
EURASIP Journal on Applied Signal Processing 2004:2, 317–329
c© 2004 Hindawi Publishing Corporation

Medusa: A Novel Stream-Scheduling Scheme
for Parallel Video Servers

Hai Jin
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Email: hjin@hust.edu.cn

Dafu Deng
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Email: dfdeng@hust.edu.cn

Liping Pang
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
Email: lppang@hust.edu.cn

Received 6 December 2002; Revised 15 July 2003

Parallel video servers provide highly scalable video-on-demand service for a huge number of clients. The conventional stream-
scheduling scheme does not use I/O and network bandwidth efficiently. Some other schemes, such as batching and streammerging,
can effectively improve server I/O and network bandwidth efficiency. However, the batching scheme results in long startup latency
and high reneging probability. The traditional stream-merging scheme does not work well at high client-request rates due to
mass retransmission of the same video data. In this paper, a novel stream-scheduling scheme, called Medusa, is developed for
minimizing server bandwidth requirements over a wide range of client-request rates. Furthermore, the startup latency raised by
Medusa scheme is far less than that of the batching scheme.

Keywords and phrases: video-on-demand, stream batching, stream merging, multicast, unicast.

1. INTRODUCTION

In recent years, many cities around the world already have,
or are deploying, the fibre to the building (FTTB) network on
which users access the optical fibremetropolitan area network
(MAN) via the fast LAN in the building. This kind of large-
scale network improves the end bandwidth up to 100Mb
per second and has enabled the increasing use of larger-scale
video-on-demand (VOD) systems. Due to the high scalabil-
ity, the parallel video servers are often used as the service
providers in those VOD systems.

Figure 1 shows a diagram of the large-scale VOD system.
On the client side, users request video objects via their PCs
or dedicated set-top boxes connected with the fast LAN in
the building. Considering that the 100Mb/s Ethernet LAN
is widely used as the in-building network due to its excel-
lent cost/effective rate, we only focus on the clients with such
bandwidth capacity and consider the VOD systems with ho-
mogenous client network architecture in this paper.

On the server side, the parallel video servers [1, 2, 3] have
two logical layers. Layer 1 is an RTSP server, which is re-

sponsible for exchanging the RTSP message with clients and
scheduling different RTP servers to transport video data to
clients. Layer 2 consists of several RTP servers that are re-
sponsible for concurrently transmitting video data according
to the RTP/RTCP. In addition, video objects are often striped
into lots of small segments that are uniformly distributed
among RTP server nodes so that the high scalability of the
parallel video servers can be guaranteed [2, 3].

Obviously, the key bottleneck of those large-scale VOD
systems is the bandwidth of parallel video servers, either the
disk I/O bandwidth of parallel video servers, or the net-
work bandwidth connecting the parallel video servers to the
MAN. For using the server bandwidth efficiently, a stream-
scheduling scheme plays an important role because it de-
termines how much video data should be retrieved from
disks and transported to clients. The conventional scheduling
scheme sequentially schedules RTP server nodes to transfer
segments of a video object via unicast propagation method.
Previous works [4, 5, 6, 7, 8] have shown that most clients
often request several hot videos in a short time interval. This
makes the conventional scheduling scheme send lots of same

mailto:hjin@hust.edu.cn
mailto:dfdeng@hust.edu.cn
mailto:lppang@hust.edu.cn


318 EURASIP Journal on Applied Signal Processing

Giga bits network
Optical

fibre MAN

Switch

RTP
server
1

RTSP
server

RTP
server
2

· · · RTP
server
n

Disk 1 Disk 2 Disk n

Router 1 · · ·

100M LAN 1

PC PC TV
TV TV PC

Residential area 1 Residential area n

LAN n100M

Router n

· · ·

Figure 1: A larger-scale VOD system supported by parallel video servers.

video-data streams during a short time interval. It wastes the
server bandwidth and better solutions are necessary.

The multicast or broadcast propagation method presents
an attractive solution for the server bandwidth problem be-
cause a single multicast or broadcast stream can serve lots of
clients that request the same video object during a short time
interval. In this paper, we focus on the above VOD system,
and then, based on the multicast method, develop a novel
stream-scheduling scheme for the parallel video servers,
called Medusa, which minimizes the server bandwidth con-
sumption over a wide range of client-request rates.

The following sections are organized as follows. In
Section 2, we describe the related works on the above band-
width efficiency issue and analyze the existing problem of
these schemes. Section 3 describes the scheduling rules for
the Medusa scheme and Section 4 discusses how to de-
termine the time interval T used in the Medusa scheme.
Section 5 presents information of the performance evalua-
tion. Section 6 proposes some discussions for the Medusa
scheme. Finally, Section 7 ends with conclusions and future
works.

2. RELATEDWORKS

In order to use the server bandwidth efficiently, two kinds
of schemes based on the multicast or broadcast propagation
method have been proposed: the batching scheme and the
stream-merging scheme.

The basic idea of the batching scheme is using a single
multicast stream of data to serve clients requesting the same
video object in the same time interval. Two kinds of batch-
ing schemes were proposed: first come first serve (FCFS) and
maximum queue length (MQL) [4, 6, 9, 10, 11, 12]. In FCFS,
whenever a server schedules a multicast stream, the client
with the earliest request arrival is served. In MQL, the in-
coming requests are put into separate queues based on the
requested video object. Whenever a server schedules a mul-

ticast stream, the longest queue is served first. In any case,
a time threshold must be set first in the batching scheme.
Video servers just schedule the multicast stream at the end of
each time threshold. In order to obtain efficient bandwidth,
the value of this time threshold must be at least 7 minutes
[7]. The expected startup latency is approximately 3.5 min-
utes. The long delay increases the client reneging rate and
decreases the popularization of VOD systems.

The stream-merging scheme presents an efficient way to
solve the long startup latency problem. There are two kinds
of scheduled streams: the complete multicast stream and the
patching unicast stream. When the first client request has ar-
rived, the server immediately schedules a complete multicast
stream with a normal propagation rate to transmit all of the
requested video segments. A later request to the same video
object must join the earlier multicast group to receive the re-
mainder of the video, and simultaneously, the video server
schedules a new patching unicast stream to transmit the lost
video data to each of them. The patching video data is prop-
agated at double video play rate so that two kinds of streams
can be merged into an integrated stream.

According to the difference in scheduling the complete
multicast stream, stream-merging schemes can be divided
into two classes: client-initiated with prefetching (CIWP) and
server-initiated with prefetching (SIWP).

