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An unsupervised data clustering method, called the local maximum clustering (LMC) method, is proposed for identifying clusters
in experiment data sets based on research interest. A magnitude property is defined according to research purposes, and data sets
are clustered around each local maximum of the magnitude property. By properly defining a magnitude property, this method
can overcome many difficulties in microarray data clustering such as reduced projection in similarities, noises, and arbitrary gene
distribution. To critically evaluate the performance of this clusteringmethod in comparison with othermethods, we designed three
model data sets with known cluster distributions and applied the LMC method as well as the hierarchic clustering method, the
K-mean clustering method, and the self-organized map method to these model data sets. The results show that the LMC method
produces the most accurate clustering results. As an example of application, we applied the method to cluster the leukemia samples
reported in the microarray study of Golub et al. (1999).
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1. INTRODUCTION

Data analysis is a key step in obtaining information from
large-scale gene expression data. Many analysis methods and
algorithms have been developed for the analysis of the gene
expression matrix [1, 2, 3, 4, 5, 6, 7, 8, 9]. The clustering of
genes for finding coregulated and functionally related groups
is particularly interesting in cases where there is a complete
set of organism’s genes. A reasonable hypothesis is that genes
with similar expression profiles, that is, genes that are co-
expressed, may have something in common in their regula-
torymechanisms, that is, theymay be coregulated. Therefore,
by clustering together genes with similar expression profiles,

one can find groups of potentially coregulated genes and
search for putative regulatory signals. So far, many cluster-
ing methods have been developed. They can be divided into
two categories: supervised and unsupervised methods. This
work focuses on unsupervised data clustering. Some widely
used methods in this category are the hierarchic clustering
method [6], the K-mean clustering method [10], and the
self-organized map clustering method [9, 11].

The clustering of microarray gene expression data typi-
cally aims to group genes with similar biological functions
or to classify samples with similar gene expression profiles.
There are several factors that make the clustering of gene
expression data different from data clustering in a general
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sense. First, the “positions” of genes or samples are unknown.
That is, where the data points to be clustered locate is un-
known. Instead, the relations between data points (genes or
samples) are probed by a series of responses (gene expres-
sions). Generally, the correlation of the response series be-
tween data points is used as a measure of their similarity.
However, because the number of responses is limited and the
responses are not independent from each other, the correla-
tion can only provide a reduced description of the similarities
between data points. Just like a projection of data points in
a high-dimensional space to a low-dimensional space, many
data points far apart may be projected together. It often hap-
pens that genes that belong to very different categories are
clustered together according to gene expression data. Sec-
ond, there is only a small number of genes presented in a
microarray that are relevant to the biological processes un-
der study. All the rest become noises to the analysis, which
need to be filtered out based on some criteria before cluster-
ing analysis. Third, the genes chosen to array do not neces-
sarily represent the functional distribution. That is, there ex-
ist redundant genes of some functions while very few genes
exist of some other functions. This may result in the neglect
of those less-redundant gene clusters in a clustering analysis.
These facts rise difficulties and uncertainties for cluster anal-
ysis. Fortunately, a microarray experiment does not attempt
to provide accurate cluster information of all genes being ar-
rayed. Instead, besides many other purposes, a microarray
experiment is designed to identify and study those groups,
which seem to participate in the studied biological process.
The complete gene cluster will be the job of many molecular
biology experiments as well as other technologies.

With our interest focused on those functional related
genes, we need to identify clusters functionally relevant to
the biological process of interest. As stated above, clustering
methods solely dependent on similarities may suffer from
the difficulties of reduced projection, noises, and arbitrary
gene distribution and may not be suitable for microarray re-
search purposes. In this work, we present a general approach
to clustering a data set based on research interest. A quan-
tity, which is generally called magnitude, is introduced to
represent a property of our interest for clustering. The fol-
lowing sections explain in detail the concept and the clus-
tering method, which we call the local maximum clustering
(LMC) method. Additionally, for the purpose of compari-
son, we worked out an approach to quantitatively calculate
the agreement between two hierarchic clustering results for
the same data set. Using three model systems, we compared
this clustering method with several well-known clustering
methods. Finally, as an example of application, we applied
the method to cluster the leukemia samples reported in the
microarray study of Golub et al. [12].

