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Heterogeneous DNA sequences can be partitioned into homogeneous domains that are comprised of the four nucleotides A, C, G,
and T and the stop codons. Recursively, we apply a new entropic segmentation method on DNA sequences using Jensen-Shannon
and Jensen-Rényi divergences in order to find the borders between coding and noncoding DNA regions. We have chosen 12-
and 18-symbol alphabets that capture (i) the differential nucleotide composition in codons and (ii) the differential stop-codon
composition along all the three phases in both strands of the DNA. The new segmentation method is based on the Jensen-Rényi
divergence measure, nucleotide statistics, and stop-codon statistics in both DNA strands. The recursive segmentation process
requires no prior training on known datasets. Consequently, for three entire genomes of bacteria, we find that the use of nucleotide
composition, stop-codon composition, and Jensen-Rényi divergence improve the accuracy of finding the borders between coding

and noncoding regions in DNA sequences.

Keywords and phrases: recursive segmentation, DNA sequence, information divergence measures, statistics of stop codons,

Bayesian information criterion.

1. INTRODUCTION

The computational identification of genes and coding re-
gions in DNA sequences is a major goal and a long-lasting
topic for molecular biology, especially for the human genome
project [1, 2]. One of the main goals of the human genome
project is to provide a complete list of annotated genes that
will be used in the biomedical research. Also, methods for
reliable identification of genes in anonymous sequences of
DNA can speed the process. A number of such methods ex-
ist but their predictive performance for finding genes is still
not satisfactory [3]. There are two basic problems in gene
finding: detection of protein-binding sites of the genes and
detection of regions that code for proteins. These problems
still are not satisfactorily solved, and the reliable detection of
genes and coding regions in DNA sequences is critical for the
success of the computational gene discovery from annotated
genome sequences [4]. We address in this study the problem
of finding the coding regions in DNA sequences that code for
proteins.

Almost everything in the organism of living beings is
made of proteins. According to the central dogma that forms
the backbone of molecular biology, the DNA codes for the
production of messenger RNA (mRNA) during the tran-
scription process. The ribosomes “read” this information
and use it for protein synthesis during the translation pro-
cess.

The main genetic material in the prokaryote and the eu-
karyote cells is represented by the nucleic DNA molecules
that have a well-studied structure. There are four kinds of
nucleotides that differ by their nitrogenous bases: adenine
(A), cytosine (C), thymine (T), and guanine (G). Along two
strands of DNA double helix, a pyrimidine in one chain al-
ways faces a purine in the other and only the complementary
base pairs T-A and G-C exist. A pyrimidine contains bases T
and G, and purine contains bases A and C. Also, there is a
large redundancy of the protein-coding regions in DNA that
is distributed unevenly. There are 4° = 64 codons to specify
only 21 outputs, where 20 are amino acids and one output
(stop codon) signals the end of the translation process.
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One generic feature of DNA sequences is that their sta-
tistical properties are not homogeneously distributed along
the sequence [5]. There is evidence of long-range correlations
in genomic DNA, and it has been attributed to the presence
of complex heterogeneities in the DNA sequences [6, 7, 8].
However, the current biological knowledge about coding re-
gions in DNA is still limited to the structure of the codon and
functional sites of the genes. The fact that the composition
of the nucleotides for positions inside the codon (periodicity
of three nucleotides) is different for the coding regions than
the noncoding ones provides a strong signal for detection
(9, 10].

Many algorithms have been developed for gene recog-
nition based on three-base periodicity [11, 12, 13, 14],
codon-usage measure [2], dicodon-usage measure [15], and
position-weight matrix [16]. Fickett [17, 18] presents sev-
eral algorithms for recognizing complete genes and one algo-
rithm for recognizing coding regions. The accuracy of these
algorithms for the complete gene recognition is generally
high when they are tested on Guigo’s dataset [3], but is not
so good for the recently completed genomes of different or-
ganisms.

