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Probabilistic Boolean networks (PBNs) comprise a model describing a directed graph with rule-based dependences between its
nodes. The rules are selected, based on a given probability distribution which provides a flexibility when dealing with the uncer-
tainty which is typical for genetic regulatory networks. Given the computational complexity of the model, the characterization of
mappings reducing the size of a given PBN becomes a critical issue. Mappings between PBNs are important also from a theoretical
point of view. They provide means for developing a better understanding about the dynamics of PBNs. This paper considers two
kinds of mappings reduction and projection and their effect on the original probability structure of a given PBN.
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1. INTRODUCTION

Given a set of genes, the evolution of their expressions consti-
tutes a dynamical system over time. Owing to the complexity
of gene interaction and the paucity of data, homogeneous
transitions are customarily assumed. Many different gene-
regulatory-network models have been proposed. Among de-
terministic dynamical systems, perhaps, the most attention
has been given to the Boolean network model [1, 2, 3]. In
this model, gene expression is quantized to only two levels:
ON and OFF. The expression level (state) of a gene is func-
tionally related, via a logical rule, to the expression states of
some other genes. The Boolean network model has yielded
insights into the overall behavior of large genetic networks
[4, 5, 6, 7], thereby facilitating the study of large data sets
in a global fashion. Here, we are concerned with a stochas-
tic extension of the Boolean model that results in probabilis-
tic Boolean networks [8, 9]. For these, similarities exist with
Bayesian networks [10, 11, 12, 13] and, more generally, with
models including stochastic components on the molecular
level [14, 15, 16].

The dynamical behavior of such networks can be used
to model many biologically meaningful phenomena—for in-
stance, cellular state dynamics, possessing switch-like be-
havior, stability, and hysteresis [17]. Besides the conceptual
framework offered by such models, there are practical uses,

such as the identification of suitable drug targets in cancer
therapy or inferring the structure of the genetic models from
experimental data, for example, from the gene expression
profiles [17]. To that end, a significant effort has gone into
identifying the structure of gene regulatory networks from
expression data [8, 18, 19, 20, 21, 22, 23].

Probabilistic Boolean networks (PBNs) [8, 9] constitute
a probabilistic generalization of Boolean networks and of-
fer a more powerful and flexible modeling framework. They
share the appealing rule-based properties of the Boolean net-
works, are robust to uncertainty both in the data and model
selection, and can be studied in the probabilistic context of
Markov chains (see also [23]). PBNs enable the systematic
study of global network dynamics and permit quantification
of the relative influence and sensitivity of genes in their in-
teractions with other genes. While the Boolean assumption
is useful for a simple up- or down-regulated model and also
useful for reducing the complexity of the network, the ba-
sic model extends directly to a finite-state-space model, and
inference has been studied in that context in [22].

A principle reason for studying regulatory models is
to develop intervention strategies to help in guiding the
time evolution of the network towards more desirable states.
Three distinct approaches to the intervention problem have
been considered in the context of PBNs by exploiting their
Markovian nature. First, one can toggle the expression status
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of a particular gene from ON to OFF or vice versa to facil-
itate the transition to some other desirable state or set of
states. Specifically, using the concept of the mean first pas-
sage time, it has been demonstrated how the particular gene,
whose transcription status is to be momentarily altered to
initiate the state transition, can be chosen to “minimize” (in
a probabilistic sense) the time required to achieve the desired
state transitions [24]. A second approach has aimed at chang-
ing the steady-state (long-run) behavior of the network by
minimally altering its rule-based structure [25]. A third ap-
proach has focused on applying ideas from control theory
to develop an intervention strategy in the general context of
Markovian genetic regulatory networks whose state transi-
tion probabilities depend on an external (control) variable
[26].

An obstacle in applying PBNs is the computational com-
plexity of the model. Owing to the large number of states
often present in full networks, it is sometimes necessary to
construct computationally tractable subnetworks while still
carrying sufficient structure for the application at hand—
hence, the need for size reducing mappings between PBNs.
Construction of mappings to alter PBN structure while at the
same time maintaining consistency with the original prob-
ability structure have previously been studied [27]. These
include projections onto subnetworks. Unfortunately, while
projections maintain the probabilistic structure by reduc-
ing the number of genes, they also increased the complex-
ity of the Boolean function structure. This paper considers
reduction mappings of a PBN that alter the structure of the
network while maintaining maximum consistency with the
original probability structure. Once this notion of maximum
consistency has been defined, the problem reduces to one of
optimization. Thus, a key issue to be addressed in this paper
is the positing of consistency conditions.

