognition process is modified according to (15)
and (16) to implement the marginalisation and soft decision
approaches.

Table 1 shows the average recognition rates of the base-
line MFCC recognizer and the proposed approaches. For
comparison, the results of the spectral subtraction (SS), cep-
stral mean subtraction (CMS), and filter bank marginalisa-
tion with SNR criterion plus strict mask are also listed in the
table. Here, “MG” refers to marginalisation and “SD” refers
to soft decision.

Both the SS and CMS gain improvements over the base-
line performance. It can be seen that the cepstral mean sub-
traction is less effective for additive noises than the spec-
tral subtraction. This is probably because the CMS is mainly
designed to cope with the stationary convolution distor-
tions. Both the proposed approaches and the filter bank
marginalisation show significant improvements over these
two techniques. Comparing with the filter bank marginalisa-
tion, the cepstral marginalisation gives higher average recog-
nition rates for the four types of noises. It is worse for the
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TABLE 1: Average recognition rates of various techniques for the four types of noises.
Clean 25dB 20dB 15dB 10dB 5dB 0dB
MFCC_D 100.00 99.59 97.64 87.91 58.61 25.78 11.50
MGCC_D+SS 100.00 99.50 98.54 92.17 75.24 49.25 22.54
MEFCC_D+CMS 100.00 98.89 97.90 89.85 64.65 29.71 12.09
FBANK_D+SS+MG 99.92 99.90 99.73 98.83 88.29 64.42 35.71
MFCC_D+SS+MG 100.00 99.94 99.84 98.61 93.36 75.45 42.79
MFCC_D+S5+SD 100.00 99.90 99.79 99.53 98.22 90.02 51.23
TABLE 2
(a) Average recognition rates of the cepstral marginalisation approaches with different criteria for the four types of noises.
Clean 25dB 20dB 15dB 10dB 5dB 0dB
SS 100.00 99.50 98.54 92.17 75.24 49.25 22.54
Criterion 1 100.00 99.82 99.71 98.28 91.99 71.06 36.40
Criterion 2 100.00 99.71 99.06 95.43 81.10 51.92 21.22
Combined criterion 100.00 99.94 99.84 98.61 93.36 75.45 42.79
(b) Average recognition rates of the cepstral SD approaches with different weights for the four types of noises.
Clean 25dB 20dB 15dB 10dB 5dB 0dB
Weight 1 100.00 99.80 99.69 99.44 97.56 84.40 42.36
Weight 2 100.00 99.88 99.74 99.08 94.91 79.52 43.53
Combined weight 100.00 99.90 99.79 99.53 98.22 90.02 51.23

white noise, slightly better for the F16 noise and pink noise,
and significantly better for the factory noise. The cepstral SD
approach is superior to both marginalisation approaches for
all types of noises. These results confirm our prediction that
the cepstral marginalisation can work well for many kinds of
full band noises, and also show the effectiveness of the SD
approach.

4.2. Combination of the criteria and the weights

To show the effectiveness of our combined criteria for the
cepstral marginalisation, Table 2a lists the average recogni-
tion rates of different criteria for the four types of noises.
Here, criterion 1 refers to the criteria shown in (4) and (12),
criterion 2 is from (8) and (14), and the combined criterion
is from (4), (8) and (14). The results of the SS are also listed
in the table.

It can be seen that the recognition rates are improved
whenever the marginalisation approaches are applied with
criterion 1, criterion 2, or the combined criterion. For in-
dividual criteria, criterion 1 gives better performance than
criterion 2. This is probably because criterion 1 is more
closely related to the enhancement preprocess. Nevertheless,
the combined criterion is able to achieve the highest recog-
nition rates. Thus, it can conclude that the joint decision is
more accurate than the individual one.

The average recognition rates of the cepstral SD approach
with the individual or combined weights are also listed in the
Table 2b. Here, weight 1 is used from (19), weight 2 is derived
from the (20), and the combined weight refers to (21). As
the combined criterion does in the cepstral marginalisation,

the combined weight also gives the best performance in the
cepstral SD approaches.

4.3. Influence of different types of noises
to the cepstral feature

One of the major factors that affect the performance of the
marginalisation and SD approaches is how severely the noises
distort the features. If we consider the effect of cepstral dis-
tortions to be additive, the normalized mean square error
(NMSE) can be used to evaluate the distortion level of a
cepstral component [13]. To show the impacts of differ-
ent types of noises to the MFCCs, we compute the NMSE
between the corresponding components of the clean and
noisy MFCCs when the SNR is 10 dB. The results are listed
in Table 3.

As can be seen, the four types of full band noises dis-
tort all the MFCC components. For the white noise and pink
noise, C1 are the mostly affected. For the F16 noise, C9 and
C10 are much more affected than the other components. Ob-
viously, the additive noises in the time domain cause the sig-
nal to be distorted in the cepstrum domain. The level of dis-
tortions depends both on the level of noises and the clean
speech. The results in Table 3 show the trend that the noises
with flat spectra will distort the lowest cepstral component
most. The noises with energies that concentrate on some fre-
quency bands will give particular distortions to some cepstral
components. Due to the nonstationary property of factory
noise, it is hard to analysis its impact through the NMSE. But
the result shows that C1 and the higher-order coefficients are
more affected. Among the four types of noises, the NMSE of
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TaBLE 3: NMSE of the 12 MFCCs for the four types of noises when the SNR is 10 dB.

Cl C2 C3 C4 C5 C6 C7 C8 C9 C10 Cl1 Cl12

White 2.53 0.79 0.96 0.52 0.94 0.47 0.96 0.72 0.97 0.89 0.80 1.07

F16 1.02 0.47 0.60 0.41 0.65 0.44 0.80 0.67 2.09 2.15 0.73 0.85

Pink 1.24 0.53 0.70 0.41 0.75 0.43 0.77 0.67 0.88 0.80 0.76 0.88

Factory 0.85 0.52 0.59 0.38 0.72 0.42 0.75 0.66 0.88 0.79 0.69 0.97

white noise is the largest. This phenomenon explains why the [7] S. Okawa, E. Bocchieri, and A. Potamianos, “Multi-band

cepstral marginalisation approach performs worse under the
white noise condition.

5. CONCLUSION

In this paper, we propose the new cepstral marginalisa-
tion and cepstral soft decision approaches for the MFCCs.
In the experiments on the T146 speaker-dependent isolated
word corpus and four types of noises from the NOISEX-
92 database, it shows that the proposed approach can effi-
ciently improve the performance of the MFCC recognizer
and give higher average recognition rates than the filter bank
marginalisation. It shows that the marginalisation approach
that is applied to the features rather than filter bank represen-
tations can also perform well when these features are not too
severely affected by the environment noises. The cepstral soft
decision approach gives the best performance in the experi-
ments. It is believed that further improvement can be gained
when the weights are determined in a more precise manner.
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