Segmentation methods are computational methods used
to identify the homogeneous regions based on entropy mea-
sures. They are important for DNA-sequence analysis when
identifying the borders between coding and noncoding re-
gions [5, 7, 19, 20]. Also, recursive segmentation of DNA
sequences has been used for detecting the existence of the
isochores, and CpG islands, detecting replication origin and
terminus, and complex patterns such as telomeres, and eval-
uating the genomic complexity [5, 6]. The Jensen-Shannon
divergence is one of the most widely used methods for seg-
menting DNA sequences [5, 6, 7, 19, 20, 21], and is used
for recursively separating DNA sequences in homogenous re-
gions with respect to its neighbors. The criterion for contin-
uing the recursive segmentation process can be based on (i)
statistical significance [19, 20, 22], or (ii) Bayesian informa-
tion criterion (BIC) [5, 6, 7, 21].

In this study, we analyze the recursive entropic segmen-
tation for DNA sequences from different bacteria, but this
can be easily extended to other DNA sequences of other or-
ganisms. All the bacteria’s genomes referred to in this study
are available on the site of European Bioinformatics Institute
(http://www.ebi.ac.uk/genomes/). In [19], Bernaola-Galvan
et al. use a 12-symbol alphabet and Jensen-Shannon diver-
gence for finding the borders between coding and noncod-
ing regions in DNA. The 12-symbol alphabet is based on nu-
cleotide statistics inside codons. It is well known that the cod-
ing regions contain stop codons within maximum two phases
and noncoding regions contain usually stop codons within
all three phases [23]. In order to take into account these
statistical properties of coding regions, we use the recur-
sive segmentation algorithm proposed by Bernaola-Galvan
et al. [19], a new 18-symbol alphabet that takes into account
the nonuniform distribution of stop codons within all three
phases, Jensen-Rényi divergence, and a new stopping crite-
rion. The stopping criterion based on BIC for recursive seg-
mentation was proposed by Li [5, 7]. Our approach uses

only general statistical properties of coding regions. In this
way, the prior training on data sets is avoided and further-
more, the search for additional biological information such
as splice and promoter regions may also be avoided. It is
noted that such additional information could be incorpo-
rated in a more concrete implementation of the algorithm
[19]. Consequently, for three entire genomes of bacteria, we
find that the use of nucleotide and stop-codon composition,
and Jensen-Rényi divergence improve the accuracy of finding
the borders between coding and noncoding regions in DNA
sequences.

2. STOP-CODON STATISTICS

The distribution of stop codons in DNA coding regions is dif-
ferent than in the noncoding regions. Also, it is well known
that the stop codons are strong signals in DNA sequences. In
coding regions, the stop codons are usually distributed along
two phases (reading frames) with the exception of the stop
codon that is in a reading frame and signals the end of a gene.
This knowledge is employed implicitly by hidden Markov
models used in different gene-finding algorithms [4, 24, 25].
Explicitly, for the first time, the stop-codon statistics is used
for recognizing coding regions in studies of Wang et al. [23]
and Carpena et al. [26].

Different DNA sequences from different organisms are
studied in order to show the distribution of stop codons
along all three phases in coding and noncoding regions.
There are extracted DNA sequences of different lengths—
40, 80, 120, and 160 base pairs (bp)—from the following
three randomly chosen prokaryote organisms: Methanococ-
cus jannaschii (GenBank acc. L77117), Chlamydia muri-
darum (GenBank acc. AE002160), and Chlamydophila pneu-
moniae (GenBank acc. BA000008). The DNA sequences are
taken randomly from coding and noncoding regions of the
previous bacteria, and they are not overlapping on the same
DNA strand.

Table 1 shows the counts of DNA sequences that have
stop codons in one, two, and three phases, and no stop
codons in neither of the three phases. There is no DNA cod-
ing region with stop codons within all three phases, as is
shown in Table 1. We take advantage of this by introducing
a new alphabet that considers also the stop-codon statistics
and Jensen-Rényi divergence.

Also, in Figure 1, it is shown that the counts of stop-
codons along all three phases are increasing rapidly with the
length of noncoding regions, and in Figure 2, the counts of
the stop codons along three phases are decreasing rapidly
with the length of coding regions. Similar observations as in
Figures 1, 2, and Table 1 have been used before for the in-
troduction of the stop-codon statistics into the gene-finding
field [23].