2. DEFINITIONS AND BASIC PROPERTIES

This section provides the definitions and the basic proper-
ties of probabilistic Boolean networks as given in [8]. While
there have been some generalization of the model [9, 24], we
stay with the original definition, as has the original analysis
of projection mappings between PBNs [27]—which plays a
key role in the present paper. A PBN (V ,F,C) is defined by a
set of nodes (genes)

V = {x1, . . . , xn
}
,

xi ∈ {0, 1},
i = 1, . . . ,n,

(1)

a list of predictors

F = (F1, . . . ,Fn
)
,

Fi =
{
f (i)1 , . . . , f (i)l(i)

}
,

f (i)j : {0, 1}n −→ {0, 1},

(2)

and a list

C = (C1, . . . ,Cn
)
,

Ci =
{
c(i)1 , . . . , c(i)l(i)

} (3)

of selection probabilities c(i)j = Pr{ f (i) = f (i)j } with respect

to a list (vector) of probability distributions (ν(1), . . . , ν(n)),
where f = ( f (1), . . . , f (n)) is a random vector taking values in
F. Each node xi represents the state (expression) of the gene
i, where xi = 0 means that the gene i is not expressed and
xi = 1 means that it is expressed. Every set Fi contains the

possible rules f (i)j of regulatory interactions for the gene i.
These functions are also called predictors for the correspond-
ing gene. Updating of the states of all genes in the network
is done synchronously according to the functions assigned
to the genes, and then the process is repeated. The predic-
tors for every gene xi are selected simultaneously and ran-
domly (according to the list C) from the sets Fi at every time
step.

A realization of a PBN is determined at every time step
by the vector f . If the predictor for each gene is chosen in-
dependently of the other predictors, then the number of all

possible realizations fk = ( f (1)k1
, . . . , f (n)kn

), k = 1, . . . ,N , of the
PBN isN =∏n

j=1 l( j). Even though the domain of every pre-

dictor f (i)j is assumed to be {0, 1}n, there are only a few input
genes that actually regulate xi at any given time step. This
simplification can be justified by some biological and practi-
cal considerations [8]. In general, there is no need of the as-
sumption that f (1), f (2), . . . , f (n) are selected independently;
however we make this assumption. A PBN that satisfies this
assumption is called independent. For an independent PBN,
we have

Pk = Pr
{
f = fk

} =
n∏
j=1

Pr
{
f (i) = f (i)kj

}
=

n∏
j=1

c(i)kj . (4)

In [8], the list C of selection probabilities is created using the
coefficient of determination [28, 29].

A PBN can be interpreted as a homogeneous Markov
chain relative to the states x = (x1, x2, . . . , xn) of the network
with transition probabilities given by

Pr
{
x −→ x′

} =
∑
i

Pi, (5)

where the summation is over the indices i such that i :
f (i)Ki1

(x1, . . . , xn) = x′1, . . . , f
(n)
Kin

(x1, . . . , xn) = x′n and K is the
matrix with rows given by the possible realizations of the
PBN [8].

3. PBN PROJECTIONMAPPING

Projectionmappings of a PBNA are defined in [27]. They are
introduced as an attempt to reduce the complexity ofAwhile
maintaining consistency with the original probability struc-
ture of the PBN. The basic projection Πi is a mapping that
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transforms the given PBN into a new one, where the num-
ber of the genes is reduced by one, that is, the gene xi in the
original network is “deleted.” Without loss of generality, we
may assume that the deleted gene is the last one, xn. Thus,
Πn : A→ Â, Â(V̂ , F̂, Ĉ), where

V̂ = {x1, . . . , xn−1
}
, F̂ = (F̂1, . . . , F̂n−1

)
,

Ĉ = (Ĉ1, . . . , Ĉn−1
)
.