2. METHODS AND ALGORITHMS

2.1. Distances, magnitudes, and clusters

For a data set with unknown absolute positions, the distance
matrix between data points is used to infer their relative po-
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Figure 1: A two-dimensional (x-y) distribution data set with the
“magnitude” as the additional dimension.

sitions. For a biologically interesting data set like genes or
tissue samples, the distances are not directly measurable. In-
stead, the responses to a series event are used to estimate the
distances or similarity. It is assumed that data points close to
each other have similar responses.

For microarray gene expression data, people often use
Pearson correlation function to describe the similarity be-
tween genes i and j:

Cij = 1
n

n∑
k=1

(
Xik − Xi

σi

)(
Xjk − X j

σj

)
, (1)

where Xi = (Xik)n, k = 1, . . . ,n, represents the data point of
gene i, which consists of n responses, Xik is the kth response
of gene i, Xi is the average value of Xi, Xi = (1/n)

∑n
k=1 Xik,

and σi is the standard deviation of Xi, σi =
√
X2
i − X

2
i .

From (1), we can see that Cij ranges from −1 to 1, with
1 representing identical responses between genes i and j and
−1 the opposite responses. The distance between a pair of
genes is often expressed as the following function:

ri j = 1− Cij . (2)

We introduce a quantity called magnitude to represent
our research interest. This magnitude is introduced as an ad-
ditional dimension to the distribution space. We image a set
of data points distributed on x-y plan, a two-dimensional
space, the magnitude will be an additional dimension, z-
dimension (Figure 1). Usually, a cluster is a collection of data
points that are more similar to each other than to data points
in different clusters. Clusters of this type are characterized
by a magnitude of the local densities with each cluster rep-
resenting a high-density region. Here, the local density is the
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magnitude used to define clusters. We should keep in mind
that the magnitude property can be properties other than
density; it can be gene expression levels or gene differential
expressions as described later. As can be seen from Figure 1,
each cluster is represented by a peak on the magnitude sur-
face. Obviously, clusters in a data set can be found out by
identifying peaks on the magnitude surface. Because clusters
are peaks on the magnitude surface, the number and size of
clusters depend only on the surface shape.

Current existing clustering methods like the hierarchic
clustering method do not explicitly use the magnitude prop-
erty. These clusteringmethods assume clusters locate at high-
density areas of a distribution. In other words, these cluster-
ing methods implicitly use distribution density as the mag-
nitude of clustering.

The choosing of the magnitude property determines
what we want to be the cluster centers. If we want clusters to
center at high-density areas, using distribution density would
be a natural choice for the magnitude. A simple distribution
density can be calculated as

Mi =
n∑
j=1

δ
(
ri j
)
, (3)

where δ(ri j) is a step function:

δ
(
ri j
) =

{
1 ri j ≤ d

0 ri j > d.
(4)

Equation (3) indicates the magnitude of data point i andMi

is equal to the number of data points within distance d from
data point i. A smaller d will result in a more accurate local
density but a larger statistic error. To make the magnitude
smooth, an alternative function can be used for δ(ri j):

δ
(
ri j
) = exp

(
− r2i j

2d2

)
. (5)