For CIWP [5, 13, 14, 15, 16, 17], the complete multicast
stream is scheduled when a client request arrives. The latest
complete multicast stream for the same video object cannot
be received by that client.

For SIWP [8, 18, 19], a video object is divided into seg-
ments, each of which is multicast periodically via a dedicated
multicast group. The client prefetches data from one or sev-
eral multicast groups for playback.

Stream-merging schemes can effectively decrease the
required server bandwidth. However, with the increase
of client-request rates, the amount of the same retrans-
mitted video data is expanded dramatically and the server



Medusa: A Novel Stream-Scheduling Scheme 319

Table 1: Notations and Definitions.

Notations Definitions

T The length of time interval and also the length of a video segment (in min)

M The amount of video objects stored on the parallel video server

N The amount of RTP server nodes in the parallel video servers

ti
The ith time interval; the interval in which the first client request arrives is denoted by t0;
the following time intervals are denoted by t1, . . . ,ti, . . . , respectively, (i = 0, . . . , +∞)

L The length of the requested video object (in min)

S(i, j)
The ith segment of the requested object; j represents the serial number of the RTP server node
on which this segment is stored

Ri The client requests arriving in the ith time interval (i = 0, . . . , +∞)

PSi The patching multicast stream initialized at the end of the ith time interval (i = 0, . . . , +∞)

CSi The complete multicast stream initialized at the end of the ith time interval (i = 0, . . . , +∞)

τ(m,n) The start transporting time for themth segment transmitted on the stream PSn or CSn

Gi The client-requests group in which all clients are listening to the complete multicast stream CSi

bc The client bandwidth capacity, in unit of stream (assuming the homogenous client network)

PBmax The maximum number of patching multicast streams that can be concurrently received by a client

λi The client-request arrival rate for the ith video object

bandwidth efficiency is seriously damaged. Furthermore, a
mass of double-rated patching streams may increase the net-
work traffic burst.

3. MEDUSA SCHEME

Because video data cannot be shared among clients request-
ing for different video objects, the parallel video server han-
dles those clients independently. Hence, we only consider
clients requesting for the same hot video object in this sec-
tion (more general cases will be studied in Section 5).

3.1. The basic idea of theMedusa scheme

Consider that the requested video object is divided into lots
of small segments with a constant playback time length T .
Based on the value of T , the time line is slotted into fixed-size
time intervals and the length of each time interval is T . Usu-
ally, the value of T is very small. Therefore, it would not re-
sult in long startup latency. The client requests arriving in the
same time interval are batched together and served as one re-
quest via the multicast propagation method. For convenient
description, we regard client requests arriving in the same
time interval as one client request in the following sections.

Similar to stream-merging schemes, two kinds of mul-
ticast streams, the complete multicast streams and the patch-
ing multicast streams, can be used to reduce the amount of
retransmitted video data. A complete multicast stream re-
sponses to transporting all segments of the requested video
object while a patching multicast stream just transmits par-
tial segments of that video object. The first arrival request
is served immediately by a complete multicast stream. Later
starters must join the complete multicast group to receive the
remainder of the requested video object. At the same time,
they must join as more earlier patching multicast groups as

possible to receive valid video data. For those really missed
video data, the parallel video servers schedule a new patch-
ing multicast stream for transporting them to clients.

Note that the IP multicast, the broadcast, and the
application-level multicast are often used in VOD systems.
In those multicast technologies, a user is allowed to join lots
of multicast groups simultaneously. In addition, because all
routers in the network would exchange their information
periodically, each multicast packet can be accurately trans-
mitted to all clients of the corresponding multicast group.
Hence, it is reasonable for a user to join into several interest-
ing multicast streams to receive video data.

Furthermore, in order to eliminate the additional net-
work traffic arisen by the scheduling scheme, each stream is
propagated at the video play rate. Clients use disks to store
later played segments so that the received streams can be
merged into an integrated stream.

3.2. Scheduling rules of theMedusa scheme

The objective of the Medusa scheme is to determine the fre-
quency for scheduling the complete multicast streams so that
the transmitting video data can be maximally shared among
clients, and determine which segment will be transmitted on
a patching multicast stream so that the amount of transmit-
ted video data can be minimized. Notations used in this pa-
per are showed in Table 1. Scheduling rules for the Medusa
scheme are described as follows.

(1) The parallel video server dynamically schedules com-
plete multicast streams. When the first request R0 ar-
rives, it schedules CS0 at the end of time slot t0 and no-
tifies the corresponding clients ofR0 to receive and play
back all segments transmitted on CS0. Suppose the last
complete multicast stream is CS j (0 ≤ j < +∞). For
an arbitrary client request Ri that arrives in the time



320 EURASIP Journal on Applied Signal Processing

S(
0,
0)

S(
1,
1)

S(
2,
2)

S(
3,
3)

S(
4,
4)

S(
5,
5)

S(
6,
6)

S(
7,
7) CSi

S(
0,
0)
PSi+1

S(
0,
0)

S(
1,
1)
PSi+2

S(
0,
0)

S(
2,
2)
PSi+3

S(
0,0
)
S(
1,1
)

S(
3,3
)

PSi+4

S(
0,
0)

S(
4,
4)
PSi+5

S(
0,
0)

S(
1,
1)

S(
2,
2)

S(
5,
5)
PSi+6

S(
0,0
)

S(
6,6
)
PSi+7

S(
0,
0)

S(
1,
1)

S(
2,
2)

S(
3,
3)

S(
4,
4)

S(
5,
5)

S(
6,
6)

S(
7,
7)
CSi+8

S(
0,
0)

S(
1,
1)

S(
2,
2)

S(
3,
3)

PSi+14

S(
0,
0)

S(
4,
4)

PSi+15

ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7 ti+8 ti+9 ti+10 ti+11 ti+12 ti+13 ti+14 ti+15
t

Client arrival
Video segment

Gi Logical request group

Ri Ri+1 Ri+2 Ri+3 Ri+4 Ri+5 Ri+6 Ri+7 Gi Ri+10 Ri+14 Ri+15 Gi+10

Figure 2: A scheduling example scene for the Medusa scheme.

ti, if t j < ti ≤ t j + �L/T� − 1, no complete multicast
stream need to be scheduled and just a patching mul-
ticast stream is scheduled according to rules (2) and
(3). Otherwise, a new complete multicast stream CSi is
initialized at the end of the time interval ti.

