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Microarray BASICA: Background Adjustment,
Segmentation, Image Compression
and Analysis of Microarray Images
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This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image
compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA
microarray images and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with
the foreground and background intensities obtained with the background adjustment, are then used for independent compression
of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and
devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT) algorithm (Taubman,
2000) to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression
performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement
varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA
is able to provide from a bit rate as low as 5bpp the gene expression data that are 99% in agreement with those of the original
32 bpp images.
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ery. To produce cDNA microarrays, the mRNA of the control
and test samples are first reverse-transcribed into cDNA and

The cDNA microarray technology is a hybridization-based
process that can quantitatively characterize the relative abun-
dance of gene transcripts [1, 2]. Contrary to conventional
methods, microarray technology promises to monitor the
transcript production of thousands of genes or even the
whole genome simultaneously. It thus provides a new and
powerful enabling tool for genetic research and drug discov-

fluorescently labeled with different dyes (typically red and
green). Then the fluorescent targets are mixed and allowed
to hybridize with gene-specific cDNA clones printed in an
array format on a glass microslide. Finally, by scanning the
microslide with a laser and capturing the photons emitted
from different dyes into different channels with a confocal
fluorescence microscope, a two-channel 16-bit microarray
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image is obtained in which the pixel intensities reflect the
level of mRNA expression. Usually a microarray image is
shown RGB composite format, where the red and green
channels correspond to the two channels of the microarray
image obtained while the blue channel is set to zero. With the
help of signal processing and data analysis operations such
as ratio statistics, classification, and genetic regulatory net-
work design, microarray images can shed light on the pos-
sible regulation rules of transcription production sought by
biologists and clinicians.

Microarray images cannot be used for genetic data anal-
ysis directly. Appropriate image processing procedures are
to be performed in order to extract information from the
images for downstream analysis. Thousands of cDNA tar-
get sites must first be identified as the foreground by an im-
age segmentation algorithm. Then the intensity pair (R, G)
that represents gene expression levels of both channels is
extracted from every foreground target site with appropri-
ate background adjustment. Subsequent data analysis is nor-
mally conducted based on the log ratio log R/G of the in-
tensity pair. As the very first step of cDNA microarray sig-
nal processing, the accuracy of image processing is critical to
the reliability of subsequent data analysis. Many image pro-
cessing schemes have been developed for this purpose in re-
cent years and can be found in various commercial and non-
commercial software packages [3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19]. Generally, because each channel
of the microarray image is typically more than 15 MB in size,
highly efficient compression is necessary for data backup and
communication purposes. In order to save storage space and
alleviate the transmission burden for data sharing, the search
for good progressive compression schemes that provide suf-
ficiently accurate genetic information for data analysis at low
bit rates while still ensuring good lossless compression per-
formance has become the focus of cDNA microarray image
compression research recently [3, 4, 20].

This paper introduces a new integrated system called mi-
croarray BASICA. BASICA brings together the image pro-
cessing procedures required to accomplish the aforemen-
tioned information extraction and data analysis, including
background adjustment, segmentation, and compression. A
fast Mann-Whitney test-based algorithm is presented for the
initial segmentation of cDNA microarray images. This new
algorithm can save up to 50 times the number of repetitions
required from the original algorithm [5]. The resulting im-
ages are then postprocessed to remove the segmentation ir-
regularities. The segmentation results, along with the fore-
ground and background intensities, are saved into a header
file for both data analysis and compression. A novel distor-
tion measure is introduced to evaluate the accuracy of ex-
tracted information. Based on this measure and the infor-
mation provided by the header file, a new image compres-
sion scheme is designed by modifying the embedded block
coding with optimized truncation (EBCOT) algorithm [3],
which is now incorporated in the JPEG2000 standard. Our
experiments show that there appears to be no common bit
rate that ensures sufficiently accurate gene expression data
for different cDNA microarray images. On cDNA microar-

ray images of good quality, BASICA is able to provide from a
bit rate as low as 5 bpp (bit per pixel) the gene expression data
that are 99% in agreement with those of the original 32 bpp
images.

2. DETAILS OF MICROARRAY BASICA

Microarray BASICA provides solutions to both processing
and compression of cDNA microarray images. The major
components of BASICA and their relationship with the el-
ements of a microarray experiment are shown in Figure 1.
Each two-channel microarray image acquired through the
laser scanner is first sent to the segmentation component,
where the target sites are identified. With the result of
segmentation, the background adjustment component esti-
mates each spot’s foreground and background intensities and
calculates the log ratio values based on the background-
subtracted intensities. After this, the calculated log ratio val-
ues along with the segmentation information and other nec-
essary data related to each spot are output for downstream
data analysis. In the mean time, BASICA compiles the seg-
mentation result and extracted intensities into a header file.
With this header file, the compression component encodes the
foreground and background of both channels of the original
image into progressive bitstreams separately. The generated
bitstreams, plus the header file, are saved into a data archive
for future access or are transmitted as shared data. On the
other hand, to utilize the archived or transmitted data, BA-
SICA can either quickly retrieve the necessary genetic infor-
mation saved in the header file or reconstruct the microar-
ray image with available bitstreams through the reconstruc-
tion component and redo the segmentation and background
adjustment.

2.1. Segmentation with postprocessing

Segmentation is performed to identify the target sites in each
spot where the hybridization occurs. In [8], various existing
segmentation schemes are summarized and categorized into
four groups: (1) fixed circle segmentation, (2) adaptive cir-
cle segmentation, (3) adaptive shape segmentation, and (4)
histogram segmentation.

Although the shape of a target site is determined by the
physical attributes of the DNA probes and the mechanism
of the printing procedure, most target sites are round or
donut-like in shape. The fixed circle segmentation, which sets
a round region of constant diameter in the middle of each
spot as the target site, appears to be the most straightforward
method and is provided in most existing software packages
[9, 11, 12, 13, 17, 18]. The radius of the foreground is set ei-
ther by a default value as a parameter of the robot arrayer and
laser scanner or empirically determined by the user. The fixed
circle method runs fast and performs well when the microar-
ray spots are perfectly hybridized and aligned. In practical
cases, however, the spots are far from perfect due to unpre-
dictable nonuniform hybridization across the spot or mis-
alignment of the probe array. GenePix [13] uses the adaptive
circle segmentation to accommodate the varying sizes of dif-
ferent target sites, and Dapple [11] finds the best matched
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FiGURE 1: The major units of BASICA.

position of the round region in each spot to cope with the
misalignment.