For microarray studies, directly clustering genes based
on density may result in misleading results. The main rea-
son is that we do not know the real “positions” of the genes.
The relative similarities between genes are probed by their
responses to an often very limited number of samples. The
similarity obtained this way is a reduced projection of “real”
similarities, andmany very different functional genesmay re-
spond similarly in the limited sample set. Therefore, the den-
sities estimated from the response data are not reliable and
change from experiment to experiment. Further, the correla-
tion function captures similarity of the shapes of two expres-
sion profiles, but it ignores the strength of their responses.
Some noises in response measurement may cause a nonre-
sponsive gene to be of high correlation with a high-response
gene. Another reason is that the genes arrayed in a chip may
vary in redundancy, resulting in different density distribu-
tions. An extreme case is when a single gene is redundant so
many times that they occupy a large portion of an array—a
cluster centering at this gene would be created. Additionally,
for the thousands of genes arrayed on a gene chip, generally,
only a handful of genes show varying expression levels, which

we used to probe gene functions. All the rest only show unde-
tectable expressions or simply noises whichmay result in very
high correlation to some genes. Normally, only those genes
with significantly varying expression levels can be of mean-
ingfully functional relation, while for the rest we can draw
little information from a microarray experiment. Therefore,
for a microarray study, a good choice of magnitude would be
a quantity measuring the variation of expression levels as in

Mi = δ2
(
lnRi

) = 1
n

n∑
j=1

(
lnRij

)2 −

 1
n

n∑
j=1

lnRij



2

, (6)

where Ri is the expression ratio between sample and control
and n is the number of samples for each gene. Equation (6)
is a magnitude defined as the differential expression of genes.
By this definition, the clusters are always centered at high-
differential expression genes. Because this paper focuses on
the presentation and evaluation of the local maximum clus-
tering method, we will not discuss the application of (6) in
identifying high-response gene clusters. This equation is pre-
sented here only to illustrate the idea of the magnitude prop-
erties.

2.2. The local maximum clusteringmethod

Two types of properties characterize the data points: magni-
tude of each data point and distance (or similarity) between
a pair of data points. We define a cluster as a peak on the
magnitude surface. Therefore, we can cluster a data set by
identifying peaks on the magnitude surface.

There are many approaches to identifying peaks on a sur-
face. Here, in this work, we use a method called the local
maximum method to identify peaks. Identification of peaks
on a surface can be done by searching for the local maximum
point around each data point. Assume there is a data set of
N data points to be clustered. The local maximum of a data
point i is the data point whose magnitude is the maximum
among all the data points within a certain distance from the
data point i. A peak has the maximum magnitude in its lo-
cal area, therefore, its local maximum is itself. By identify-
ing all data points whose local maximum points are them-
selves, we can locate all the peaks on the magnitude surface.
The distance used to define the local area is called resolution.
The number of peaks on a magnitude surface depends on the
shape of the surface and the size of resolution. After the peaks
are identified, all data points can be assigned into these peaks
according to their local maximum points in the way that a
data point belongs to the same peak as its local maximum
point.

Figure 2 shows a one-dimensional distribution of a data
set along the x-axis. The y-axis is the magnitude of the data
set. The peaks represent cluster centers depending on the res-
olution r0. Clusters can be identified by searching for the
peaks in the distribution, and all data points can be clustered
into these peaks according to the local maximums of each
data point. Assume that r1, r3, and r4 are the distances from
peaks 1, 3, and 4 to their nearest equal-magnitude neighbor
points. With a resolution r0 < r3, four peaks, 1, 2, 3, and 4 can
be identified as the local maximum points of themselves. All
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Figure 2: Clustering a data set based on the local maximum of its
magnitude. There are 4 peaks, 1, 2, 3, and 4; and r1, r3, and r4 are
the distances from peaks 1, 3, and 4 to their nearest equal magnitude
neighbor points. Assume r3 < r1 < r4.

data points can be clustered into these four peaks according
to their local maximum points. For example, for data point
a, if data point b is the one that has the maximum magni-
tude in all data points within r0 from a, we say b is the local
maximum point of a. Point a will belong to the same peak
as point b. Similarly, point b belongs to the same peak as its
local maximum point c and point c belongs to peak 4. There-
fore, points a, b, and c all belong to peak 4.