Figures 3 and 4 show the histograms of the lengths
of noncoding and coding DNA regions from bacte-
ria Methanococcus jannaschii, Chlamydia muridarum, and
Chlamydophila pneumoniae; none of the coding regions of
the three chosen bacteria have the length less than 50 bp, but
there exist very short noncoding regions.
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TasLE 1: Distribution of stop codons along phases for coding and noncoding DNA regions.
Stop codons in
DNA sequence Sequence length [bp] Number of sequences No stop codons [%] one two three
phase(s) [%]
Coding 40 8000 8.21 44.64 47.15 0
Noncoding 40 8000 5.32 31.08 46.36 17.24
Coding 80 4000 1.23 18.15 80.62 0
Noncoding 80 4000 0.45 6.30 37.80 55.35
Coding 120 2000 0.10 6.85 93.05 0
Noncoding 120 2000 0.30 1.85 22.60 75.25
Coding 160 1400 0 3.36 96.64 0
Noncoding 160 1400 0 0.70 13.20 86.20
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FiGure 1: Distribution of stop codons along three phases in non-
coding DNA regions.

The segmentation method based on nucleotide statistics
[7] detects the coding regions even when they are on the
opposite DNA strand. Thus, the stop-codon statistics along
all three phases should also be considered on both DNA
strands. As is shown in Figure 5, the stop codons on the re-
verse DNA strand appear in the given DNA strand, where
the stop codons TAA, TAG, and TGA are situated as TCA,
CTA, and TTA. When the codon CTA is met on a given DNA
strand, it is known that it represents the stop codon TAG on
the opposite DNA strand. In this way, the stop-codon statis-
tics in both DNA strands is the same with the statistics of
the six codons TAA, TAG, TGA, TCA, CTA, and TAA along a
single DNA strand.

3. THE JENSEN-SHANNON DIVERGENCE

The Jensen-Shannon divergence quantifies the difference be-
tween two or more probability distributions and is widely
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- Stop codons in three phases

F1Gure 2: Distribution of stop codons along three phases in coding
DNA regions.

used for DNA segmentation [5, 7, 19, 20, 21]. The Jensen-
Shannon divergence Djs between m probability distributions
p,p?,...,p" with the corresponding weights is defined
as

where pt/) = ( pgj ) p;j - p,(j ) are probability distributions
satisfying the usual constraints >~ pgj )~ land0 = p,(] =
1, fori = 1,2,....,k and j = 1,2,...,m; and 7'/} are the
weights of the distributions p/), satisfying the constraints
z;nzl n) = 1and 0 < 7 < 1. The Shannon entropy of

the probability distribution p used in (1) is defined as

k
H[p] = - > pi - log, p;. ()

i=1
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FIGURE 5: Stop codons in both strands of DNA.

Figure 6 illustrates the three-dimensional representation
of the Jensen-Shannon divergence with equal weights for
two Bernoulli probability distributions. Some mathematical

0
%

F1GURE 6: Three-dimensional representation of Jensen-Shannon di-
vergence Djs(p,q), where p = (p,1 — p), q = (¢,1 — ¢q), and
7 = (0.5,0.5).

properties for the m-ary case that are important for its appli-
cation as a divergence measure are the following:

(i) the use of Jensen inequality implies
Dys[p,p?,....p"] > 0, (3)

where Dys[p™", p?,...,p"] = 0 ifand only if pV) =
p@ — ... p(m;

(i) the divergence Djs is symmetric in its arguments p‘",
p?,...,p", that is, is invariant for any permutation
of its arguments;

(iii) the divergence Dys is well defined even if pV,
p@,...,p'"™ are not absolutely continuous.

4. THE JENSEN-RENYI DIVERGENCE

The Jensen-Rényi divergence, as Jensen-Shannon divergence,
is defined as a similarity measure between two or more prob-
ability distributions, and is used in image registration [27].
The Jensen-Rényi divergence Djr, between m probability dis-
tributions pt, p?,...,p™ with the corresponding weights
is defined as

1

Djr[p",p%,....p"™]

Y , (4)
=R, Z . pW | - Z 7D Ry [p].
j=1 j=1

The Rényi entropy of the probability distribution p referred
toin (4) is defined as

1
11—«

k
- log, Z pi (5)

i=1

Rtx[P] =

where « > 0 and o # 1. For &« > 1, the Rényi entropy is
neither concave nor convex [27]. For a € (0, 1), the Rényi
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entropy is concave and tends to Shannon entropy H[p] as
a — 1 [27]. The Rényi entropy is a nonincreasing function
of a, and thus R,[p] = H]Jp], for all « € (0,1). We re-
strict in this study a € (0, 1), unless otherwise is specified.
As shown in Figure 7, the measure of uncertainty is at a min-
imum when Shannon entropy is used and it increases as «
decreases. The Rényi entropy attains a maximum uncertainty
when « is equal to zero [27].