Neither the fixed nor the adaptive circle segmentation
can accommodate the variances in shape of the target sites
in the images. To tackle this problem, more accurate and
sophisticated segmentation methods are needed. The seg-
mentation technique introduced in [8] uses seeded region
growing [21], while other methods [5, 6, 10, 15, 17, 19]
rely on more conventional histogram-based segmentation al-
gorithms. The histogram-based methods generally compute
a histogram of pixel intensities for each spot. Methods in
[10, 17, 19] adopt a percentile-based approach, which sets the
pixels in a high percentile range of the histogram as the fore-
ground and those in a low range as the background. Methods
in [6, 15] use a threshold-based approach. To ensure correct
segmentation, methods in [10, 15] employ repetitions to find
the most stable segmentation. The histogram-based segmen-
tation demonstrates good performance when a target site has
a high hybridization rate, that is, a high intensity. However,
the intensities of most target sites are actually very close to
the local background intensities, and it is hard to segment
correctly by finding a threshold based on the histogram only.
In an attempt to solve this problem, Chen et al. introduced a
Mann-Whitey test-based segmentation method in [5].

So far, no single segmentation algorithm can meet the
demands of all microarray images. Segmentation algorithms
are normally designed to perform well on microarray images
acquired by certain type of arrayers and scanners. It is there-
fore hard to compare them directly.

2.1.1. Mann-Whitney test-based segmentation

In BASICA, we use the Mann-Whitney test-based segmenta-
tion algorithm introduced by Chen et al. in [5]. The Mann-

Whitney test is a distribution-free rank-based two-sample
test, which can be applied to various intensity distributions
caused by irregular hybridization processes that are difficult
to handle by conventional thresholding methods. Here we
first give a brief description of the Mann-Whitney test-based
segmentation algorithm.

Consider two independent sample sets X and Y. Sam-
ples X1,Xa,...,X,, are randomly selected from set X, and
Y1, Ys,...,Y, are randomly selected from set Y. Al N =
m + n samples are sorted and ranked. Denote R; as the rank
of the ith sample, R(X;) as the rank of sample X;, and R(Y;)
as the rank of Y;. These ranks are used to test the following
hypotheses:

(Hy) P(X<Y) =0.5,
(Hy) P(X<Y)<0.5.

Define the rank sum of the m samples from X as
T = > R(X). (1)

To avoid deviations caused by ties, T is commonly normal-
ized as

T - m((N +1)/2)
Jnm/N(N = 1) SN, R — nm(N + 1)2/4(N - 1)

T = e

Hypothesis (Ho) will be rejected if T is greater than a certain
quantile w4, where « is the significance level.

In microarray image segmentation, hypothesis (H;) cor-
responds to the case that set X is the high-intensity fore-
ground and set Y is the low-intensity background, and
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hypothesis (Hy) corresponds to the reverse case. To segment
a target spot, a predefined target mask (obtained by select-
ing, unifying, and thresholding strong targets) is first applied
to the spot. Pixels inside the mask correspond to set X, and
pixels outside correspond to set Y. To start the test, n sam-
ples are randomly selected from set Y, while m samples with
lowest intensities are selected from set X. If hypothesis (Hy)
is accepted, the pixel with lowest intensity is removed from
set X, and m sample pixels are reselected. The test is repeated
until hypothesis (Hy) is rejected. Then the pixels left in set X
are considered as the foreground at significance level a. The
foregrounds obtained from the two channels are united into
one to produce the final segmentation result.

The repetitive nature of this algorithm makes it cumber-
some for real-time implementation. So, in BASICA, we pro-
posed a fast Mann-Whitney test-based algorithm [3] which
runs much faster while generating identical segmentation re-
sults.

2.1.2. Speeding up Mann-Whitey test-based
segmentation algorithm

Assume that the predefined target mask is obtained accord-
ing to the way described in [5, 6]. Samples X;,X5,...,Xm
and Y1, Y>,..., Y, are picked from the foreground and back-
ground, respectively. Without loss of generality, it suffices to
assumethat X; <X, <--- < XyandY; <Y, <--- <Y,.
Since X1, X>,..., X, are the smallest m samples in set X, all
other samples can be determined if X; is set. Then Mann-
Whitney test-based segmentation is actually an optimization
problem of minimizing X; subject to T > wj_,. Chen et al’s
approach takes a large number of repetitions to reach the fi-
nal segmentation. However, it turns out that the number of
repetitions can be significantly reduced by carefully choosing
the starting point and search strategy.

BASICA first finds an upper bound of the optimal X,
denoted by X", which is related to Yy, Y3,..., Y,. With (2),
T = w_, can be written as

m

D> R(Xi) 2w

i=1

nm(N +1)2 mN+1
4N -1) 2

3)

N
M N2l
N -1 2K

In the right-hand side of (3), only >'¥ | R? is associated with
Xj. If no tie exists, the ranks are from 1 to N and the sum
is >N 2. If there is a tie, the ranks of the tied samples are
the average of those ranks if there would have been no tie,
and induce a reduction on the sum. A property of this reduc-
tion is that it is only related to the number of samples tied
at that value. If there are k samples having the same value,
the deduction is (1/12)(k* — k). With this property, one can
easily reduce the upper bound of 3N | R?. Assume that AY
is the decrease in the sum caused by the ties in the sorted
Y1, Ys,...,Y,, then we have

N N
>R < > - AY, (4)
i-1

i=1

where the equation holds when Xj,X5,...,X,, have no tie
among themselves and share no tie with any sample in
Y1, Ys,..., Y, In most cases, the difference is very small and
the bound is quite tight.