Obviously, resolution r0 plays a crucial role in identifying
peaks. For each peak p, we define its resolution limit rp as the
longest distance within which peak p has themaximummag-
nitude. For a given resolution r0, a peak p will be identified
as a cluster center if rp > r0. As shown in Figure 2, there are
four peaks, 1, 2, 3, and 4. If r0 > r1, peak 1 will not be iden-
tified and, together with all its neighbors, will be assigned to
cluster 2. Similarly, cluster 3 or 4 can only be identified when
r0 < r3 or r0 < r4, respectively.

The peaks identified can be further clustered to pro-
duce a hierarchic cluster structure. For the example shown
in Figure 2, if we assume that r4 > r1 > r3, by using r0 < r3,
we can get four clusters, while, using r1 > r0 > r3, clusters 2
and 3 merge to cluster 5 at peak 2, with r4 > r0 > r1, clusters
1 and 5 merge into cluster 6 at peak 2, and with r0 > r4, all
clusters merge into a single cluster at peak 2.

The algorithm of the LMC method is described by the
following steps.

(i) For a data set {i}, i = 1, 2, . . . ,N , calculate the dis-
tances between data points {ri j} using (1) and (2).
From the distance matrix, calculate the magnitude of
each data point {M(i)} using (5).

(ii) Set resolution r0 = min{ri j}+ δr, i �= j. Here, δr is the
resolution increment. Typically, set δr = 0.01.

(iii) Search for the local maximum point L(i) for each data
point i. For all j, with ri j < r0, there isM(L(i)) ≥M( j).

(iv) Identify peak centers {p}, where L(p) = p. Each peak
represents the center of a cluster.

(v) Assign each data point i to the same cluster as its local
maximum point L(i).

(vi) If there is more than one cluster, generate higher-
level clusters from the peak point data set {p}, p =
1, 2, . . . ,np, following steps (ii), (iii), (iv), and (v).

2.3. Comparison of hierarchic clusters

For the same data set, different clustering methods may pro-
duce different clusters. It is, in general, a nontrivial task to
compare different clustering results of the same data set and
many efforts have been made for such clustering comparison
(e.g., [13]). For hierarchic clustering, comparison is more
challenging because a hierarchic cluster is a cluster of clus-
ters. To quantitatively compare hierarchic clusters from dif-
ferent methods, we define the following agreement function
to describe the agreement between hierarchic clustering re-
sults.

We use {H1} and {H2} to represent two hierarchic clus-
tering results for the same data set. In the following discus-
sions, N1 and N2 are the numbers of clusters in {H1} and
{H2}, respectively, n1i and n2 j represent the data point num-
bers in cluster i of {H1} and cluster j of {H2}, respectively,
and mij is the number of data points existing both in cluster
i of {H1} and in cluster j of {H2}. Therefore, 2mij/(n1i +n2 j)
represents how well the two clusters, cluster i of {H1} and
cluster j of {H2}, are similar to each other. A value of 1 in-
dicates they are identical and a value of 0 indicates they are
completely different. We useM1i({H2}) to describe how well
cluster i of {H1} is clustered in {H2}. We call M1i({H2}) the
match of {H1} to {H2} in cluster i. Similarly, the match of
{H2} to {H1} in cluster j is denoted asM2 j({H1}), which de-
scribes how well cluster j of {H2} is clustered in {H1}. They
are calculated using the following equations:

M1i
({
H2
}) = max

j∈N2

{ 2mij

n1i + n2 j

}
,

M2 j
({
H1
}) = max

i∈N1

{ 2mij

n1i + n2 j

}
.

(7)

Equations (7) mean that the match of {H1} to {H2} in a clus-
ter is the highest similarity between this cluster and any clus-
ter of {H2}.

We use the agreement A({H1}, {H2}) to describe the
overall similarity between two clustering results, which is a
weighted average of all cluster matches, as

A
({
H1
}
,
{
H2
}) = 1

2
∑N1

i=1 n1i

N1∑
i=1

n1iM1i
({
H2
})

+
1

2
∑N2

j=1 n2 j

N2∑
j=1

n2 jM2 j
({
H1
})
.