Figure 8 illustrates the three-dimensional representation
of the Jensen-Rényi divergence for two Bernoulli probability
distributions. Some mathematical properties for the m-ary
case, for all « € (0, 1), that are important for its application
as a divergence measure [27] are the following:

p are not absolutely continuous.

5. DETECTION OF BORDERS BETWEEN CODING
AND NONCODING REGIONS USING RECURSIVE
SEGMENTATION

We use the approach proposed by Bernaola-Galvan et al.
[19, 20] and Li [5, 7] for segmentation of DNA sequences
in homogeneous regions that are coding and noncoding. The
recursive segmentation of a DNA sequence is as follows. First,
the DNA sequence of length N7 is converted into a sequence
of symbols with length N using a k-symbol alphabet. We
sweep through the symbol sequence, and compute at every
position i, where i = 1,..., N, that divides the sequence into
a left and a right sequence, the entropy of the whole, left, and
right sequences. The position where the divergence reaches
its maximum is accepted as a cutting point. Further, we re-
cursively apply the segmentation to the left and to the right
sequences until the maximized divergence measure is above
a certain threshold. For the Jensen-Shannon divergence, the
threshold is based on BIC. If the maximized divergence mea-
sure is above the threshold, the sequence is segmented, and if
not, the segmentation is stopped for the respective sequence.
The Jensen-Shannon divergence Dys is as follows:

. i N —i

D]S = I’HiaXD]S(l) = [H - NHI - N Hr]) (7)
where H, H;, and H, are the Shannon entropies (2) of the
whole, left, and right sequences, respectively [5, 7, 19, 20].
The weights are /N and (N — i)/N for the left and right se-
quences, respectively, where i is the point that divides the se-
quences into two sequences. In his study, Grosse et al. [22]
shows that Jensen-Shannon divergence, as introduced previ-
ously, can be interpreted as the mutual information in the
framework of information theory.

The Jensen-Rényi divergence Dy, is as follows:

i N-—i

D]Rq = ml_axD]Ra(z) = I:Ra — NR,XJ — T

Rel,  (®)
where Ry, Ry, and Ry, are the Rényi entropies (5) of the
whole, left, and right sequences, respectively.
Bernaola-Galvan et al. [19] introduces a 12-symbol al-
phabet in order to take into account the differential nu-
cleotide composition in codons. The phase of the nucleotide,
for this alphabet, is defined as m = (nmod3) + 1, where
m € {1,2,3}, and n is the position of the nucleotide in the
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TABLE 2: Symbol mapping for 12-symbol alphabet.
Nucleotide Phase Symbol
1 A
A 2 Ay
3 As
1 G
C 2 G,
3 Gs
1 Gi
G 2 G,
3 Gs
1 T,
T 2 T,
3 T;

TABLE 3: Stop-codon mapping for 18-symbol alphabet.

Triplets of nucleotides (codons) Phase Symbol

1 N

TGA, TAG, or TAA

TCA, CTA, or TTA

W N =W
%]

DNA sequence. Each nucleotide of the DNA sequence is sub-
stituted by the symbols from o1, = {A},Az,A3,Cy,Cy,Cs,
G1, G, G3, Ty, Ty, T3}, as is also shown in Table 2.