To simplify the notation, we use opmay to denote

nm N nm(N + 1)2
N(N_1)<§zZ—AY)—4(N_1) . (5)

Then X" must satisfy the inequality

m
N+1
D R(X;) = Wi—aOmax +m 5 (6)
i=1
no matter what X, Xs,...,X,, can be for as long as the as-

sumption X; < X, < --- < X, holds. So, to find X{"*
is to find the smallest X; so that the smallest rank sum of
X; =X, < - -+ < Xy still satisfies inequality (6). To associate
X" with known information Y3, Y>,...,Y,, assume that
Y, < X{™*, Then the minimum rank sum is >./*; R(X;) =
Sti(u+i),whenY, < X; <X, <--- <X, < Y, By
solving the inequality with >, R(X;) = > (u + i), u can
be obtained as

= | Mistmy 2. )
m 2

Thus, the upper bound X" is the smallest sample in X
that is larger than Y,,. For any sample set X;, X,..., X,, with
X; = X", hypothesis (Hy) can be rejected outright. Since
X1,X5,..., Xm normally have similar intensities which bring
on consecutive ranks, X{"** is very close to the actual thresh-
old. Hence, the repetitions can be greatly reduced if backward
repetitions based on X" are applied.

Besides changing the starting point and repetition direc-
tion, a two-tier repetition strategy can be used to reduce the
repetition in case the upper bound is not so tight as expected.
In the first tier, one does not perform the repetition in a pixel-
by-pixel manner, but in a leaping manner instead. Then a
pixel-by-pixel repetition follows up and locates the exact seg-
mentation in the second tier. Larger step size means fewer
repetitions in the first tier but more in the second, while
smaller step size has the opposite effect. A natural choice of
the repetition steps is indicated by Y1,Y5,...,Y, when n is
not very large. The whole algorithm is described as follows.

Step 1: Calculate u using (7).

Step 2: Find the smallest 1 samples from set X that are
larger than Y, and execute the Mann-Whitney test.
Step 3: If hypothesis (Hp) is rejected, then set u = u—1
and go to step 2, otherwise, go to step 4.

Step 4: u = u+ 1. Find the smallest m samples from set
X that are larger than Y,,, and begin the pixel-by-pixel
repetition in backward manner.

It should be noted that this modified Mann-Whitney
test-based segmentation algorithm may not always generate
identical results with Chen et als original algorithm. In order
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TaBLE 1: The comparisons of the number of repetitions between
Chen et al’s algorithm and our modified method used in BASICA
at different significance levels.

a 0.001 0.005 0.01 0.05
Chen et al. 328.7 269.1 270.9 226.3
BASICA 7.5 7.3 5.9 3.7

to obtain identical results, the backward-searching nature of
the new algorithm requires the normalized rank sum in (2)
to be strictly increasing during the repetition of the origi-
nal algorithm. This is not guaranteed due to the occurrences
of ties in the sorted samples. In one extreme case, when all
N samples have the same intensity, the devisor will become
zero and the normalized rank sum will be infinity. Actually,
Chen et al’s original algorithm can be viewed as trying to find
the largest foreground that rejects hypothesis (Hy), while the
modified algorithm in BASICA tries to find the smallest fore-
ground that accepts the hypothesis Hy. Since in most cases
the normalized rank sum will be strictly increasing, we ex-
pect the segmentation results of the modified algorithm to
be identical to the original algorithm most of the time.

The comparisons of the number of required repetitions
between Chen et als algorithm and our modified algorithm
are given in Table 1. Results are averaged over 504 spots in
both channels from different test images. Both algorithms set
m = n = 8 and use the same randomly selected samples from
the predefined background for the Mann-Whitney test. We
find that the segmentation results on all test spots of the sam-
ple images used in this study are identical between the orig-
inal algorithm and the modified algorithm. From the table,
we observe that the modified algorithm reduces the number
of repetitions by up to 50 times from what is required of the
original algorithm.

2.1.3. Postprocessing

Like common threshold-based segmentation algorithms,
there are always many annoying shape irregularities in the
segmentation results obtained by the Mann-Whitney test-
based algorithms. These irregularities occur randomly and
can severely reduce the compression efficiency. Thus, an ap-
propriate postprocessing procedure is necessary to achieve
efficient compression. Moreover, because most irregularities
are pixels with a high probability of noise corruption, elimi-
nating them is unlikely to compromise the accuracy of sub-
sequent data extraction and analysis.

In BASICA, we categorize possible irregularities into two
types and employ different methods to eliminate them. The
first type includes isolated noisy pixels or tiny regions, which
can be observed from the lower half of the segmentation
result in Figure 2a. These irregularities are caused usually
by nonspecific hybridization or undesired binding of fluo-
rescent dyes to the glass surface. The second type includes
the small branches attached to the large consolidated fore-
ground regions, which are visible in the segmentation results
of Figure 2. Since these irregularities are located between the

foreground and background, their intensities are also inbe-
tween, making them vulnerable to noise corruption. The ir-
regularities in most segmentation results are usually made
up of both these two types. For the first type, BASICA will
detect and remove them directly from the foreground. As
for the second type, BASICA applies an operation similar to
the standard morphological pruning [22]. By removing and
pruning repetitively, BASICA can successfully eliminate most
irregularities in three to five repetitions. The right column of
Figure 2 shows the postprocessing results on the original seg-
mentation which are to be used for the compression of the
images. Figure 3 shows a portion of a microarray image and
its segmentation results.

2.2. Background adjustment

It is commonly believed that the pixel intensity of the fore-
ground reflects the joint effects of the fluorescence and the
glass surface. To obtain the expression level accurately, the
intensity bias caused by the glass surface should be esti-
mated and subtracted from the foreground intensity, and this
process is known as background adjustment. Since there is
no hybridization in the background area, the background
intensity is normally measured and treated as an intensity
bias. Although mean pixel intensity has been adopted in al-
most all existing schemes as the foreground intensity, sev-
eral methods have been developed for background inten-
sity estimation. The major differences of various methods lie
in two aspects: (1) on which pixels the estimation is based
and (2) how to calculate the estimation. Regarding the first
aspect, the regions chosen for background estimation vary
from a global background to a local background. For the
global background, the background regions in all spots are
considered, and a global background intensity is estimated
and subtracted from every foreground intensity [9, 16]. The
global background ignores possible variance between sub-
arrays and spots. So, in [9], partial global background esti-
mation is performed based on the background of one subar-
ray or on several manually selected spots. The more common
approach is to estimate the background intensity based on
the local background for each target site separately. The local
background can be the entire background region in one spot
[18], or, to avoid interference from the foreground, it can be
the region with a certain distance from the foreground tar-
get site [7, 11, 13, 15, 17]. In the extreme case, the algorithm
in [14] uses the pixels on the border of each spot as the lo-
cal background. However, using too few pixels increases the
possibility of a large variance in background estimation. As to
the second aspect, almost all existing systems adopt mean or
median to measure the expression level. Besides these, mode
and minimum are also used in some softwares [6, 16]. Unlike
all the methods mentioned above, a morphological opening
operation is performed in [8] to smooth the whole back-
ground and then estimate the background by sampling at the
center of the spot.