(2) During the transmission of a complete multicast
stream CSi (0 ≤ i < +∞), if a request Rj (i < j ≤
i + �L/T� − 1) arrives, the server puts it into the logi-
cal requests group Gi. For each logical request group,
a parallel video server maintains a stream informa-
tion list. Each element of the stream information list
records the necessary information of a patching mul-
ticast stream, described as a triple E(t, I ,A), where t
is the scheduled time, I is the multicast group address
of the corresponding patching multicast stream, and A
is an array to record the serial number of video seg-
ments that will be transmitted on the patching multi-
cast stream.

(3) For a client Rj whose request has been grouped into
the logical group Gi (0 ≤ i < +∞, i < j ≤ i +
�L/T� − 1), the server notifies it to receive and buffer
the later �L/T� − ( j − i) video segments from the
complete multicast stream CSi. Because the begining
j − i segments have been transmitted on the com-
plete multicast stream CSi, the client Rj loses them
from CSi. Thus, for each begining j − i segments, the
server searches the stream information list ofGi to find
out which segment will be transmitted on an existing
patching multicast stream and can be received by the
client. If the lth segment (0 ≤ l < j − i) will be trans-
mitted on an existing patching multicast stream PSn
(i < n < j) and the transmission start time is later than

the service start time t j , the server notifies the corre-
sponding client Rj to join the multicast group of PSn
to receive this segment. Otherwise, the server trans-
mits this segment in a new initialized patching multi-
cast stream PS j and notifies the client to join the mul-
ticast group of PS j to receive it. At last, the server cre-
ates the stream information element Ej(t, I ,A) of PS j ,
and inserts it to the corresponding stream information
list.

(4) Each multicast stream propagates the video data at the
video playback rate. Thus, a video segment is com-
pletely transmitted during a time interval. For themth
segment that should be transmitted on the nth mul-
ticast stream, the start-transmission time is fixed and
the value of this time can be calculated by the follow-
ing equation:

τ(m,n) = tn +m∗T , (1)

where tn is the initial time of the nth multicast stream.

Figure 2 shows a scheduling example for the Medusa
scheme. The requested video is divided into eight segments.
Those segments are uniformly distributed on eight nodes in
a round-robin fashion. The time unit on the t-axis corre-
sponds to a time interval, as well as the total time it takes
to deliver a video segment. The solid lines in the figure repre-
sent video segments transmitted on streams. The dotted lines
show the amount of skipped video segments by the Medusa
scheme.

In this figure, when the request Ri arrives at the time
slot ti, the server schedules a complete multicast stream CSi.



Medusa: A Novel Stream-Scheduling Scheme 321

RTSP server

RTP
server
0

RTP
server
1

RTP
server
2

RTP
server
3

RTP
server
4

RTP
server
5

RTP
server
6

RTP
server
7

CSi S(0, 0) S(1, 1) S(2, 2) S(3, 3) S(4, 4) S(5, 5) S(6, 6) S(7, 7)

PSi+1 S(0, 0)

PSi+2 S(0, 0) S(1, 1)

PSi+3 S(0, 0) S(2, 2)

PSi+4 S(0, 0) S(1, 1) S(3, 3)

PSi+5 S(0, 0) S(4, 4)

PSi+6 S(0, 0) S(1, 1) S(2, 2) S(5, 5)

PSi+7 S(0, 0) S(6, 6)

Client Ri S(0, 0) S(1, 1) S(2, 2) S(3, 3) S(4, 4) S(5, 5) S(6, 6) S(7, 7) CSi Playback

Client
Ri+1

S(0, 0) PSi+1 Playback

S(1, 1) S(2, 2) S(3, 3) S(4, 4) S(5, 5) S(6, 6) S(7, 7) CSi Buffering

Client
Ri+2

S(0, 0) S(1, 1) PSi+2 Playback

S(2, 2) S(3, 3) S(4, 4) S(5, 5) S(6, 6) S(7, 7) CSi
Buffering

S(0, 0) S(2, 2) PSi+3
Playback

Client
Ri+3

S(1, 1) PSi+2 Buffering

S(3, 3) S(4, 4) S(5, 5) S(6, 6) S(7, 7) CSi Buffering

S(0, 0) S(1, 1) S(3, 3) PSi+4 Playback

Client
Ri+4

S(2, 2) PSi+3 Buffering

S(4, 4) S(5, 5) S(6, 6) S(7, 7) CSi
Buffering

S(i, j)

Transmitting video
segments

The ith segment stored
on the jth node

Beginning to receive
video data

E0(ti+1, Ii+1, (0))

E1(ti+2, Ii+2, (0, 1))

E2(ti+3, Ii+3, (0, 2))

E3(ti+4, Ii+4, (0, 1, 3))

E4(ti+5, Ii+5, (0, 4))

E5(ti+6, Ii+6, (0, 1, 2, 5))

E6(ti+7, Ii+7, (0, 6))

Stream information list

ti ti+1 ti+2 ti+3 ti+4 ti+5 ti+6 ti+7 ti+8 ti+9 ti+10 ti+11 ti+12 ti+13
t

Figure 3: The scheduling course of parallel video server for requests of Gi and the corresponding receiving course for clients of Ri, Ri+1, Ri+2,
Ri+3, and Ri+4.

Because the complete multicast stream is transmitted com-
pletely at time ti+10, the video server schedules a new com-
plete multicast stream CSi+10 to serve clients correspond-
ing to the request Ri+10. According to rule (2), requests
Ri+1 · · ·Ri+7 must be grouped into the logical request group
Gi, and requests Ri+14, Ri+15 must be grouped into logical re-
quests group Gi+10.

The top half portion of Figure 3 shows the scheduling of
parallel video servers for those requests in the group Gi pre-
sented in Figure 2. The bottom half portion of Figure 3 shows
the video data receiving and the stream-merging for clients
Ri, Ri+1, Ri+2, Ri+3, and Ri+4. We just explain the scheduling
for the request Ri+4, others can be deduced by rule (3). When
request Ri+4 arrives, the parallel video server firstly notifies
the corresponding clients of Ri+4 to receive the video seg-
ments S(4, 4), S(5, 5), S(6, 6), and S(7, 7) from the complete
multicast stream CSi. It searches the stream information list,
and finds out that segment S(2, 2) will be transmitted on
patching multicast stream PSi+3 and the transmission start
time of S(2, 2) is later than ti+4. Then, it notifies the client Ri+4

to receive the segment S(2, 2) from patchingmulticast stream
PSi+3. At last, the parallel video server schedules a new patch-
ing multicast stream PSi+4 to transmit the missing segments
S(0, 0), S(1, 1), and S(3, 3). The client Ri+4 is notified to re-
ceive and play back those missing segments and the stream
information element of PSi+4 is inserted into the stream in-
formation list.