(8)

To further illustrate the definition of the agreement and
matches, we show an example of two hierarchic clustering
results in Figures 3a and 3b. These two hierarchic clustering
results, {HA} and {HB}, are for the same data set of 1000
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Figure 3: (a) The hierarchic clustering structure {HA} with 10 clusters; the match of each cluster to the cluster structure {HB} are labeled in
parentheses; (b) the hierarchic cluster structure {HB} with 6 clusters; the match of each cluster to the cluster structure {HA} are labeled in
parentheses.

data points. The hierarchic clustering structure {HA} has 10
clusters and {HB} has 6 clusters. Clusters A1, A4, and A10 of
{HA} have the same data points as clusters B1, B2, and B6 of
{HB}, respectively. Therefore, their matches are 1 no matter

how different their subclusters are. The matches of clusters
are calculated according to (7) and are labeled in the figures.
The agreement between {HA} and {HB} can be calculated
using (8) as follows:

A
({
HA
}
,
{
HB
})

=
∑10

i=1 nAiMAi

2
∑10

i=1 nAi
+

∑6
j=1 nB jMB j

2
∑6

j=1 nB j

= 300× 1 + 100× 0.5 + 200× 0.67 + 700× 1 + 300× 0.8 + 200× 0.1 + 100× 0.4 + 400× 0.8 + 300× 0.86 + 100× 1
2(300 + 100 + 200 + 700 + 300 + 200 + 100 + 400 + 300 + 100)

+
300× 1 + 700× 1 + 200× 1 + 500× 0.89 + 400× 0.86 + 100× 1

2(300 + 700 + 200 + 500 + 400 + 100)

= 0.400 + 0.475

= 0.875.
(9)
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Table 1: The possibility parameters used to generate the three model systems. Each model has 6 clusters. The parameters (hi,wi) represent
the height and width of cluster i in the possibility distribution in (10).

Model (h1,w1) (h2,w2) (h3,w3) (h4,w4) (h5,w5) (h6,w6)

1 (1, 0.05) (1, 0.02) (1, 0.02) (1, 0.05) (1, 0.02) (1, 0.02)

2 (1, 0.10) (1, 0.005) (1, 0.05) (1, 0.10) (1, 0.005) (1, 0.10)

3 (1, 0.10) (2, 0.005) (3, 0.05) (4, 0.10) (5, 0.005) (6, 0.10)

3. RESULTS ANDDISCUSSIONS

The LMC method has several features. First, it is an unsu-
pervised clustering method. The clustering result depends on
the data set itself. Second, it allows magnitude properties to
be used to identify clusters of interest. Third, it automati-
cally produces a hierarchic cluster structure with a minimum
amount of input. In this work, we designed three model sys-
tems with known cluster distributions to evaluate the perfor-
mance of the LMCmethod and compare it with other meth-
ods. Finally, as an example of application, we use this method
to cluster the leukemia samples reported by Golub et al. [12]
and compare the result with experimental classification.

3.1. Themodel systems

Model systems with known cluster distributions have often
been used in method development. The model systems used
here are designed to mimic microarray gene expression data
in the way that each data point is a response series of ex-
pression values, and the distance or similarity between data
points is measured by their correlation function. It is the cor-
relation function that determines the distance between data
points and the actual number of expression values in a re-
sponse series, which does not affect the clustering results; for
simplicity and convenience of data generation and analysis,
we use only three expression values for each response series,
namely, x, y, and z. The response series of gene i is repre-
sented by (xi, yi, zi). The correlation function and distance
between gene i and gene j is calculated according to (1) and
(2) with n = 3.