Some commercial software packages [9, 16] offer more
than one choice for background adjustment. ArrayMetrix
[9] provides up to nine methods, while ArrayVision [10]
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(a)

SN0

FIGURE 2: Segmentation and postprocessing of two typical spots. The left column shows the original microarray spots in RGB composite
format. Some intensity adjustments are applied in order to show them clearly. The middle column shows the corresponding segmenta-
tion results using the Mann-Whitney test with significance level @ = 0.001. The right column shows the final segmentation results after

postprocessing.
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FIGURE 3: (a) Part of a typical cDNA microarray image in RGB com-
posite format. Some intensity adjustments were applied in order to
show the image clearly. (b) The segmentation results of (a).

provides seven ways of background region determination
and six choices of averaging method. Experiments in [8]
show that different background adjustment methods have
significant impact on the log ratio values subsequently ob-
tained. However, there is no known criterion to measure
which approach is more accurate than the others.

BASICA chooses the average of pixel intensities in the lo-
cal background as the estimate of background intensity. To
prevent possible biases caused by either the higher intensity
values of the pixels adjacent to the foreground target sites or
the lower intensity values of the dark hole regions in the mid-
dle of the spots, the local background used in BASICA is the
background defined by the predefined target mask obtained
through the segmentation.

2.3. Data analysis

Because so many elements impact the pixel intensities of the
microarray image, genetic researchers do not use the absolute
intensities of the two channels, but the ratio between them
to measure the relative abundance of gene transcription. Not
all genetic information extracted are reliable enough for data
analysis. If the spot has so poor quality that no reliable infor-
mation can be extracted, it is qualified as a false spot; other-
wise, it is a valid spot. For a valid spot k, the expression ratio
is denoted by

Ri _ prr, — pR,
Gk UFG, — UBGy ’

k= (8)
where R and Gy are the background-subtracted mean in-
tensities of the red and green channels, respectively, yrgr, and
pra, are the respective foreground mean intensities, and ygg,
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and upg, are the respective estimated background mean in-
tensities. Because expression ratio has an unsymmetric dis-
tribution, which contradicts the basic assumptions of most
statistic tests, the log ratio log Ty = log Ri/Gy is commonly
used instead in most applications. In addition to the log ra-
tio, an auxiliary measure which is often helpful in data anal-
ysis is the log product log Rx Gx.. However, since the log trans-
form does not have constant variance at different expres-
sion levels, some alternative transforms like glog [23] have
recently been introduced. In gene expression studies, such
transformed ratios are ordinarily normalized and quantized
into three classes: down-regulated, up-regulated, and invari-
ant. Expression level extraction and quantization provide the
starting point for subsequent high-level data analysis, and
their accuracy is crucially important. Therefore, compres-
sion schemes should be designed to minimize the distortion
in the image, and their performance should be assessed by
agreement/disagreement in gene expression level measure-
ment caused by the compression. These topics will be dis-
cussed in detail in Sections 2.4 and 3.3.

2.4. Image compression

Since microarray images contain huge amounts of data and
are usually stored at the resolution of 16 bpp, a two-channel
microarray image is typically between 32 and 64 MB in size.
Efficient compression methods are highly desired to accom-
modate the rapid growth of microarray images and to reduce
the storage and transmission costs. Currently, the common
method to archive microarray images is to store them loss-
lessly in TIFF format with LZW compression [24]. However,
such an approach does not exploit 2D correlation of data be-
tween pixels and does not support lossy compression. Due to
the huge data size, microarray images require efficient com-
pression algorithms which support not only lossless com-
pression but also lossy compression with graceful degrada-
tion of image quality for downstream data analysis at low bit
rates.

Recently, a new method known as the segmented LOCO
(SLOCO) was introduced in [20]. This method exploits the
possibility of lossy-to-lossless compression for microarray
images. SLOCO is based on the LOCO-I algorithm [25],
which has been incorporated in the lossless/near-lossless
compression standard of JPEG-LS. SLOCO employs a two-
tier coding structure. It first encodes microarray images loss-
ily with near-lossless compression, then applies bit-plane
coding to the quantization error to refine the coding results
until lossless compression is achieved. SLOCO can generate
a partially progressive bitstream with a minimum bit rate de-
termined by the compression of the first tier, and the coding
is conducted on the foreground and background separately.

In BASICA, we also incorporate lossy-to-lossless com-
pression of microarray images. The aims of compression in
BASICA are twofold: (1) to generate progressive bitstreams
that can fulfill the requirements of signal processing and data
analysis at low bit rates for data sharing and transmission ap-
plications and (2) to deliver competitive lossless compression
performance to data archiving applications with a progres-

sive bitstream. To achieve these objectives, the compression
scheme in BASICA treats the foreground and background of
microarray images separately. Obviously, the foreground and
background usually have significant intensity differences and
they are relatively homogeneous in their corresponding lo-
cal regions. Hence, by compressing the foreground and back-
ground separately, the compression efficiency is expected to
improve significantly. This is done by utilizing the outcomes
of segmentation. Before encoding, BASICA saves all neces-
sary segmentation information into a header file for subse-
quent compression.

SLOCO in [20] is based on spatial domain predictive
coding. In contrast, BASICA employs bit-plane coding in
the transform domain. Bit-plane coding enables BASICA to
achieve truly progressive bitstream coding at any rate. To al-
low lossy compression, an appropriate distortion measure-
ment is needed. Generally, medical image compression re-
quires visually imperceptible differences between the lossily
reconstructed image and the original. Traditional distortion
measures, such as mean square error (MSE), are poor indica-
tors for this purpose. However, unlike other types of medical
images, the performance of microarray image compression
does not depend on visual quality judgement, but instead on
the accuracy of final data analysis. Therefore, it is reasonable
to adopt a distortion measure adherent to the requirements
of data analysis. Since almost all existing data analysis meth-
ods use the transformed expression values, we should seek to
minimize the distortion under these measurements. In BA-
SICA, we adopt distortion measures based on the log ratios
and the log products because they are the most used trans-
forms in common applications. However, as we will see later,
the scheme employed in BASICA can be easily adapted for
other transform measures.