(6)

Every F̂i and every Ĉi have twice as many elements as the cor-

responding sets Fi and Ci in A. Every predictor f (i)j ∈ Fi gen-

erates two predictors f̂ (i)0 j and f̂ (i)1 j according to the rule

f̂ (i)k j

(
x1, . . . ,xn−1

) = f (i)j

(
x1, . . . , xn−1, k

)
, (7)

where k ∈ {0, 1} and (x1, . . . , xn−1) is in Â. The new Boolean
functions f̂ (i)k j , k = 0, 1, have transition probabilities

ĉ(i)k j = c(i)j Pr
{
xn = k

}
, k ∈ {0, 1}. (8)

It is noticed in [27] that there is a difficulty in defining the

new selection probabilities ĉ(i)k j because the probabilities for
the gene xn depend on the current state probability distribu-
tion of the underlying Markov chain. One way to go around
the problem is to use the steady state distribution forA or, the
stationary distribution for A if there is no steady state distri-
bution. Another way is to estimate Pr{xn = k}, k = 0, 1, by
running A for some time. In doing so, one has to be aware
of the possible transient behavior of those probabilities. Yet,
another way to find the values of Pr{xn = k} is to use the data
set from which the original PBN A was created.

4. PBN REDUCTIONMAPPINGS

In this paper, we propose a new kind of mapping that also
reduces the size of a given PBN. In contrast to the projection
mapping discussed in the previous section, this newmapping
does not increase the number of the predictors for the genes
that remain in the new network. One has to keep in mind
that any such mapping might not preserve the probability
structure of the original PBN. For example, this will be the
case if the deleted gene is essential for one of the predictors of
the remaining genes [8].

Therefore, the problem is to find a reduction mapping
that renders a PBN close to the original one. To be more spe-
cific, consider an independent PBN A(V ,F,C) and a map-
ping πn : A→ Ã, Ã(Ṽ , F̃, C̃), where

Ṽ = {x1, . . . , xn−1
}
, F̃ = (F̃1, . . . , F̃n−1

)
,

Ĉ = (Ĉ1, . . . , Ĉn−1
)
,

(9)

where Ã(Ṽ , F̃, C̃) is an independent PBN with F̃i =
{ f̃ (i)1 , . . . , f̃ (i)l(i)}, f̃ (i)j : {0, 1}n−1 → {0, 1}, and c̃(i)j = P̃r{ f̃ (i) =
f̃ (i)j } with respect to some probability distribution vector

(ν̃(1), . . . , ν̃(n−1)). Note that the cardinality of F̃i is the same
as the cardinality of Fi. The new PBN Ã is called a reduced

PBN obtained from the original PBN A by deleting one of
the genes in A. As in Section 3, we have assumed without loss
of generality that the deleted gene is xn.

The reduction πn should yield a PBN that is “close” to the
original, and there are various natural ways to interpret this
closeness:

(A) for every c̃(i)j , |c̃(i)j − c(i)j | ≤ ε for some given ε ≥ 0;
(B) the transition probabilities for the state diagrams of A

and Ã are close;
(C) the stationary/steady-state distributions D of A and D̃

of Ã are close;
(D) every new predictor function f̃ (i)j is selected as close as

possible to both functions f̂ (i)k j , k = 0, 1, given by the

projected PBN Â.

Some comments about the preceding conditions are in order.

(A′) In the context of gene regulatory networks, one can
expect the number ε to be reasonably small, and per-
haps even equal to zero, that is, the predictors for the
genes in the reduced PBN Ã have the same selection
probabilities as their corresponding predictors from
the original PBN A.

(B′) Consider the portion of the state diagram of A con-
taining the states i1 = (x1, . . . , xn−1, 1), i0 = (x1, . . . ,
xn−1, 0), j1=(x′1, . . . , x

′
n−1, 1), and j0=(x′1, . . . , x

′
n−1, 0):

i1
pi1 j1 j1

pi1 j0

pi0 j1

i0
pi0 j0

j0

where pi1 j1 , pi0 j0 , pi1 j0 , and pi0 j1 are the corresponding
transition probabilities. If one “deletes” the node xn,
this diagram collapses to the following one:

i
p∗i j

j

where i = (x1, . . . , xn−1) and j = (x′1, . . . , x
′
n−1) are the

corresponding states in Ã, and

p∗i j = Pr
{
xn = 1

}(
pi1 j1 + pi1 j0

)

+ Pr
{
xn = 0

}(
pi0 j1 + pi0 j0

)
.