4. DETERMINISTIC TIME INTERVAL

The value of time interval T is the key issue affecting the per-
formance of the parallel video servers. In theMedusa scheme,
a client may receive several multicast streams concurrently
and the number of concurrently received multicast streams
is related with the value of T . If T is too small, the number
of concurrently received streams may be increased dramati-
cally and exceed the client bandwidth capacity bc. Some valid
video data may be discarded at the client side. Furthermore,
since a small T would increase the number of streams sent by
the parallel video server, the server bandwidth efficiency may



322 EURASIP Journal on Applied Signal Processing

be decreased. If T is too large, the startup latency may be too
long to be endured and the client reneging probability may
be increased.

In this section, we derive the deterministic time interval
T which guarantee the startup latency minimized under the
condition that the number of streams concurrently received
by a client would not exceed the client bandwidth capacity
bc. The server bandwidth consumption affected by the time
interval will be studied in Section 6.

We first derive the relationship between the value of
PBmax (defined in Table 1) and the value of T . For a request
group Gi (0 ≤ i < +∞), CSi is the complete multicast stream
scheduled for serving the requests of Gi. For a request Rk

(i < k ≤ �L/T� − 1 + i) belonging to Gi, the clients corre-
sponding to the Rk may concurrently receive several patch-
ing multicast streams. Assume that PS j (i < j < k) is the first
patching stream from which clients of Rk can receive some
video segments. According to the Medusa scheme, video seg-
ments from the ( j − i)th segment to the (�L/T� − 1)th seg-
ment would not be transmitted on PS j , and the ( j − i− 1)th
segment would not be transmitted on the patching multi-
cast streams initialized before the initial time of PS j . Hence,
the ( j − i − 1)th segment is the last transmitted segment
for PS j . According to (1), the start time for transporting the
( j − i− 1)th segment on PS j can be expressed by

τ( j − i− 1, j) = t j + ( j − i− 1)∗T. (2)

Since the clients of Rk receive some video segments from
PS j , the start transporting time of the last segment transmit-
ted on PS j must be later than or equal to the request arrival
time tk. Therefore, we can obtain that

τ( j − i− 1, j) ≥ tk. (3)

Consider that tk = t j + (k − j) × T . Combining (2) and
(3), we derive that

j ≥ k + i + 1
2

. (4)

If the clients of the request Rk receive some segments
from the patching multicast streams PS j , PS j+1, . . . , PSk−1,
the number of concurrently received streams access to its
maximum value. Thus, PBmax = k − j. Combing (4), we can
obtain that PBmax ≤ (k − i − 1)/2. In addition, because the
request Rk belongs the request group Gi, the value of k must
be less than or equal to i + �L/T� − 1, where L is the total
playback time of the requested video object. Thus, PBmax can
be expressed by

PBmax =
⌈
L

2T

⌉
− 1. (5)

For guaranteeing that the video data would not be dis-
carded at the client end, the client bandwidth capacity
must be larger than or equal to the maximum number
of streams concurrently received by a client. It means that
bc ≥ PBmax +1, where 1 is the number of complete multicast

streams received by a client. Combing (5), we obtain that

bc ≥
⌈
L

2T

⌉
=⇒ T ≥

⌈
L

2bc

⌉
. (6)

Obviously, the smaller the time interval T , the shorter the
startup latency. Thus, the deterministic time interval will be
the minimum value of T , that is,

T =
⌈

L

2bc

⌉
. (7)

5. PERFORMANCE EVALUATION

We evaluate the performance of the Medusa scheme via
two methods: the mathematical analysis on the required
server bandwidth, and the experiment. Firstly, we analyze
the server bandwidth requirement for one video object in
the Medusa scheme and compare it with the FCFS batch-
ing scheme and the stream-merging schemes. Then, the
experiment for evaluating and comparing the performance
of the Medusa scheme, the batching scheme, and the stream-
merging schemes will be presented in detail.

5.1. Analysis for the required server bandwidth

Assume that requests for the ith video object are generated by
a Poisson process with mean request rate λi. For serving re-
quests that are grouped into the group Gj , the patching mul-
ticast streams PS j+1, PS j+2, . . . , PS j+�L/T�−1 may be scheduled
from time t j+1 to time t j+�L/T�−1, where L is the length of the
ith video object and T is the selected time interval. We use
the matrixMpro to describe the probabilities of different seg-
ments transmitted on different patching multicast streams. It
can be expressed as

Mpro =




P11 · · · P1(�L/T�−1)
P21 · · · P2(�L/T�−1)
...

...
...

P(�L/T�−1)1 · · · P(�L/T�−1)(�L/T�−1)


 , (8)

where the nth column represents the nth video segment, the
mth row expresses the patching multicast stream PS j+m, and
Pmn describes the probability for transmitting the nth seg-
ment on the patching multicast stream PS j+m (1 ≤ m ≤
�L/T� − 1, 1 ≤ n ≤ �L/T� − 1). Hence, the expected
amount (in bits) of video data transmitted for serving re-
quests grouped in Gj can be expressed as

Ω = b× T ×
�L/T�−1∑
m=1

�L/T�−1∑
n=1

Pmn + b × L, (9)

where b is the video transporting rate (i.e., the video play-
back rate) and b×L represents the number of video segments
transmitted on the completely multicast stream CS j .

According to the scheduling rules of the Medusa
scheme, the nth (1 < n ≤ �L/T� − 1) video segment
should not be transmitted on patching multicast streams
PS j+1, . . . , PS j+n−1. Thus,



Medusa: A Novel Stream-Scheduling Scheme 323

Pmn = 0 if n > m. (10)

On one hand, for the mth patching multicast stream,
the first video segment and the mth video segment must be
transmitted on it. This is because the first video segment
has been transmitted completely on the patching multicast
streams PS j+1, . . . , PS j+m−1, and the mth video segment is
not transmitted on such streams. We can obtain that Pm1

and Pmm are equal to the probability for scheduling PS j+m
(i.e., the probability for some requests arriving in the time
slot t j+m). Since the requests for the ith video object are
generated by Poisson process, the probability for some re-
quests arriving in the time slot t j+m can be calculated by
P[K �= 0] = 1 − P[K = 0] = 1 − e−λiT . Considering that
probabilities for request arriving in different time slots are
independent from each other, we can derive that

P11 = P21 = · · · = P(�L/T�−1)1 = P22

= P33 = · · · = P(�L/T�−1)(�L/T�−1) = 1− e−λiT .
(11)