The log ratios and the log products decouple the data
of two channels into two separate log intensities, log R and
log G. This ensures that the compression can be done on each
channel independently. Without loss of generality, we only
refer to the R channel in the rest of the paper.

BASICA currently employs the MSE of logR as the dis-
tortion measurement, which is defined as

N
MSEjogr = % > (logR; — log R;)?, 9)
i=1
where N is the total number of spots in the microarray image,
and R; and R; are background-subtracted mean intensities
obtained from spot i of the original and reconstructed image,
respectively.
There is a direct relationship between the MSE of log in-
tensity and the traditional MSE. For spot k, its log intensity
log Ry can be further written as

My
1
log R = log (urr, — nr,) = log (E > Xi— ,UBR,()) (10)
i=1

where Mj is the total number of pixels in the foreground of
spot k, and X; is the intensity of the ith pixel. So the unit error
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Alog Ry is associated with the unit error AX; of jth pixel by

AX;

AlogRy = ——————.
SR VA pr———)

(11)

For the pixels in the background, because most existing
schemes do not compute the average intensity as ypg, but use
nonlinear operations such as modulo or median filtering, the
above derivation no longer holds. The foreground and back-
ground pixels have different impacts on the log intensity and
should be considered separately.

Equation (11) indicates that the MSE of log intensity is
actually a weighted version of traditional MSE. The weight
1/Mi(urr, — Upr,) is a constant for pixels in the same spot
and is inversely proportional to the spot’s intensity and fore-
ground size. The higher a spot’s intensity or foreground size,
the larger its allowable reconstruction error.

Quite similarly, one can easily derive other MSE distor-
tion measurements for other transforms. For example, the
glog transform in [23] is

g(Rk) = log (#FRk — -+ (Urr, —06)2+C>> (12)

where « and ¢ are parameters estimated from the microarray
image. Then, with straightforward derivation, one can asso-
ciate the unit error Ag(Ry) with the unit error AX; of jth
pixel by

AX;

Ag(Ry) = (13)

M/ (prr, — oc)2 +c

Thus, the MSE of glog is also a weighted version of tradi-
tional MSE, and like MSE of log ratio, the measurement al-
lows larger distortions in spots of high intensities.

Although we can derive different distortion measure-
ments for different transforms, the compression scheme in
BASICA can only be designed based on one type of distortion
measurement. As mentioned before, in BASICA we choose
MSE of log ratio as the distortion measurement.

With the help of (11), we introduce a new lossy-to-
lossless compression scheme in BASICA by modifying
EBCOT [26] with several techniques specifically designed for
the requirements of microarray technology. First, to encode
the foreground and background separately, we modify the
EBCOT to compress arbitrarily shaped regions. Then we ap-
ply intensity shifts and bit shifts on the coefficients to mini-
mize the MSE of log intensity.

EBCOT, which is a state-of-the-art compression algo-
rithm incorporated in JPEG2000 standard, offers a fully pro-
gressive bitstream of excellent compression efficiency with
plenty of useful functionalities. In EBCOT, a 2D integer
wavelet transform is applied for lossy-to-lossless image com-
pression. Block-based bit plane coding is used to generate
the bitstream of each subband. To achieve the optimal rate-
distortion performance, the coding procedure consists of
three passes in each bit plane using three context modeling

primitives. The bitstreams of all subbands are multiplexed
into a layered one via a fast bisectional search for the given
target bit rate.

2.4.1. Modifying EBCOT for microarray image coding

Our major modifications to EBCOT are the following.

Header file. A header file is necessary for saving the in-
formation which will be used in the encoding and decod-
ing procedures. To ensure that the encoder and decoder
can correctly compress and reconstruct the foreground and
background independently, the segmentation information
must be saved in the header file. Besides, (11) indicates that
the mean intensities of the foreground and background are
also needed by the compression algorithm. To save storage
memory, these data are coded with LZW compression. Al-
though the segmentation information and spot intensities
are enough for the compression component, other data, such
as variances of pixel intensities in each spot, can also be saved
in the header file for quick genetic information retrieval. In
the practical implementation, the header file will be gener-
ated before encoding and must be transmitted and decoded
first.

Shape-adaptive integer wavelet transform. Like other
frequency-domain-based coding schemes, in BASICA the
transform is performed before bit-plane coding during the
encoding phase and after the bit-plane reconstruction dur-
ing the decoding phase. To ensure lossless compression, inte-
ger wavelet transforms are required. The wavelet transforms
are conducted on the foreground and background indepen-
dently to prevent any interference between the coefficients
from adjacent areas. Since the segmented foreground and
background always have irregular shapes, critically sampled
integer wavelet transforms for arbitrarily shaped objects are
needed to ensure coding efficiency. Many approaches have
been proposed for 2D shape-adaptive wavelet transforms.
Our proposed coding scheme uses odd-symmetric exten-
sions over object boundaries described in [27].

Object-based EBCOT. After shape-adaptive integer
wavelet transform, we modify the EBCOT context modeling
for arbitrarily shaped regions. The extension of EBCOT
algorithm to shape-adaptive coding is rather straightfor-
ward. Because the shape-adaptive integer wavelet transform
is critically sampled, the number of wavelet coefficients
is the same as those in the original regions. Using the
wavelet-domain shape mask, one can easily tell whether a
coefficient belongs to a region to be coded. If any neighbor
of that coefficient falls outside the region, we just set that
neighboring coefficient’s values to zero, thus making it
insignificant in context modeling. We call the resulting coder
object-based EBCOT.

Intensity shifts. To minimize the initial MSE, the average
intensity of the image is subtracted from each pixel before en-
coding and added back after decoding. Unlike eight-bit nat-
ural images, the foreground of a microarray image normally
has an exponential intensity distribution. The exponential
distribution property of the foreground makes the global av-
erage intensity subtraction less effective. However, the pixels
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in the foreground of any spot k normally have similar intensi-
ties and roughly have a symmetric distribution around prg, .
So, for the encoding of the foreground, each pixel in spot
k is subtracted prg, instead of the global average intensity.
Since ppg, is already saved in the header file, intensity shifts
do not cost any overhead. With intensity shifts, the distribu-
tion of foreground intensities are transformed into a sym-
metric shape with a high peak around zero. As for the back-
ground compression, through our experiments, we find that
the pixels in the background actually have a roughly symmet-
ric intensity distribution, suggesting that the global average
intensity subtraction will be appropriate.