(10)

The transition probabilities for the reduced PBN Ã are
given by (see [8])

p̃i j =
∑
i

P̃i, (11)

where the summation is over the indices i such that i :
f̃ (i)Ki1

(x1, . . . , xn−1) = x′1, . . . , f̃
(i)
Kin−1 (x1, . . . , xn−1) = x′n−1.
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Since the transition probability matrices for A and Ã
have different dimensions, one cannot compare them
directly. This is why we compare the p̃i j ’s to the p∗i j ’s,
and the term “close” in part (B) refers to the quantity
maxi, j| p̃i j − p∗i j | being small.

(C′) Collapsing the state transition diagram, as described in
part (B′), induces a probability distribution D∗ on the
state space of Ã in the following way:

Pr∗
{
state in Ã = (x1, . . . , xn−1

)}

= Pr
{
state in A = (x1, . . . , xn−1, 0

)}

+ Pr
{
state in A = (x1, . . . , xn−1, 1

)}
.

(12)

Notice that one cannot compare the distribution D to
the distribution D̃ directly because they are defined
over different state spaces. This is why the term “close”
in (C) refers to the closeness of the distributionD∗ and
the stationary state distribution D̃ of Ã in the l1 sense,
that is, to the quantity

∥∥D∗ − D̃
∥∥
l1
=
∑

x̃∈S̃

∣∣Pr∗{x} − P̃r{x}∣∣ (13)

being small. Here, S̃ = {0, 1}n−1 is the set of all states
in Ã, and P̃r is associated with D̃.

(D′) Using the notation from (D), we have the following
proposition.

Proposition 1. Given a PBN A with a stationary state distri-
bution D, consider the projected PBN Â. Then

ED


∂ f (i)j

∂xn


 =

∥∥∥ f̂ (i)0 j − f̂ (i)1 j

∥∥∥
l2
n−1

1

= ED∗
(∣∣∣ f̂ (i)0 j − f̂ (i)1 j

∣∣∣
)
. (14)

Here the space l2
n−1

1 is endowed with the probability measure
P̃r defined by the distribution D∗, and ED means the expecta-
tion of the corresponding random variable with respect to the
distribution D.

Proof. The claim in this proposition becomes obvious if
one notices that for every state (x1, . . . , xn−1, xn) ∈ {0, 1}n,
where ∂ f (i)j /∂xn = 1, there are two terms in the sum that

compute ED(∂ f
(i)
j /∂xn), namely, Pr{(x1, . . . , xn−1, 0)} and

Pr{(x1, . . . , xn−1, 1)}.
The proposition plays an important role in selecting

the new predictor function f̃ (i)j . Notice that the expectation

ED(∂ f
(i)
j /∂xn) represents the influence In( f

(i)
j ) of the gene xn

on the predictor f (i)j (cf. [8]). In the special case when xn

is not essential for the function f (i)j , the new predictor can
be selected to be identically equal to either of the two possi-

ble predictors f̂ (i)0 j and f̂ (i)1 j in the projected PBN Â. Gener-

ally speaking, the selection of the new predictor f̃ (i)j should

minimize both ED∗(| f̂ (i)0 j − f̃ (i)j |) and ED∗(| f̃ (i)j − f̂ (i)1 j |). The
inequality

ED∗
(∣∣∣ f̂ (i)0 j − f̂ (i)1 j

∣∣∣
)
≤ ED∗

(∣∣∣ f̂ (i)0 j − f̃ (i)j

∣∣∣
)

+ ED∗
(∣∣∣ f̃ (i)j − f̂ (i)1 j

∣∣∣
) (15)

provides a measurement of how well the reduction map-
ping preserves the predictors from the original PBN. “Delet-

ing” a gene xk with bigger influence Ik( f
(i)
j ) on the predictor

f (i)j produces a new predictor f̃ (i)j which cannot be closer to

f (i)j when compared to the new predictor resulting from the

“deletion” of a gene xl with smaller influence Il( f
(i)
j ) on f (i)j .