On the other hand, if the nth video segment is not trans-
mitted on patching multicast streams from PS j+m−n+1 to
PS j+m−1, it should be transmitted on the patching multicast
stream PS j+m. Therefore, the probability for transmitting the
nth segment on the mth patching multicast stream can be
expressed as

Pmn = Pm1 ×
m−1∏

k=m−n+1

(
1− Pkn

)
(
1 < n < m ≤ �L/T� − 1

)
,

(12)

where Pm1 represent the probability for scheduling the patch-
ing multicast stream PS j+m, and

∏m−1
k=m−n+1(1− Pkn) indi-

cates the probability for which the nth video segments would
not be transmitted on patching multicast streams from
PS j+m−n+1 to PS j+m−1. Combining (9), (10), (11), and (12),
we derive that

Ω = b× T × (1− e−λiT
)

×
�L/T�−1∑
m=1

m∑
n=1

m−1∏
k=m−n+1

(
1− Pkn

)
+ b× L,

(13)

where Pkn can be calculated by the following equations:

Pkn =




0 if k < n,

1− e−λiT if k = n,
k−1∏

�=k−n+1

(
1− P�n

)
if k > n.

(14)

Because the mean number of arrived clients in the
group Gj is L × λi, we can derive that, in the time epoch
[t j , t j+�L/T�−1), the average amount of transmitted video data
for a client, denoted by βc, is

βc = Ω

L× λi

= b × T × (1− e−λiT
)∑�L/T�−1

m=1
∑m

n=1
∏m−1

k=m−n+1
(
1− Pkn

)
L× λi

+
b

λi
,

(15)

where Pkn can be calculated by (14).
Consider the general case from time 0 to t. We derive

the required average server bandwidth by modeling the sys-
tem as a renewal process. We are interested in the process
{B(t) : t > 0}, where B(t) is the total server bandwidth
used from time 0 to t. In particular, we are interested in
the average server bandwidth Baverage = limt→∞S(t)/t. Let
{t j | (0 ≤ j < ∞), (t0 = 0)} denote the time set for a par-
allel video server to schedule a complete multicast stream for
video i. These are renewal points, and the behavior of the
server for t ≥ t j does not depend on past behavior. We con-
sider the process {Bj ,Nj}, where Bj denotes the total server
bandwidth consumed and Nj denotes the total number of
clients served during the jth renewal epoch [t j−1, t j). Because
this is a renewal process, we drop the subscript j and have the
following result:

Baverage = λi
E[B]
E[N]

. (16)

Obviously, E[N] = λi × L. For E[B], let K denote the
number of arrivals in an interval of renewal epoch length L.
It has the distribution P[K = κ] = (λi × L)κe−λiL/κ!. For
E[B | K = κ], we have

E[B | K = κ] = κβc

=
(
b × T × (1− e−λiT

)∑�L/T�−1
m=1

∑m
n=1
∏m−1

k=m−n+1
(
1− Pkn

)
L× λi

+
b

λi

)
κ.

(17)

This indicates that κ Poisson arrivals in an interval of
length L are equally likely to occur anywhere within the in-
terval. Removal of the condition yields

E[B] =
∞∑
κ=1

(
λi × L

)κ
e−λiL

κ!
E[B | K = κ]. (18)

Combining (17) and (18), we derive that

E[B] = b× T × (1− e−λiT
)

×
�L/T�−1∑
m=1

m∑
n=1

m−1∏
k=m−n+1

(
1− Pkn

)
+ b × L.

(19)



324 EURASIP Journal on Applied Signal Processing

60

50

40

30

B
an
dw

id
th

co
n
su
m
pt
io
n

20

10

0
0 200 400 600 800 1000

Requests arrival rate λi (requests per hour)

TheMedusa scheme with T = 1minute
The batching scheme with T = 7minutes
The OTT-CIWP scheme

Figure 4: Comparison of the expected server bandwidth consump-
tion for one video object among the Medusa scheme, the batching
scheme, and the OTT-CIWP scheme.

According to (16) and (19), we derive that

Baverage = b × T × (1− e−λiT
)

×
�L/T�−1∑
m=1

m∑
n=1

m−1∏
k=m−n+1

1− Pkn
L

+ b.
(20)

For the batching schemes, since all scheduled streams are
completely multicast streams, the required server bandwidth
for the ith video object can be expressed as

Baverage(batching) = b× (1− e−λiT
)× ⌈ L

T

⌉
. (21)

For the stream merging schemes, we choose the optimal
time-threshold CIWP (OTT-CIWP) scheme for comparison.
Gao and Towsley [20] have showed that the OTT-CIWP
scheme outperforms most other stream-merging schemes
and the required server bandwidth for the ith video object
has been derived as

Baverage(OTT -CIWP) = b ×
(√

2Lλi + 1− 1
)
. (22)

Figure 4 shows the numerical results for comparing the
required server bandwidth of one video object among the
Medusa scheme, the batching scheme, and the OTT-CIWP
scheme. In Figure 4, the chosen time interval T for the
Medusa scheme is 1 minute while the batching time thresh-
old for the batching scheme is 7 minutes. In addition, the
length of the ith video object is 100 minutes. As one can see,
the Medusa scheme significantly outperforms the batching
scheme and the OTT-CIWP scheme over a wider range of
request arrival rate.

5.2. Experiment

In order to evaluate the performance of the Medusa scheme
in the general case thatmultiple video objects of varying pop-
ularity are stored on the parallel video servers, we use the
Turbogrid streaming server1 with 8 RTP server nodes as the
experimental platform.

5.2.1. Experiment environment

We need two factors for each video, its length and its pop-
ularity. For its length, the data from the Internet Movie
Database (http://www.imdb.com) has shown a normal dis-
tribution with a mean of 102 minutes and a standard de-
viation of 16 minutes. For its popularity, Zipf-like distribu-
tion [21] is widely used to describe the popularity of different
video objects. Empirical evidence suggests that the parame-
ter θ of the Zipf-like distribution is 0.271 to give a good fit to
real video rental [5, 6]. It means that

πi = 1
i0.729


 N∑

k=1

1
k0.729


, (23)

where πi represents the popularity of the ith video object and
N is the number of video objects stored on the parallel video
servers.