The model systems are designed to have 6 clusters with
cluster centers at (Xj ,Yj ,Zj), j = 1, 2, 3, 4, 5, and 6. We use
the following possibility distribution to generate the expres-
sion data of 1000 genes (xi, yi, zi), i = 1, 2, . . . , 1000:

ρ
(
xi, yi, zi

) = 6∑
j=1

hj exp

(
−
(
1− Cij

)2
2w2

j

)
, (10)

where ρ(xi, yi, zi) represents the possibility function to have a
gene with a response series of ρ(xi, yi, zi), and hj and wj are
the height and width of cluster j. The six cluster centers are
genes with the following response series:

(i) (−√2/2, 0,√2/2);
(ii) (−√2/2,√2/2, 0);
(iii) (−1/√6, 2/√6,−1/√6);
(iv) (0,−√2/2,√2/2);

arctg(Ci1/Ci6)/π

ρ(
x i
,y

i,
z i
)

Model 3

Model 2

Model 1
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Figure 4: Data distribution in the three model data sets. The func-
tion arctg(Ci1/Ci6)/π is used for the x-axis to show all six clusters
without overlapping. Here, Ci1 and Ci6 are the correlations of data
point i with the centers of clusters 1 and 6, respectively. For each
model, 1000 data points are generated.

(v) (2/
√
6,−1/√6,−1/√6);

(vi) (
√
2/2,−√2/2, 0).

The correlation matrix between these centering genes is

[
Cij
]
6×6 =



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.

(11)

Three model data sets, each has 1000 data points, are
generated using the parameters listed in Table 1. Their dis-
tributions are shown in Figure 4. The clusters are separated
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Cluster 11

Cluster 10

Cluster 9

Cluster 7 Cluster 8

Cluster 5Cluster 6Cluster 3 Cluster 2 Cluster 1 Cluster 4

Figure 5: The hierarchic cluster structure of the model data sets.

Table 2: Comparison of the clustering results of different methods. The letters L, H, K, and S stand for the LMC method, the hierarchic
clustering method, the K-mean clustering method, and the self-organization map clustering method, respectively.

Model 1 Model 2 Model 3

Clusters L H K S L H K S L H K S

Matches to the
models (%)

1 99.7 97.2 68.0 68.0 87.8 87.8 87.8 87.2 89.8 85.2 85.0 85.2

2 99.2 96.8 65.2 65.2 98.0 94.6 35.6 36.0 78.2 85.8 41.0 40.8

3 99.6 99.6 69.7 88.3 94.4 80.8 71.1 67.4 91.8 43.8 95.8 70.7

4 99.8 99.8 68.8 77.4 69.5 67.5 77.5 72.3 89.0 78.8 71.8 70.8

5 98.1 99.2 62.3 63.1 80.1 76.9 76.2 80.4 88.4 76.6 78.8 65.4

6 98.4 98.4 70.6 70.2 92.5 96.9 70.0 45.2 91.1 96.2 75.8 55.8

7 99.8 99.8 — — 99.8 99.7 — — 99.8 99.8 — —

8 100 100 — — 97.2 95.0 — — 95.1 94.4 — —

9 99.8 99.8 — — 98.4 82.8 — — 95.0 94.4 — —

10 100 76.8 — — 100 100 — — 100 100 — —

Overall agreement (%) 96.9 69.4 76.2 81.0 88.5 65.1 75.3 76.0 89.5 67.2 79.5 72.9

by minimums between peaks, and the data points can be ac-
curately assigned to their clusters. As can be seen (Figure 4)
in model 1, the six clusters have equal heights and are clearly
separated from each other, while in model 2, clusters 1, 3, 4,
and 5 are much broader, and in model 3, their heights are
different. These three model data sets present some typical
cases that a clustering method would deal with.

Based on the correlations between the clusters, (11), these
model data sets have a hierarchic cluster structure as shown
in Figure 5. The whole data set belongs to a single cluster 11,
which is split into two clusters, 7 and 10. Cluster 7 is divided
into clusters 2 and 3. Cluster 10 is further divided into cluster
9, which consists of clusters 1 and 4, and cluster 8, which
consists of clusters 5 and 6.