In other words, “deleting” essential genes from the original
PBN comes with a “price”—the predictor functions for the
reduced PBN cannot be too close to the original predictors.

The selection of every function f̃ (i)j ∈ F̃i has to be per-

formed pointwise, that is, for each state in S̃, define

U =
{
x = (x1, . . . , xn−1

) ∈ S̃ : f̂ (i)0 j (x) = f̂ (i)1 j (x)
}

(16)

and W = S̃ \ U . Clearly, f̃ (i)j ≡ f̂ (i)0 j ≡ f̂ (i)1 j on the set U . For
the states in the remaining set W , one has to decide to what
degree one favors certain states in S = {0, 1}n which in its

turn defines f̃ (i)j as either equal to f̂ (i)0 j or to f̂ (i)1 j . Motivated
by the preceding remarks about the conditions (A), (B), (C),
and (D), we now design a selection procedure for the func-

tions f̃ (i)j .

Selection procedure

(a) For all i, j, select numbers −1 ≤ ω(i)
j ≤ 1.

(b) For every state x = (x1, . . . , xn−1) ∈W , define

f̃ (i)j (x) =




f̂ (i)0 j (x) if Pr
{(
x1, . . . , xn−1, 0

)}

> ω(i)
j + Pr

{(
x1, . . . , xn−1, 1

)}
;

f̂ (i)1 j (x) otherwise.
(17)

(c) For every state x = (x1, . . . , xn−1) ∈ U , set f̃ (i)j (x) =
f̂ (i)1 j (x).

Notice that the condition on the numbers ω(i)
j is natural

since we are dealing with probabilities.
Our selection procedure leads to the following optimiza-

tion problem.

Problem 1. Find F̃ that achievesminΩmaxi, j| p̃i j−p∗i j | subject
to

(i) c̃(i)j = c(i)j , 1 ≤ i ≤ n− 1, 1 ≤ j ≤ l(n),

(ii) Ω = {ω(i)
j : −1 ≤ ω(i)

j ≤ 1, 1 ≤ i ≤ n−1, 1 ≤ j ≤ l(n)}.

Remark 1. The above problem has a solution: it is enough to
notice that Ω is a compact set.

Remark 2. From a computational point of view, the only

values for ω(i)
j one should consider are the differences
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Pr{(x1, . . . , xn−1, 0)} − Pr{(x1, . . . , xn−1, 1)}. This essentially
reduces Ω to a finite set. Notice that if all ω(i)

j ≡ −1, then
f̃ (i)j (x) ≡ f̂ (i)0 j (x). The other extreme choice is when all ω(i)

j ≡
1 which produces f̃ (i)j (x) ≡ f̂ (i)1 j (x). One can see that different

choices for the ω(i)
j ’s could be based on how much one favors

certain states in the original PBN. In the following simula-

tions, we always set ω(i)
j = 0 which means that we do not

assume any additional information, and the selection of the
new predictor functions is based only on the probability dis-
tribution of the states of A.

5. COMPARISON BETWEEN THE PROJECTION
AND THE REDUCTIONMAPS

One should immediately notice the difference in defining the
reduction and the projectionmappings.While the projection
is based on the probability distribution of a single gene, the
reduction mapping is defined using the probability distribu-
tion of the entire collection of states of the given PBN. To
illustrate this difference, we consider one particular example
of a PBN (cf. [8]).

Example 1. LetA(V ,F,C) be a PBN consisting of three genes
V = {x1, x2, x3} and function sets F = (F1,F2,F3), where
F1 = { f (1)1 , f (1)2 }, F2 = { f (2)1 }, and F3 = { f (3)1 , f (3)2 }, and the
predictor functions are given by the truth table (Table 1).