Client requests are generated using a Poisson arrival pro-
cess with an interval time of 1/λ for varying λ values between
200 to 1600 arrivals per hour. Once generated, clients sim-
ply select a video and wait for their request to be served. The
waiting tolerance of each client is independent of the other,
and each is willing to wait for a period timeU ≥ 0minutes. If
its requested movie is not displayed by then, it reneges. (Note
that even if the start time of a video is known, a client may
lose its interest in the video and cancel its request. If it is de-
layed too long, in this case, the client is defined “reneged.”)
We consider the exponential reneging function R(u), which
is used by most VOD studies [6, 7, 15]. Clients are always
willing to wait for a minimum timeUmin ≥ 0. The additional
waiting time beyond Umin is exponentially distributed with
mean τ minutes, that is,

R(u) =

0 if 0 ≤ u ≤ Umin

1− e−(u−Umin)/τ , otherwise.
(24)

Obviously, the larger τ is, the more delay clients can tol-
erate. We choose Umin = 0 and τ = 15 minutes in our ex-
periment. If the client is not reneging, it simply plays back
the received streams until those streams are transmitted com-
pletely.

Considering that the popular set-top boxes have similar
components (CPU, disk, memory, NIC, and the dedicated
client software for VOD services) to those of PCs, we use PCs
to simulate the set-top boxes in our experiment. In addition,
because the disk is cheaper, faster, and bigger than ever, we

1Turbogrid streaming server is developed by the Internet and Cluster
Computing Center of Huazhong University of Science and Technology.

http://www.imdb.com


Medusa: A Novel Stream-Scheduling Scheme 325

Table 2: Experiment parameters.

Video length (min) L 90 ∼ 120

Number of videos Nv 200

Video format MPEG-1

Clients’ bandwidth capacity (Mbits/s) 100

Maximum total bandwidth of parallel
video server (Mbits/s)

1000

Clients arrival rate λ (hour) 200 ∼ 1600

do not consider the speed limitation and the space limitation
of disk. Table 2 shows the main experimental environment
parameters.

5.2.2. Results

For parallel video servers, there are two most important per-
formance factors. One is startup latency, which is the amount
of time clients must wait to watch the demanded video, the
other is the average bandwidth consumption, which indi-
cates the bandwidth efficiency of the parallel video servers.
We will discuss our results in these two factors.

(A) Startup latency and reneging probability

As discussed in Section 4, in order to guarantee that clients
can receive all segments of their requested video objects, the
minimum value of time interval (i.e., optimal time interval)
T will be �L/(2bc)� ∼= 120/2∗60 = 1 minute. We choose time
interval T to be 1, 5, 10, and 15 minutes for studying the
effect on the average startup latency and the reneging prob-
ability, respectively. Figures 5 and 6 display the experimental
results at these two factors. By the increase of time interval
T , the average startup latency and the reneging probability
are also increased. When T is equal to the deterministic time
interval T = 1 minute, the average startup latency is less than
45 seconds and the average reneging probability is less than
5%. But when T is equal to 15 minutes, the average startup
latency is increased to near 750 seconds and almost 45% of
clients renege. Figures 7 and 8 display a startup latency com-
parison and a reneging probability comparison among the
FCFS batching scheme with time interval T = 7minutes, and
the OTT-CIWP scheme [20] and the Medusa scheme with
deterministic time interval T = 1 minute. We choose 7 min-
utes because [7] has presented that FCFS batching could ob-
tain a good trade-off between startup latency and bandwidth
efficiency at this batching time threshold. As one can see, the
Medusa scheme outperforms the FCFS scheme and is just lit-
tle poorer than the OTT-CIWP scheme at the aspect of the
system average startup latency and reneging probability. The
reason for this little poor performance compared with OTT-
CIWP is that the Medusa scheme batches client requests ar-
riving in the same time slot. This will effectively increase the
bandwidth efficiency at high client-request rates.

(B) Bandwidth consumption

Figure 9 shows how the time interval T affects the server’s av-
erage bandwidth consumption. We find out that the server’s

800
750
700
650
600
550
500
450
400
350
300
250
200
150
100
50
0

A
ve
ra
ge

st
ar
t-
u
p
la
te
n
cy

(s
)

0 200 400 600 800 1000 1200 1400 1600 1800

Requests arrival rate (requests per hour)

T = 1min
T = 5min
T = 10min
T = 15min

Figure 5: The effect of time interval T on the average startup la-
tency.

0.55

0.50

0.45

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

A
ve
ra
ge

re
n
eg
in
g
pr
ob

ab
ili
ty

0 200 400 600 800 1000 1200 1400 1600 1800
Requests arrival rate (requests per hour)

T = 1min
T = 5min
T = 10min
T = 15min

Figure 6: The effect of time interval T on the average reneging
probabity.

average bandwidth consumption is decreased by some de-
gree by increasing the time interval. The reason is that more
clients are batched together and served as one client. Also, we
can find out that the decreasing degree of bandwidth con-
sumption is very small when client-request arrival rate is less
than 600 requests per hour. When the arrival rate is more
than 600, the decreasing degree tends to be distinct. How-
ever, when the request arrival rate is less than 1600 requests



326 EURASIP Journal on Applied Signal Processing

400

350

300

250

200

150

100

50

0

A
ve
ra
ge

st
ar
t-
u
p
la
te
n
cy

(s
)

0 200 400 600 800 1000 1200 1400 1600 1800

Requests arrival rate (requests per hour)

Medusa scheme
Batching scheme
OTT-CIWP scheme

Figure 7: A startup latency comparison among the batching scheme
with time interval T = 7 minutes, the OTT-CIWP scheme, and
Medusa scheme with time interval T = 1 minute.

0.40

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

A
ve
ra
ge

re
n
eg
in
g
pr
ob

ab
ili
ty

0 200 400 600 800 1000 1200 1400 1600 1800
Requests arrival rate (requests per hour)

Medusa scheme
Batching scheme
OTT-CIWP scheme

Figure 8: A reneging probability comparison among the batching
scheme with time interval T = 7 minutes, the OTT-CIWP scheme,
and the Medusa scheme with time interval T = 1 minute.

per hour, the total saved bandwidth is less than 75Mbits/s
by comparing deterministic time intervals T = 1 minute
and T = 15 minutes. On the other hand, the clients reneg-
ing probability is dramatically increased form 4.5% to 45%.
Therefore, a big time interval T is not a good choice and we
suggest using �L/(2bc)� to be the chosen time interval.

As showed on Figure 10, when the request arrival rate is
less than 200 requests per hour, the bandwidth consump-

400

300

200

100

0A
ve
ra
ge

ba
n
dw

id
th

co
n
su
m
pt
io
n
(M

bi
ts
/s
)

0 200 400 600 800 1000 1200 1400 1600 1800
Requests arrival rate (requests per hour)

T = 1min
T = 5min
T = 10min
T = 15min

Figure 9: How time interval T affects the average bandwidth con-
sumption.