Bit shifts. EBCOT uses block-based bit-plane coding. In
order to minimize the distortions at different rates, one must
code the bit planes of different spots according to their im-
pacts on the MSE of log intensity. One straightforward solu-
tion is to scale the coefficients of each spot with the spot’s
weight, so bits at the same bit plane of all spots have the
same impacts on the MSE of log intensity. However, because
the weights are noninteger fractions, lossless compression
cannot be ensured under such a scaling. Furthermore, al-
though one can round them to the closest integer as an ap-
proximation, any scaler w will increase a coefficient’s infor-
mation up to [log, w] bits, which can lead to a very poor
lossless compression performance. In BASICA, we apply the
scaling by bit shifts, which is a good approximation and
meanwhile does not compromise the performance of lossless
compression. For spot k, BASICA obtains

Sk = llogz (M, ((”FRk - ,UBRk)) +0.5J. (14)

Let S™* = max{S;,S,,...,Sy}. Then it scales the coefficients
of spot k by upshifting them S™* — S bits.

Background compression. With careful consideration, bit
shifts have not been applied in the background compression
in BASICA for several reasons. First, since there exist differ-
ent approaches to compute the background intensity, and the
values obtained by these methods also vary a lot, it is unclear
how to find a unique weight for each pixel like what BASICA
has for foreground compression. Second, unlike isolated tar-
get sites in the foreground, the local background is normally
connected to each other. Thus, bit shifts will bring abrupt in-
tensity changes along the borders of spots, which will in turn
lower the compression efficiency significantly in lossless cod-
ing performance. Even though one can figure out the weights
through a formula similar to (11) based on certain back-
ground extraction methods, there will be a significant trade-
off on lossless compression, which is about 0.8 bpp according
to our experiments. So, in BASICA, we apply a global aver-
age intensity subtraction and no bit shifts on the background
compression, that is, the traditional MSE measure is used
for rate-distortion optimization. Normally, the pixel inten-
sities in the background are located in a very small range,
which means that the background is pretty homogenous.
Thus, compression with traditional MSE measure should be
able to represent the background with fairly small bit rates.

To this end, the final code of a two-channel microarray
image is composed of five different parts: a header file and

two bitstreams representing the foreground and background,
respectively, from each channel.

3. EXPERIMENTAL RESULTS AND DISCUSSION

Experiments have been conducted to test the performance
of BASICA with eight microarray images from two different
sources. We used three test images from the National Insti-
tutes of Health (NIH). Each of these images contains eight
subarrays arranged in 2x4 format. In each subarray, the spots
are arranged in a 29 x 29 format. There are a total of 20184
spots in all the three NIH images. In addition to these, we
also tested on another set of five test images obtained from
Spectral Genomics Inc. (SGI). Each of the SGI images con-
tains eight subarrays arranged in 12 X 2 format, and in each
subarray, the spots are arranged in a 16 X 6 format. These
five SGI images contain a total of 9960 spots. The target sites
in the NTH images exhibit noticeable irregular hybridization
effect and have irregular brightness patterns across the spots.
The intensities of these target sites span over a large range and
vary considerably. The target sites in the SGI images appear
to be hybridized more homogeneously, and many of them
have nearly perfect circular shape.

In the experiments, for each two-channel image, the
summed bit rate of all the bitstreams from both channels,
plus the shape information, were reported in bpp format,
which represents either the compression bit rate or the recon-
struction bit rate, depending on the type of test performed.
And the corresponding bit rate of the uncompressed original
image is 32 bpp. BASICA first segmented the image and gen-
erated the header file. The average overhead of the header file
was 0.5 bpp for the NIH images and 0.24 bpp for the SGI im-
ages, based on the postprocessed segmentation results. The
header file overheads were smaller on the SGI images because
of different settings of the microarray arrayers used to ac-
quire the images: there were much fewer spots in each SGI
image than those in each NIH image. After generating the
header file, the foreground and background of each channel
were compressed independently.

3.1. Comparisons of wavelet filters
and decomposition levels

The framework of the proposed compression scheme in BA-
SICA does not specify which wavelet filters and how many
wavelet decomposition levels used. In order to find the op-
timal choice for microarray image compression, we com-
pare the results generated with different wavelet filters and
decomposition levels. All the results presented in this section
are based on the NTH images unless stated otherwise.

Table 2 lists the lossless coding results by BASICA using
nine different wavelet filters with one-level wavelet decom-
position. From these we found that the compression results
vary only in a small range of about 0.07 bpp. Among all the
nine sets of filters, the 5/3 wavelet filters achieved the best
result. This is probably because the 5/3 wavelet filters have
relatively shorter filter lengths, and therefore fit better with
the small sizes of the segmented regions. Nevertheless, as the
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TaBLE 2: Lossless compression results (in bpp) of BASICA using different integer wavelet filters with one-level wavelet decomposition. The

results are averaged over the NIH images.

Wavelet filters
File size

9/7 - F
13.99

(2+2,2) 5/3
14.01 13.97

S+P
14.03

(4,2) (2,4) (4,4) (6,2) 2/6
14.01 13.97 13.99 14.04 14.00

TABLE 3: Lossless compression results (in bpp) of BASICA using the
5/3 wavelet filters with different wavelet decomposition levels. The
results are averaged over the NIH images.

Decomposition levels| 1 level 2 levels 3levels 4 levels 5 levels
13.97 14.00 14.01 14.02  14.02

File size

discrepancies in the results were small, the choice of the
wavelet filters appeared to be not critical to the system per-
formance.

Table 3 lists the lossless coding results by BASICA
with different wavelet decomposition levels. Only the best-
performing 5/3 wavelet filters were evaluated in these tests.
The performance appeared to get worse when the decompo-
sition level increased and compression with only one-level
decomposition achieved the best result. This is partly due to
the fact that although with more decompositions more data
energy is compacted into smaller subbands, it also introduces
a higher model-adaptation cost to arithmetic coding in the
newly generated subbands, which cancels out the gains. Sim-
ilar to the comparison among the wavelet filters, the discrep-
ancies of lossless compression performance using different
decomposition levels are very small. To confirm this obser-
vation, lossy compression tests were also performed to com-
pare the performances based on the choices of the wavelet
decomposition level.