Table 1

x1x2x3 f (1)1 f (1)2 f (2)1 f (3)1 f (3)2

000 0 0 0 0 0
001 1 1 1 0 0
010 1 1 1 0 0
011 1 0 0 1 0
100 0 0 1 0 0
101 1 1 1 1 0
110 1 1 0 1 0
111 1 1 1 1 1

c(i)j 0.6 0.4 1 0.5 0.5

After computing the transition probabilities, (cf. [8]), we
arrive at the following directed graph/state transition dia-
gram:

1 000

P4

001

P3

011

1
110

1

010

1
100

P2

P1

P2 + P4 P2 + P4

P1 + P3

101

1

111

P1 + P3

Here, P1 = 0.3, P2 = 0.3, P3 = 0.2, and P4 = 0.2.
Next, we start with a uniform state probability distribution
Din = {1/8, 1/8, . . . , 1/8} for the states in the state space S of
A, and then run the corresponding Markov chain for some
large number of iterations. Notice that even if the given net-
work does not possess a steady state distribution, the re-
sult after running the Markov chain sufficiently long time is
approximately the stationary state distribution D that cor-
responds to Din. The simulation gives D = {0.15, 0.0, 0.0,
0.0, 0.0, 0.0, 0.0, 0.85}. Using this distribution, one can com-
pute the projected Â and the reduced Ã networks, as well
as their probability transition matrices. After running the
Markov processes associated with these two transition prob-
ability matrixes, we obtain the stationary state distributions
D̂ for Â, and D̃ for Ã. For the case when the deleted gene is
x3, we get

D̂ = {0.006734, 0.022778, 0.138384, 0.831647},
D̃ = {0.35, 0.0, 0.0, 0.65}.

(18)

The stationary state distribution for the transition prob-
ability matrix (p∗i, j)

4,4
i=1, j=1, produced after the collapsing

procedure described in part (D) (Section 4), is D1 =
{0.008145, 0.020362, 0.135747, 0.835747}. One can notice
the similarity between D1 and D̂ and their apparent dif-
ference from D̃. At the same time, the distribution D∗ =
{0.15, 0.0, 0.0, 0.85} described in part (D), Section 4, is simi-
lar to D̃. This should not be surprising—both the projection
and the “collapsing” mappings are based on the probability
distribution of a single gene, x3 in our example, while the
reduction mapping is based on the probability distribution
of the entire collection of states in the original PBN. Thus
the optimization criterion described in Problem 1 becomes a
natural compromise between these two possible approaches
of reducing the original PBN size.

Inequality (15) can be used in deciding which gene, after
being eliminated from the network, will have a minimal im-
pact on the stationary distribution of the original PBN. Since

the left-hand side of (15) represents the influence In( f
(i)
j )

of a gene xn on the predictor f (i)j , one can say that, in gen-
eral, deleting genes with smaller influences on the remain-
ing predictors will result in a better chance of preserving the
stationary state distribution of the original PBN. Here, we
provide the values for the influences of x3 on the remain-
ing predictors and then two more simulations for the same
example, where the other two possible genes x2 and x1 are
deleted from the original PBN. The influences of x3 on the

remaining predictors are I3( f
(1)
1 ) = 0.15, I3( f

(1)
2 ) = 0.15, and

I3( f
(2)
1 ) = 1. After deleting x2 from A, the corresponding sta-

tionary state distribution is D̃ = {0.25, 0.0, 0.0, 0.75}, and the
influences of x2 on the remaining predictors are I2( f

(1)
1 ) =

0.15, I2( f
(1)
2 ) = 0.15, I2( f

(1)
3 ) = 0, and I2( f

(2)
3 ) = 0.85. After

deleting x1 from A, the corresponding stationary state distri-
bution is D̃ = {0.5, 0.0, 0.0, 0.5}, and the influences of x1 on
the remaining predictors are I1( f

(1)
2 ) = 1, I1( f

(1)
3 ) = 0, and

I1( f
(2)
3 ) = 0.85.
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It appears that the gene x1 with the biggest total influ-
ence distorts the stationary state distribution the most but
one should be careful when generalizing this observation.
Gene influences can be computed based on different prob-
ability distributions (cf. [8]). In addition, deleting different
genes from the original PBN results in reduced PBNs with
different state spaces. Finally, the left-hand side of (15) is just
a lower bound that governs the selection procedure in con-
structing Ã, and that the lower bound might not be achieved
during the selection procedure.