800

700

600

500

400

300

200

100

0

A
ve
ra
ge

ba
n
dw

id
th

co
n
su
m
pt
io
n
(M

bi
ts
/s
)

0 200 400 600 800 1000 1200 1400 1600 1800
Requests arrival rate (requests per hour)

Medusa scheme
Batching scheme
OTT-CIWP scheme

Figure 10: Average bandwidth consumption comparison among
the batching scheme with time interval T = 7 minutes, the OTT-
CIWP scheme, and the Medusa scheme with time interval T = 1
minute.

tion of three kinds of scheduling strategies are held in the
same level. But by increasing the request-arrival rate, the
bandwidth consumption increasing degree of the Medusa
scheme is distinctly less than that of the FCFS batching and
the OTT-CIWP. When the request-arrival rate is 800, the
average bandwidth consumption of the Medusa scheme is
approximately 280Mbits/s. At the same request-arrival rate,
the average bandwidth consumption of the FCFS batching is



Medusa: A Novel Stream-Scheduling Scheme 327

approximately 495Mbits per second and that of the OTT-
CIWP is approximately 371Mbits per second. It indicates
that, at middle request-arrival rate, the Medusa scheme can
save approximately 45% bandwidth consumption compared
with FCFS batching, and can save approximately 25% band-
width consumption compared with OTT-CIWP.

When the request arrival rate is higher than 1500 requests
per hour, the bandwidth performance of OTT-CIWP is go-
ing to be worse and worse. It is near to the FCFS batching
scheme. In any case, the Medusa scheme significantly out-
performs the FCFS scheme and the OTT-CIWP scheme. For
example, as shown in Figure 10, theMedusa scheme just con-
sumes 389Mbits/s server bandwidth at the request arrival
rate 1600 requests per hour, while the FCFS batching scheme
consumes 718Mbits/s server bandwidth and the OTT-CIWP
scheme needs 694Mbits/s. Therefore, we can conclude that
the Medusa scheme is distinctly outperforming the batching
scheme and the OTT-CIWP scheme at the aspect of band-
width performance.

6. DISCUSSIONS

For the Medusa scheme, two issues must be considered care-
fully, the client network architecture and the segments place-
ment policy. In this section, we give out some discussions on
the effect of these two issues.

6.1. Homogenous client network versus
heterogeneous client network

In the above discussions, we discuss the homogenous client
network based on the FTTB network architecture. If the par-
allel video servers are used for serving the VOD systems with
heterogeneous client network architecture such as the ca-
ble modem access and 10M LAN access, the basic Medusa
scheme is not recommended. This is because the small client
bandwidth capacity would result in a large deterministic time
interval T , as well as the long startup latency and the high
reneging probability. However, we can extend the Medusa
scheme as following for the heterogeneous client network.

For cable modem users, because the client bandwidth ca-
pacity is lower than 2Mb per second, it just has the capacity
to receive one MPEG-I stream (approximately 1.2 ∼ 1.5Mb
per second per stream). In this case, the stream merging
schemes and the Medusa scheme are not suitable. We use
the batching scheme to schedule streams. Note that the client
bandwidth capacity is sent to the parallel video servers dur-
ing the session being in setup. Thus, the parallel video server
can distinguish the category of clients before determining
how to schedule streams for serving them.

For 10M LAN users, the client bandwidth capacity is
enough to concurrently receive near 6 MPEG-I streams. In
this case, if we use the basic Medusa scheme, the determin-
istic time interval for a video object with 120 minutes length
is 10 minutes and the expected startup latency is near 5 min-
utes. It is too long for most clients. However, we can extend
the basic Medusa scheme to use a time windowW to control
the scheduling frequency of the complete multicast streams.
If requests arrive in the same time window, the parallel video

server schedules patching multicast streams according to the
basic Medusa scheduling rule (3). Otherwise, a new com-
plete multicast stream will be scheduled. According to the
deriving course discussed in Section 4, we can easily obtain
that the deterministic time interval T should be �W/(2bc)�.
Obviously, if the value of time window W is smaller than
the length of the requested video object, the deterministic
time interval T and the expected startup latency can be de-
creased. However, a small time window W would increase
the required server bandwidth. The detailed relationship be-
tween the time windowW , the expected startup latency, and
the required server bandwidth will be studied in our further
works.

6.2. Effect of the segment placement policy

For the scheduling of the Medusa scheme, the begining seg-
ments of a requested video are transmitted more frequently
than the later segments of that video. It is called intra-movie
skewness [22]. If segments of all stored videos are distributed
from the first RTP server node to the last RTP server node in
a round-robin fashion, the intra-movie skewness would re-
sult in that the load for the first RTP server node is far heav-
ier than the load of other RTP server nodes so that the load
balance of parallel video servers is destroyed.

Two kinds of segments placement policies were proposed
to solve the intra-movie skewness problem: the symmetric
pair policy [22, 23] and the random policy.

In the symmetric pair policy, based on the serial num-
ber of video objects, all stored video objects are divided into
two video sequences, the odd sequence and the even se-
quence. For the odd video sequence, the jth segment of the
ith video object (i = 1, 3, 5, . . . , 2k + 1) is located on the
((2∗N − 1 − ( j + (i/2))modN)modN)th RTP server node,
where N is the total number of RTP server nodes. For the
even video sequence, the jth segment of the ith video object
(i = 0, 2, 4, . . . , 2k) is located on the (( j + (i/2))modN)th
RTP server node. As discussed in [22, 23], these placement
rules can uniformly distribute segments with high transmis-
sion frequency to different RTP server nodes so that the load
balance of the parallel video server can be guaranteed.

The random placement policy randomly distributes
video segments on different RTP server nodes so that the
probabilistic guarantee of load balancing can be provided.
Santos et al. [24] have shown that the random placement
policy has better adaptability to different user access patterns
and can support more generic workloads than the symmet-
ric pair policy. For load balancing performance, these two
schemes have very similar balancing results [24]. However,
the random placement scheme only provides probabilistic
guarantee of load balancing and it has the drawback of main-
taining a huge video index of the striping data blocks. Hence,
we use the symmetric pair policy to solve the load balancing
problem in the Medusa scheme.