We introduce in this study an 18-symbol alphabet that
takes into account also the nonuniform distribution of stop-
codons in both DNA strands, along all three phases [23].
Thus, the nucleotides and the stop codons are substituted by
the symbols from ﬂlg = {A, Ay, A3,Cy,Cy, C3,Gy, Gy, Gs,
T1,T2,T3,51,5,S3,51,S5, S5}, where the symbols for nu-
cleotides are as for s, alphabet (Table 2). The symbols S,
S,, and S; are the stop codons TAA, TAG, and TGA in the
given DNA strand, and S}, S}, and S} are the stop codons
AGT, GAT, and AAT on the opposite DNA strand, as shown
in Table 3. The phase of a stop codon is defined the same
as for a nucleotide with the exception that n represents the
position of the first nucleotide of the given codon. For ex-
ample, the DNA sequence ACTTAA is converted using the
18-symbol alphabet as A;C,S5T5S1T1AAs.

These two alphabets, together with the two divergence
measures, are used for finding the borders between coding
and noncoding regions in different DNA sequences from
bacterium Rickettsia prowazekii, as shown in Figures 9 and
10.

In Figure 9, we plot the Djg, (¢« = 0.5) and Djs with
A1, and 9,5 alphabets along a DNA sequence. The DNA se-
quence is composed of two randomly chosen regions from
bacterium Rickettsia prowazekii. The first region of 1016 bp
belongs to a coding region and the second one of 1151 bp be-

longs to a noncoding region. Figure 9 shows that using both
divergences and both alphabets, we are able to find the bor-
der between the coding and noncoding region. Using o4, al-
phabet with both divergences, the cut is found at 11 bp to the
right of the real border, and using 54,5 alphabet with both di-
vergences, the cut is found at 4 bp to the left of the real bor-
der. In Figure 10, we plot both divergences using the both al-
phabets along a DNA sequence that contains a coding region
of 810 bp from gene RP172 followed by the original noncod-
ing region of 1477 bp as it appears in the chromosome of bac-
terium Rickettsia prowazekii.

In Table 4, we analyze the same DNA sequence as in
Figure 10 and it can be seen that using the alphabet 54,5 and
the Jensen-Rényi divergence, we get the closest cut to the real
border between the coding and noncoding regions. When
the segmentation is applied on a single continuous DNA se-
quence followed by the “original” noncoding region as in
Figure 10, using the alphabet ${,, is not anymore possible
to detect with a reasonable accuracy the border between the
two regions, because the coding region “leaks,” for a small
portion, into the noncoding region. The region where the
leaking phenomena happens has the same nucleotide com-
position as a coding region even though it is a noncoding re-
gion. This region does not have the same stop-codons com-
position as a coding region and because of this, using ;g
alphabet, we are able to find a much closer border to the
real one. The “leaking” regions appear usually in vicinity of
the coding regions and they are removed in the cases when
two randomly chosen, coding and noncoding, regions are
joined arbitrary together, as in Figure 9. The Jensen-Rényi
divergence takes better advantage of the o453 alphabet than
Jensen-Shannon divergence because the counts of the stop-
codons are much less than the counts of the nucleotides. The
Jensen-Rényi divergence emphasizes better the difference be-
tween the regions with different stop-codon statistics. Thus,
using the o5 alphabet and Jensen-Rényi divergence, we are
able to detect better the border due to the introduction of the
biological knowledge in the segmentation method.

6. STOPPING CRITERION FOR RECURSIVE
SEGMENTATION

The stopping criterion in the case of Jensen-Shannon diver-
gence can be considered from the point of view of the hy-
pothesis testing and the model selection framework. For the
hypothesis testing framework, the probability that the value
of Dys can be obtained by chance is computed by the null hy-
pothesis that the sequence is homogeneous. The exact form
of the null distribution is difficult to find [5, 28] but Grosse et
al. [9, 22] suggest an empirical form of the null distribution
based on numerical simulation.

In this study, the stopping criterion for segmentation us-
ing Jensen-Shannon divergence is based on model selection
that has been introduced by Li in his studies [5, 7]. The
model is judged by how well it fits the data and how com-
plex it is. Thus the stopping criterion tests if a two-random-
subsequence model is better than the one-random-sequence
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FIGURE 9: Jensen-Shannon divergence and Jensen-Rényi divergence
versus cutting position for a DNA sequence containing a randomly
chosen coding region and a randomly chosen noncoding region.
The maximum values for the divergences are circled on the graph.