6. SIMULATION RESULTS

The reduction mapping has been tested using coefficient of
determination (COD) microarray data for a network A con-
sisting of 10 genes [23]. The genes of interest in the net-
work are PIRIN, WNT5A, S100P, RET-1, MMP-3, PHO-C,
STC2, MART-1, HADHB, and SYNUCLEIN. The network is
reduced down to 7 genes by subsequently deleting the last
three genes, starting with SYNUCLEIN. Table 2 presents lists
of some of the states in the stationary/steady distributions
for the full network A and the reduced networks Ã10, Ã10,9,
and Ã10,9,8, where the indices indicate which genes in A are
deleted. For example, Ã10,9,8 is the reduced network after
deleting the genes SYNUCLEIN, HADHB, andMART-1. The
states are presented by binary strings of ten digits, where 0
indicates that the corresponding gene is “OFF” and 1 indi-
cates that the corresponding gene is “ON.” The leftmost digit
represents PIRIN and then the remaining digits represent the
following genes in the network with the rightmost digit rep-
resenting SYNUCLEIN. Next to every given state, its corre-
sponding weight in the stationary state distribution of the
network is given. Only states with weight bigger than 0.0001
are shown.

One can notice the presence of a very “heavy” state,
1010000111, in the stationary/steady state distribution of
the full network. That is in agreement with the COD data
set, where the same state is present in 8 out of 31 sam-
ples (see [23] for a related discussion). The reduction map-
ping maintains the structure of the stationary state distribu-
tion of the full network, specifically, the states 101000011,
10100001, and 1010000 carry most of the weight in the sta-
tionary/steady state distributions of their corresponding re-
duced networks.

7. CONCLUSION

The newmapping introduced in this paper offers a way of re-
ducing the size of a given PBN by using the stationary proba-
bility distribution on the state space of the PBN. At the same
time, it minimizes the distance between the reduced network
and the projected PBN introduced in [27]. The distance is
given in terms of the distance between their corresponding
probability transition matrices. One should notice that the
construction of the projected PBN is based on the proba-
bility distribution of a single gene, and that the same single
gene probability distribution could happen under many dif-
ferent stationary distributions on the state space of the orig-
inal PBN.

Table 2

For the full network A:

(0000111000, 0.003773); (0000111001, 0.003117);

(0001111000, 0.001905); (0010000111, 0.001715);

(0100011000, 0.001030); (0100101000, 0.010710);

(0100101001, 0.012694); (0100111000, 0.023957);

(0100111001, 0.026482); (0101101000, 0.004985);

(0101101001, 0.001685); (0101111000, 0.011730);

(0101111001, 0.003710); (0110111001, 0.001352);

(0111111000, 0.001416); (1010000101, 0.002299);

(1010000111, 0.832929)

For Ã10:

(000011100, 0.010795); (000111100, 0.002513);

(001011100, 0.001944); (010010100, 0.140539);

(010011100, 0.083694); (010110100, 0.020368);

(010111000, 0.001241); (010111100, 0.014547);

(011011000, 0.001116); (011011100, 0.005920);

(011111000, 0.001743); (011111100, 0.003310);

(101000010, 0.001003); (101000011, 0.689413)

For Ã10,9:

(00000110, 0.001528); (00001110, 0.017951);

(00011110, 0.004141); (00101110, 0.003209);

(01000110, 0.001423); (01001010, 0.230668);

(01001100, 0.001481); (01001110, 0.137728);

(01011010, 0.033485); (01011100, 0.002186);

(01011110, 0.024005); (01101100, 0.001911);

(01101110, 0.009774); (01111100, 0.003293);

(01111110, 0.005520); (10100001, 0.499967)

For Ã10,9,8:

(0000011, 0.001523); (0000111, 0.020527);

(0001110, 0.001065); (0001111, 0.004695);

(0010111, 0.003700); (0100011, 0.001814);

(0100101, 0.269151); (0100110, 0.001628);

(0100111, 0.160629); (0101101, 0.039116);

(0101110, 0.002575); (0101111, 0.027858);

(0110110, 0.002169); (0110111, 0.011428);

(0111110, 0.004034); (0111111, 0.006365);

(1010000, 0.429211)
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