To evaluate the effect of lossy compression on data anal-
ysis, the test images were first reconstructed at a target rate.
Then the reconstructed images were processed and genetic
information (i.e., log ratio) was extracted and compared with
the same information extracted from the original images.
To ensure credibility of the comparisons, the Mann-Whitney
test-based segmentation started with the same selection of
random pixels in the predefined background in both the re-
constructed image and the original image. The segmenta-
tion was conducted under three different significance levels
a = 0.001,0.01, and 0.05. At each significance level, log ra-
tios were extracted and distortions were computed. The dis-
tortions shown are the average distortions at the three signif-
icance levels over the three test images. Both the /; distortion
and [, distortion (i.e., MSE) of log intensity were used as the
error measures. Figure 4 shows the average reconstruction
errors using BASICA at different bit rates with three differ-
ent decomposition levels of the 5/3 wavelet transform. From
this figure, we can see that one-level decomposition yielded
a significantly better performance than the others. Based on
the above lossless and lossy compression results, we decided
to use the 5/3 wavelet filters with one-level wavelet decom-
position as a default setting in BASICA.

3.2. Comparisons of lossless compression

We first compared the lossless compression performance of
BASICA with three current standard coding schemes: TIFF,
JPEG-LS, and JPEG2000. In the comparisons, TIFF, JPEG-
LS, and JPEG2000 all compress a microarray image as a sin-
gle region and no header file is added. To evaluate the im-
provement brought by the postprocessing in segmentation,
along with the intensity and bit shifts in compression, we
also performed the tests of BASICA without the intensity and
bit shifts and without postprocessing, respectively (denoted
by BASICA w/o PP and BASICA w/o shifts, respectively, in
Figures 5, 6, and 7, and Table 4).

The coding results are shown in Table 4. The TIFF for-
mat, which is commonly used in existing microarray im-
age archiving systems, produced the poorest results, about
4bpp worse than all the other methods compared. JPEG-
LS achieved the best performance on the NIH images.
But like TIFF, it does not support lossy compression. The
proposed BASICA turned out to be about 0.27 bpp worse
than JPEG-LS on the NIH images and 0.12 bpp better on
the SGI images. Besides, BASICA was significantly better
than JPEG2000 with the savings of 0.48 bpp and 0.56 bpp
on the NIH and SGI images, respectively. BASICA with-
out intensity and bit shifts yielded almost the same per-
formance as BASICA in lossless compression. On the other
hand, one can see clearly that the irregularities in segmen-
tation reduced compression efficiency substantially. With-
out postprocessing, the average size of a header file was
0.33 bpp larger than that of BASICA on the NIH images and
0.09 bpp larger on the SGI images, respectively. Thus, BA-
SICA with postprocessing was preferred on all the test im-
ages.

3.3. Comparisons of lossy compression

During the experiments, we also compared the lossy com-
pression results at different bit rates. Since TIFF and JPEG-
LS do not support the lossy compression functionality,
JPEG2000 was the only standard compression scheme com-
pared in the experiments. Our comparisons were based on
three different measurements.

3.3.1. Comparisons based on |, and |, distortions

We first compared the rate-distortion curves based on the [;
and [, distortions of log intensity. Figure 5 shows the average
reconstruction errors of these methods at different bit rates.
We observe that, due to the effect of relatively more homo-
geneous hybridization, the distortion on the SGI images was
uniformly smaller than the distortion on the NIH images.
JPEG2000 produced surprisingly small /; distortion values at
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FIGURE 4: Rate-distortion curves of log ratio in terms of (a) I, distortion and (b) , distortion with different wavelet decomposition levels
at different reconstruction bit rates; 5/3 wavelet filters were used. The segmentation was performed at three different significance levels,
a = 0.001,0.01, and 0.05, and three log ratios and their corresponding distortions were then obtained. The distortions shown are the

averages of the three significance levels over the NIH images.

TABLE 4: Lossless compression results (in bpp) of different coding schemes.

Methods TIFF JPEG-LS JPEG2000 BASICA w/o shifts BASICA w/o PP BASICA
Bit rates (NTH) 18.27 13.70 14.45 13.99 14.50 13.97
Bit rates (SGI) 17.21 14.49 14.93 14.31 14.46 14.37

low bit rates, only inferior to BASICA on the NIH images and
similar to the others on the SGI images. Nevertheless, it pro-
duced relatively large /, distortion values. Apparently, with-
out adjusting the MSE for log intensity, JPEG2000 spent too
many bit rates on high-intensity pixels/spots, which led to
high I, distortion. Furthermore, the distortion of JPEG2000
decayed slowly in both [, and I, senses. For bit rates beyond
6 bpp, it degraded to produce the worst distortion among all
the methods. Without the intensity and bit shifts, BASICA
performed poorly at lower bit rates. Only when the bit rates
went above 6 bpp did its performance become acceptable.
BASICA without postprocessing produced different perfor-
mances on images of different sources. On the NIH images,
it obviously suffered from the irregularities of segmenta-
tion, yielding a performance between BASICA and BASICA
without the intensity, and bit shifts at low bit rates. But it
quickly became worse than both of these schemes when the
bit rates increased. On the SGI images, in which target sites
had more uniform hybridization, there was almost no dif-
ference between its performance and BASICA’s. Compared
to the other schemes, BASICA yielded the best performance
in both [; and [, distortions at all the bit rates on all test
images.

3.3.2. Comparisons based on scatter plots

Besides /; and [, distortion measures, a more intuitively vi-
sual way to compare the distortion of different methods is by
scatter plotting. Figure 6 shows the extracted log ratios and
log products by different methods at a bit rate around 4 bpp
for two test images. In each scatter plot, the blue diagonal line
corresponds to the information extracted from the original
images. From the plots, we can see that BASICA had a bet-
ter performance than the other methods. BASICA without
postprocessing had a worse performance on the NIH images
and a good performance on the SGI images. JPEG2000 and
BASICA without intensity and bit shifts yielded worse per-
formances on both sets of test images. This observation is
consistent with the results shown in Figure 5. Since a scatter
plot cannot provide quantitative performance measurements
and can only visually display the data for comparisons at one
bit rate per plot, it does not provide a practical performance
measurement.