0.045

Divergence

0 500 1000 1500
Pointer position (bp)

— Djs using alphabet s>

— Djp using alphabet 541, and a = 0.5
— Dys using alphabet 55

— Djr using alphabet 4,3 and & = 0.5
~~~~~ Border coding-noncoding regions

FiGure 10: Jensen-Shannon divergence and Jensen-Rényi diver-
gence versus cutting position for a DNA sequence containing a cod-
ing region followed by a noncoding region. The maximum values
for the divergences are circled on the graph.

model. If the two-random-subsequence model is better, then
the cut will be accepted, otherwise it is not. For balancing the

TABLE 4: Cuts obtained using different methods for segmentation
for the same DNA sequence as in Figure 10.

Distance from border
251 bp (left)
251 bp (left)
54 bp (left)
4 bp (left)

Segmentation method
Dy with s, alphabet
Djg (a = 0.5) with o, alphabet
Dy with ;5 alphabet
Djr (a = 0.5) with o454 alphabet

goodness-of-fit of the model to the data with the number of
parameters, the BIC is used as follows:

ABIC = -2 -logL+K -log, N, 9)

where L = L,/Li, L1 and L, are the maximum likelihood
of the models before and after the cut is made, respectively;
K = K; — Ky, K; and K; are the number of free parameters
before and after the cut is made, respectively; and N is the
length of the sequence [5, 7]. In order to continue the recur-
sive segmentation procedure and to decide if a cut is signif-
icant or not, the BIC should be reduced, that is, ABIC < 0.
This leads to

2-N-Djs>K -log, N. (10)
In order to decide when the segmentation algorithm using

Dy has to be stopped, Li [5, 7] introduced, as a measure, the
segmentation strength as

_Z'N-Dls—K-logzN

s K -log, N

(11)
The BIC stopping criterion is introduced here only for
Jensen-Shannon divergence. In order to decide when the seg-
mentation algorithm using Djg, has to be stopped, we intro-
duce a new segmentation strength, derived empirically, as

2'N'D}RR*K'10g2N
S: .
K -log, N

(12)

The recursive segmentation continues, or a cut is ac-
cepted as significant as long as s > sy, where sy can be set
by the user. By setting the sy, one affects the threshold used
to make the decision if a cut is significant or not. For the o4,
and 94,3 alphabets, the segmentation strength is defined by
(11) or (12), where K = 10 and K = 16, respectively. The
segmentation strengths for Djs and Dy, have a closely re-
lated expression. Special cases of Jensen-Rényi divergence are
obtained for « = 1/2 for which one obtains the log Hellinger
distance squared and for @ = 1 for which one obtains the
Kullback-Liebler divergence [29]. For « = 1, one obtains
D]R,x = D]s.

In this study, the standard stopping criterion is the stop-
ping criterion where a cut is accepted as significant as long
as s = sy, where s is the segmentation strength in (11) and
(12). A DNA sequence that does not have stop codons along
all three phases has a very high probability (Figures 1 and 2)
to be a coding region, and in this case it does not need to be
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FiGure 11: Comparison between the known coding regions (gray
regions with solid lines as borders) of a DNA sequence from bacte-
ria Borrelia burgdorferi and the borders (vertical dashed lines) ob-
tained through recursive segmentation using Jensen-Rényi diver-
gence (« = 0.5), o5 alphabet, and standard stopping criterion.
The coding regions oriented downwards are situated on the oppo-
site DNA strand.

segmented further. Thus, we introduce a new stopping crite-
rion as follows. A cut is accepted as significant if s > sy and
the segmented sequence has stop codons in all three phases.
Hence, a DNA sequence is not segemented further if it has
stop codons only in two phases.

In this study, the DNA sequences smaller than 40 bp in
length are not segmented further in the recursive segmen-
tation process because we consider that it is not statistically
enough to separate them into two subsequences with a high
confidence and the stop-codon statistics is not anymore rele-
vant for such small sequences, as shown in Table 1.

7. EXPERIMENTAL RESULTS

In order to quantify the coincidence between cuts (CBC)
obtained using the recursive segmentation algorithm and
known borders between coding and noncoding regions, we
use the following measure, introduced by Bernaola-Galvan
etal. [19]:

1 minj|b,-—cj| mini|bi—cj|]
CBC 2[2 N, +§ N, , (13)
where {b;} is the set of all borders between coding and non-