We applied the LMC method (L), the hierarchic clus-
tering method [6] (H), the K-mean clustering method [10]
(K), and the self-organized map clustering method [11] (S)
to these three model data sets. The LMC method, as well
as the hierarchic clustering method, produces a hierarchic
cluster structure. The K-mean and the self-organized map
methods require a predefined cluster number prior to clus-
tering. For comparison purpose, we set the cluster num-
ber to 6 when performing clustering using the K-mean

and the self-organized map method, and only compare the
agreement between the clustering results with the bottom
6 clusters of the model data sets. Table 2 listed the matches
and agreements between the results from the four cluster-
ing methods and the known clusters of the model data
sets.

Comparing the matches and agreements between the
clustering results and the known clusters of the model data
sets, we can see clearly that the LMC method produces the
most accurate result. The hierarchic clustering method pro-
duces many tree structures, within which there exist good
matches to the clusters in the models. Because it produces
too many trees, the agreement between the model and re-
sult from the hierarchic method is low. The K-mean and the
self-organized map methods produce worse matches to the
clusters in the models than the LMC and the hierarchic clus-
tering methods.

3.2. An application tomicroarray
gene expression data

Application of the LMC method to gene expression data is
straightforward. As an example of the application, we applied
this method to cluster the 72 samples collected by Golub et
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Table 3: Classification of the acute lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML) samples [12].

Cluster levels
Samples Type Source Lineage FAB Sex

1 2 3 4

A

A1

A11

A111

4 ALL BM B-cell — —

20 ALL BM B-cell — —

5 ALL BM B-cell — —

19 ALL BM B-cell — —

A112

46 ALL BM B-cell — F

12 ALL BM B-cell — F

42 ALL BM B-cell — F

48 ALL BM B-cell — F

7 ALL BM B-cell — F

59 ALL BM B-cell — F

8 ALL BM B-cell — F

15 ALL BM B-cell — F

18 ALL BM B-cell — F

43 ALL BM B-cell — F

56 ALL BM B-cell — F

40 ALL BM B-cell — F

44 ALL BM B-cell — F

27 ALL BM B-cell — F

26 ALL BM B-cell — F

55 ALL BM B-cell — F

39 ALL BM B-cell — F

41 ALL BM B-cell — F

13 ALL BM B-cell — F

A113

17 ALL BM B-cell — M

16 ALL BM B-cell — M

21 ALL BM B-cell — M

45 ALL BM B-cell — M

22 ALL BM B-cell — M

25 ALL BM B-cell — M

24 ALL BM B-cell — M

47 ALL BM B-cell — M

1 ALL BM B-cell — M

49 ALL BM B-cell — M

A12

23 ALL BM T-cell — M

10 ALL BM T-cell — M

3 ALL BM T-cell — M

11 ALL BM T-cell — M

2 ALL BM T-cell — M

6 ALL BM T-cell — M

14 ALL BM T-cell — M

9 ALL BM T-cell — M

A2
A21

A211
72 ALL PB B-cell — —

71 ALL PB B-cell — —

A212 70 ALL PB B-cell — F

A213
68 ALL PB B-cell — M

69 ALL PB B-cell — M

A22 67 ALL PB T-cell — M
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Table 3: Continued.