3.3.3. Comparisons based on gene expression data

Rather than judging the performance based on the I; and
I, distortion measures and the scatter plots, biologists and
clinicians in gene expression studies are likely to care more
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FIGURE 5: Rate-distortion curves of log ratio in terms of [; distortion (left column) and /, distortion (right column) under different recon-
struction bit rates for different compression schemes: (a-b) results based on the NIH images; (c-d) results based on the SGI images. The

segmentation was performed at the significance level a = 0.05.

whether a gene is differently detected or identified due to
a lossy compression. Hence, it is meaningful to look at the
rate of disagreement on detection and identification between
lossily reconstructed image and original image. The detec-
tion and identification disagreement are defined as follows.

(1) The detection disagreement is defined to be the valid
spots in the original image being detected as false spot, or
vice versa, after a lossy reconstruction.

(2) The identification disagreement is defined to be a
different classification outcome among up-regulated, down-



104

EURASIP Journal on Applied Signal Processing

log ratio
o

log ratio

(a)

log ratio
(=)

log ratio

(c)

S} [5e] W
(=) v (=)
T T 1

log product
&

10

0 5 10 15 20 25 30
log product

(b)

251

20 ¢

log product
) G
he*

0 5 10 15 20 25
log product

(d)

FIGURE 6: Scatter plots of log ratio (left column) and log product (right column) extracted from original images and reconstructed images
using different schemes. (a-b) Results based on an NIH image: black: BASICA at 4.3 bpp; magenta: BASICA w/o shifts at 4.3 bpp; green:
BASICA w/o PP at 4.7 bpp; red: JPEG2000 at 4.0 bpp. (c-d) Results based on an SGI image: black: BASICA at 4.1 bpp; magenta: BASICA w/o
shifts at 4.1 bpp; green: BASICA w/o PP at 4.2 bpp; red: JPEG2000 at 4.0 bpp. The significance level in the Mann-Whitney test is a = 0.05.

regulated, and invariant gene expression levels after a lossy
reconstruction, even though the detection outcome is the
same.

We conducted experiments using a simple quantitative
model of gene expression data analysis to compare differ-
ent methods. We determined that a spot was false if its fore-
ground intensity was less than its background intensity in ei-
ther channel or no foreground target site was found by the
segmentation. We also decided that if the log ratio was larger
or smaller than a certain threshold range [0, —0], then the
spot was up- or down-regulated; otherwise, it was invari-
ant. For these experiments, no normalization was performed
to reduce the interimage data variations. The experiments
were performed on the NIH images and the SGI images
separately and the results are shown in Figure 7. From this
figure we can see that the identification disagreement rate

was about 10 times higher than the detection disagreement
rate. These results were similar to what have been shown
in Figure 5. The disagreement caused by the lossy compres-
sion of JPEG2000 was comparable to that of BASICA only
at 2bpp, and dropped slowly when the bit rate increased.
On the other hand, the disagreement caused by BASICA
without intensity and bit shifts became acceptable only af-
ter 6 bpp. BASICA without postprocessing yielded a perfor-
mance similar to that of BASICA on the SGI images but did
worse on the NIH images. One can also observe that the
disagreement rates on the NIH images were much higher
than on the SGI images at the same bit rate. This is prob-
ably because NIH images are much noisier than SGI im-
ages, and hence require more bit rates to compress. These
results are consistent with Figure 5, where the NIH images
have much larger [, and I, distortions than the SGI images



Microarray BASICA

105

Detection disagreement rate (%)

2 3 4 5 6 7 8 9 10 11

Reconstruction bitrate (bpp)

-7 BASICA

—=— BASICA w/o shifts
-6~ BASICA w/o PP
-~ JPEG2000

(a)

Detection disagreement rate (%)

S}
w
'S

5 6 7 8 9 10 11
Reconstruction bitrate (bpp)

-7 BASICA

—— BASICA w/o shifts
-©- BASICA w/o PP
-~ JPEG2000

(c)

25 T T T T T T

— [\=]
w (=}

—_
(=]

Identification disagreement rate (%)

0 . . . . . .

2 3 4 5 6 7 8
Reconstruction bitrate (bpp)

-+ BASICA

—»— BASICA w/o shifts
-©- BASICA w/o PP
—— JPEG2000

(b)

11

3.5

W

—

Identification disagreement rate (%)
(3]

Reconstruction bitrate (bpp)

-7 BASICA

—»— BASICA w/o shifts
-6~ BASICA w/o PP
-- JPEG2000

(d)

11

FiGure 7: The disagreement rates versus the bit rates. The threshold parameters 8 = 1. The segmentation was performed at the significance
level @ = 0.05. The left-column plots depict the detection disagreement rates versus the bit rates. The right-column plots depict the identi-
fication disagreement rates versus the bit rates. The disagreement rates shown are the averages of all images: (a-b) results based on the NIH

images; (c-d) results based on the SGI images.

at the same bit rate. For the NIH images, the identifica-
tion disagreement rate was larger than 10% at 2bpp and
was around 1.5% at 10 bpp. For the SGI images, the iden-
tification disagreement rate was smaller than 2.5% even at

2 bpp, and was around 0.1% at 10 bpp. All these results con-
sistently suggested that one could hardly find a common
bit rate that led to similar disagreement/agreement rates for
different microarray images. For images with homogeneous
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hybridization, which are becoming more available with the
advance of microarray production technology, lossy com-
pression at low bit rates appears to be viable for highly ac-
curate gene expression data analysis.

4. CONCLUSIONS AND FUTURE RESEARCH

We have introduced a new integrated tool, microarray BA-
SICA, for cDNA microarray data analysis. It integrates back-
ground adjustment, and image segmentation and compres-
sion in a coherent software system. The cDNA microarray
images are segmented by a fast Mann-Whitney test-based al-
gorithm. Postprocessing is performed to remove the segmen-
tation irregularities. A highly efficient image coding scheme
based on a modified EBCOT algorithm is presented, along
with a new distortion measurement specially chosen for
c¢DNA microarray data analysis. Experimental results show
that cDNA microarray images of different quality require dif-
ferent bit rates to ensure sufficiently accurate gene expression
data analysis. For homogeneously hybridized cDNA microar-
ray images, BASICA is able to provide from a bit rate as low
as 5 bpp the gene expression data that are 99% in agreement
with those of the original 32 bpp images. Future research in-
cludes finding the optimal rate allocation between the back-
ground and foreground, and between the two channels of a
c¢DNA microarray image.
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