coding regions, {c;} is the set of all cuts produced by the seg-
mentation, and Ny represents the total length of the DNA
sequence. The measure CBC is the average of the error in
the determination of the correct boundaries between coding
and noncoding regions, so the value (1 — CBC) is a reason-
able measure of the accuracy of the borders detected between
coding and noncoding regions [19].

In Figure 11, a comparison is shown between the known
regions of a DNA sequence containing the first 30000 bp

Segmentation strength (sp)

o~ Dys using alphabet 51, and standard stopping criterion

-& Djs using alphabet 5413 and standard stopping criterion

- Djp(a = 0.5) using alphabet o3 and standard stopping criterion
== Djr(a = 0.5) using alphabet o3 and new stopping criterion

FIGURE 12: Accuracies of recursive segmentation for different
thresholds of segmentation strength using Jensen-Shannon and
Jensen-Rényi divergences with s, and 4,5 alphabets and two stop-
ping criterions for the genome of bacterium Rickettsia prowazekii.

from the beginning of the genome of bacterium Borrelia
burgdorferi and the predicted borders obtained through re-
cursive entropic segmentation using Jensen-Rényi divergence
with the 9,5 alphabet and standard stopping criterion. The
threshold of the segmentation strength is so = —0.55 where
the parameter CBC achieves its overall minimum. The bor-
ders between coding and noncoding regions are detected
very close to the real ones as shown in Figure 11.

We show in Figures 12, 13, and 14 the results of
the recursive segmentation for different values of the seg-
mentation strength—using Jensen-Shannon and Jensen-
Rényi divergences with alphabets o1, and 4,3, and two
stopping criterions—of the whole genomes of the bacte-
ria Rickettsia prowazekii (GenBank acc. AJ235269, length
1111523 bp), Borrelia burgdorferi (GenBank acc. AE000783,
length 910724 bp), and Methanococcus jannaschii (GenBank
acc. L77117, length 1664970 bp). For recursive segmenta-
tion of all three genomes with Jensen-Rényi divergence
and o3 alphabet, we use a = 0.5. This value has been
found by segmenting the whole genome of bacterium Rick-
ettsia prowazekii, using standard stopping criterion, for a =
0,0.1,0.2,...,0.9,1 and choosing the value for a, where the
maximum of segmentation accuracy occurs. The recursive
segmentation, using Jensen-Rényi divergence with 54, al-
phabet, achieves the maximum of the accuracy for « = 1
that is the same as Jensen-Shannon divergence. Hence, the
Jensen-Rényi divergence takes better advantage of the intro-
duction of the stop-codon statistics than the Jensen-Shannon
divergence does.

The recursive segmentation using the Jensen-Rényi di-
vergence with 54,3 alphabet and new segmentation criterion
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FIGURE 13: Accuracies of recursive segmentation for different
thresholds of segmentation strength using Jensen-Shannon and
Jensen-Rényi divergences with 54, and 4,5 alphabets and two stop-
ping criterions for the genome of bacterium Borrelia burgdorferi.

achieves the best overall maximum accuracies for the whole
genome of the three bacteria. Bernaola-Galvan et al. [19]
achieves the maximum of accuracy in detecting the bor-
ders of 80% compared with our 80% with the same Jensen-
Shannon divergence and same s, alphabet. We use the
standard stopping criterion based on BIC, compared with
the statistical significance used by Bernaola-Galvan et al.
[19]. Our newly introduced segmentation method that uses
Jensen-Rényi divergence with ;s alphabet and the new
stopping criterion gives an accuracy of 90% for sy = —0.74,
that is, higher than 80% reported by Bernaola-Galvan et
al. [19]. Also the accuracies for bacteria Borrelia burgdor-
feri and Methanococcus jannaschiie are improved from 77%
and 75% with Jensen-Shannon divergence using ¢, alpha-
bet and standard stopping criterion to 91% and 89% with
Jensen-Rényi divergence using ;s alphabet and new stop-
ping criterion, respectively. The improvement in accuracy is
explained by the use of Jensen-Rényi divergence that takes
better advantage of the stop-codon statistics than Jensen-
Shannon divergence does. Also, the introduction of the new
stopping criterion in this study improves the accuracies of
the segmentation. From Figures 12, 13, and 14, a good value
of the threshold for the segmentation strength is sp = —0.75
for segmenting other genomes of bacteria with Jensen-Rényi