Cluster levels
Samples Type Source Lineage FAB Sex

1 2 3 4

B

B1

B11
66 AML BM — — M

65 AML BM — — M

B12

35 AML BM — M1 —

38 AML BM — M1 —

61 AML BM — M1 —

32 AML BM — M1 —

B13

B131

58 AML BM — M2 —

34 AML BM — M2 —

28 AML BM — M2 —

37 AML BM — M2 —

51 AML BM — M2 —

29 AML BM — M2 —

33 AML BM — M2 —

53 AML BM — M2 —

B132 57 AML BM — M2 F

B133 60 AML BM — M2 M

B14
B141

31 AML BM — M4 —

50 AML BM — M4 —

B142 54 AML BM — M4 F

B15
36 AML BM — M5 —

30 AML BM — M5 —

B2
B21

B211 63 AML PB — — F

B212
64 AML PB — — M

62 AML PB — — M

B22 52 AML PB — M4 —

al. [12] from acute leukemia patients at the time of diagno-
sis. We choose this data because experimental classification
is available for comparison. Table 3 lists the clusters based
on experiment classification [12]. The 72 samples contain 47
acute lymphoblastic leukemia (ALL) samples (cluster A) and
25 acute myeloid leukemia (AML) samples (cluster B). These
samples are from either bone marrow (BM) (clusters A1 and
B1) or peripheral blood (PB) (clusters A2 and B2). The ALL
samples fall into two classes: B-lineage ALL (clusters A11 and
A21) and T-lineage ALL (clusters A12 and A22), some of
which are taken from known sex patients (F for female andM
for male). Some of the AML samples have known FAB types,
M1–M5.

The whole set of genes are filtered based on expression
levels, and 1769 genes with expression levels higher than
20 in all the 72 samples are used for our clustering. That
is, for each sample, its response series contains 1769 gene
expression values. The logarithms of the gene expression lev-
els are used in correlation function calculation to reduce the
noise effect at high expression levels.

We applied the LMC method and the hierarchic cluster-
ing method [6] to the 72 samples and compared the results

with the experiment clusters listed in Table 3. The magni-
tude is calculated using (5) so that the cluster centers will
be the peaks of local density of data points. Only with this
magnitude, the two methods are comparable. The matches
of each cluster and the overall agreements of the experimen-
tal classification to the clustering results are listed in Table 4.
As can be seen, the ALL samples (cluster A) can be better
clustered by the LMC method (MA(LMC) = 0.792) than by
the hierarchic clustering method (MA(HC) = 0.784), while
the AML samples can be better described by the hierarchic
clustering method (MB(HC) = 0.526) than by LMC method
(MB(LMC) = 0.521). Overall, the experimental classification
agrees better with the clustering result of the LMC method
(the agreement is 0.643) than with that of the hierarchic clus-
tering method (the agreement is 0.624).

This example shows that the LMC method, like the hi-
erarchic clustering method, can be used for hierarchic clus-
tering of microarray gene expression data. Unlike the hierar-
chic clustering method, the LMC method has the flexibility
to choose magnitude properties, for example, using (6) to
cluster high-differential expression genes, which will be the
topic of future studies.
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Table 4: Comparison of the matches and agreements of the experi-
mental classification listed in Table 3 to the clustering results of the
LMC method and the HC method.

Clusters Matches to LMC Matches to HC

A 0.7924 0.7836

A1 0.74 0.7252

A11 0.6304 0.6506

A111 0.5 0.5

A112 0.4358 0.4706

A113 0.3158 0.353

A12 0.6666 0.6666

A2 0.4444 0.4

A21 0.5 0.421

A211 0.6666 0.3076

A213 0.8 0.25

B 0.5208 0.5264

B1 0.5 0.4652

B11 0.0816 0.25

B12 0.1818 0.2858

B13 0.353 0.3076

B131 0.4 0.3636

B14 0.4 0.2858

B141 0.4444 0.3334

B15 0.2222 0.4

B2 0.1066 0.1112

B21 0.081 0.0846

B212 0.0548 0.0572

Agreement 0.643 0.624

4. CONCLUSION

This work proposed the local maximum clustering (LMC)
method and evaluated its performance as compared with
some typical clustering methods through designed model
data sets. This clustering method is an unsupervised one and
can generate hierarchic cluster structures with minimum in-
put. It allows a magnitude property of research interest to be
chosen for clustering. The comparison using model data sets
indicates that the local maximummethod can produce more
accurate cluster results than the hierarchic, the K-mean, and
the self-organized map clustering methods. As an example
of application, this method is applied to cluster the leukemia
samples reported in themicroarray study of Golub et al. [12].
The comparison shows that the experimental classification
can be better described by the cluster result from the LMC
method than by the hierarchic clustering method.
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