divergence (o = 0.5) using 4,5 alphabet and new stopping
criterion. Even though, for sy > —0.75, higher accuracies can
be achieved in some situations, this is not always true due to
the scattering of coding regions in genome.

Consequently, our results that use the newly introduced
approach, based on Jensen-Rényi divergence with the 4,3 al-

100 T T T T T T T T

95+

90 ¢

85

100(1-CBC) [%]

80

751

70 . . . . . . L .
-0.9 -0.85 -0.8 —0.75 —-0.7 —=0.65 —0.6 —0.55 —0.5 —0.45
Segmentation strength (sg)

-e- Dys using alphabet s, and standard stopping criterion

- Djg using alphabet 5413 and standard stopping criterion

-4 Djr(a = 0.5) using alphabet 5413 and standard stopping criterion
- Djr(a = 0.5) using alphabet 5413 and new stopping criterion

FIGURE 14: Accuracies of recursive segmentation for different
thresholds of segmentation strength using Jensen-Shannon and
Jensen-Rényi divergences with s, and 4,5 alphabets and two stop-
ping criterions for the genome of bacterium Methanococcus jan-
naschii.

phabet and new stopping criterion, appear to be more accu-
rate than those obtained using only Jensen-Shannon diver-
gence with &, alphabet and standard stopping criterion, in
finding the borders between coding and noncoding regions.

8. DISCUSSION

In this study, we introduce a new segmentation method
based on Jensen-Rényi divergence, an 18-symbol alphabet,
and a new stopping criterion for finding the borders be-
tween coding and noncoding regions. The new segmentation
method applied to three bacteria genome improves the accu-
racies of the border detection compared to the standard seg-
mentation procedures previously reported. We employ the
composition of stop codons over all three phases along the
DNA sequence in the 18-symbol alphabet and in the new
stopping criterion for improving the accuracy of finding the
borders between coding and the noncoding DNA regions.
The assumptions built in other gene-finding systems as
GENMARK, VEIL [25], and MORGAN [30] have a num-
ber of shortcomings [30] that do not affect the recursive
entropic segmentation in finding the borders between cod-
ing and noncoding regions. A direct comparison between
gene-finding and recursive segmentation for finding the bor-
ders between coding and noncoding regions is difficult to
make because the gene-finding systems perform very well
on small DNA sequence that contains only one gene or very
few coding regions. The recursive entropic segmentation per-
forms better on long DNA sequences with a large number of
genes, in order to gain statistics. The present segmentation
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algorithms [5, 7, 19] rely heavily on statistical properties for
finding the coding, noncoding, and other regions of interests
in DNA, but the gene-finding systems [4, 25, 30] use biologi-
cal knowledge regarding functional sites, together with statis-
tics for finding genes. Also, the recursive segmentation needs
no prior training compared with gene-finding systems that
require extensive training on known datasets. In eukaryotes
are much more short coding-regions that are more “scat-
tered” than in prokaryotes and thus it is more difficult to
find their borders-based statistical properties as in [5]. The
genomes analyzed in this study belong only to prokaryotes
that have the coding regions much more compact than in
eukaryotes.

9. CONCLUSION

There is an increasing need to develop new algorithms for
finding coding regions in DNA sequences. In this study,
we introduce a new segmentation method based on Jensen-
Rényi divergence with an 18-symbol alphabet and new stop-
ping criterion for finding the borders between coding and
noncoding regions in prokaryotes. We use recursive segmen-
tation along with a stopping criterion based on Bayesian
information criterion (BIC). Together, they offer a novel
method to view the compositional heterogeneity of a DNA
sequence. The success comes from the utilization of the stop-
codon statistics in all three phases along the DNA sequence
and use of Jensen-Rényi divergence. For three entire genomes
of bacteria, we found that the use of Jensen-Rényi divergence,
nucleotide composition, and stop-codon composition im-
proves the accuracy of finding the borders between coding
and noncoding regions in DNA sequences, compared to the
standard segmentation procedures previously reported.
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