7. CONCLUSIONS AND FUTUREWORKS

In this paper, we focus on the homogenous FTTB client net-
work architecture and propose a novel stream-scheduling



328 EURASIP Journal on Applied Signal Processing

scheme that significantly reduces the demand on the server
network I/O bandwidth of parallel video servers. Unlike
existing batching scheme and stream-merging scheme, the
Medusa scheme dynamically groups the clients’ requests ac-
cording to their request arrival time and schedules two kinds
of multicast streams, the completely multicast stream and the
patching multicast stream.

For the clients served by patching multicast streams,
the Medusa scheme notifies them to receive the segments
that will be transmitted by other existing patching multicast
streams and only transmit the missed segments on the new
scheduled stream. This guarantees that no redundant video
data are transmitted at the same time period and that the
transmitting video data are shared among grouped clients.
The mathematical analysis and the experiment results show
that the performance of the Medusa scheme significantly
outperforms the batching schemes and the stream-merging
schemes.

Our ongoing research includes

(1) designing and analyzing the extended-Medusa scheme
for clients with heterogeneous receive bandwidths and
storage capacities,

(2) evaluating the impact of VCR operations on the re-
quired server bandwidth for the Medusa scheme,

(3) developing optimized caching models and strategies
for the Medusa scheme,

(4) designing optimal real-time delivery techniques that
support recovery from packet loss.

ACKNOWLEDGMENT

This paper was supported by the National Hi-Tech Project
under Grant 2002AA1Z2102.

REFERENCES

[1] C. Shahabi, R. Zimmermann, K. Fu, and S.-Y. D. Yao, “Yima: a
second generation continuous media server,” IEEE Computer
magazine, vol. 35, no. 6, pp. 56–64, 2002.

[2] G. Tan, H. Jin, and L. Pang, “A scalable video server using
intelligent network attached storage,” inManagement of Mul-
timedia on the Internet: 5th IFIP/IEEE International Confer-
ence onManagement of Multimedia Networks and Services, vol.
2496 of Lecture Notes in Computer Sciences, pp. 114–126, Santa
Barbara, Calif, USA, October 2002.

[3] G. Tan, H. Jin, and S. Wu, “Clustered multimedia servers:
architectures and storage systems,” in Annual Review of Scal-
able Computing, vol. 5, pp. 92–132, World Scientific, Singa-
pore, 2003.

[4] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “On optional batching
policies for video-on-demand storage servers,” in Proc. 3rd
IEEE International Conference on Multimedia Computing and
Systems, pp. 312–316, Hiroshima, Japan, June 1996.

[5] S.W. Carter andD. D. E. Long, “Improving video-on-demand
server efficiency through stream tapping,” in Proc. 6th In-
ternational Conference on Computer Communication and Net-
works, pp. 200–207, Las Vegas, Nev, USA, September 1997.

[6] S.-H. G. Chan and F. Tobagi, “Tradeoff between system profit
and user delay/loss in providing near video-on-demand ser-
vice,” IEEE Trans. Circuits and Systems for Video Technology,
vol. 11, no. 8, pp. 916–927, 2001.

[7] J.-K. Chen and J.-L. C. Wu, “Heuristic batching policies for
video-on-demand services,” Computer Communications, vol.
22, no. 13, pp. 1198–1205, 1999.

[8] D. L. Eager and M. K. Vernon, “Dynamic skyscraper broad-
casts for video-on-demand,” Tech. Rep. 1375, Department
of Computer Science, University of Wisconsin, Madison, Wis,
USA, 1998.

[9] C. C. Aggarwal, J. L. Wolf, and P. S. Yu, “The maximum fac-
tor queue length batching scheme for video-on-demand sys-
tems,” IEEE Trans. Comput., vol. 50, no. 2, pp. 97–110, 2001.

[10] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling policies
for an on-demand video server with batching,” in Proc. 2nd
ACM International Conference on Multimedia, pp. 15–23, San
Francisco, Calif, USA, October 1994.

[11] A. Dan, D. Sitaram, and P. Shahabuddin, “Dynamic batching
policies for an on-demand video server,” Multimedia Systems,
vol. 4, no. 3, pp. 112–121, 1996.

[12] H. J. Kim and Y. Zhu, “Channel allocation problem in VOD
system using both batching and adaptive piggybacking,” IEEE
Transactions on Consumer Electronics, vol. 44, no. 3, pp. 969–
976, 1998.

[13] S. W. Carter and D. D. E. Long, “Improving bandwidth ef-
ficiency on video-on-demand servers,” Computer Networks,
vol. 30, no. 1-2, pp. 99–111, 1999.

[14] S.-H. G. Chan and E. Chang, “Providing scalable on-demand
interactive video services by means of client buffering,” in
Proc. IEEE International Conference on Communications, pp.
1607–1611, Helsinki, Finland, June 2001.

[15] D. Eager, M. Vernon, and J. Zahorjan, “Bandwidth skim-
ming: A technique for cost-effective video-on-demand,” in
Proc. Multimedia Computing and Networking 2000, San Jose,
Calif, USA, January 2000.

[16] K. A. Hua, Y. Cai, and S. Sheu, “Patching: A multicast
technique for true video-on-demand services,” in Proc. 6th
ACM International Multimedia Conference, pp. 191–200, Bris-
tol, UK, September 1998.

[17] W. Liao and V. O. K. Li, “The split and merge protocol for
interactive video-on-demand,” IEEE Multimedia, vol. 4, no.
4, pp. 51–62, 1997.

[18] J.-F. Paris, S. W. Carter, and D. D. E. Long, “A hybrid broad-
casting protocol for video on demand,” in Proc. 1999 Mul-
timedia Computing and Networking Conference, pp. 317–326,
San Jose, Calif, USA, January 1999.

[19] H. Shachnai and P. Yu, “Exploring wait tolerance in effective
batching for video-on-demand scheduling,” Multimedia Sys-
tems, vol. 6, no. 6, pp. 382–394, 1998.

[20] L. Gao and D. Towsley, “Threshold-based multicast for con-
tinuous media delivery,” IEEE Trans. Multimedia, vol. 3, no.
4, pp. 405–414, 2001.

[21] G. Zipf, Human Behavior and the Principle of Least Effort, Ad-
dison Wesley, Boston, Mass, USA, 1949.

[22] S. Wu and H. Jin, “Symmetrical pair scheme: a load balanc-
ing strategy to solve intra-movie skewness for parallel video
servers,” in International Parallel and Distributed Processing
Symposium, pp. 15–19, Fort Lauderdale, Fla, USA, April 2002.

[23] S. Wu, H. Jin, and G. Tan, “Analysis of load balancing issues
caused by intra-movie skewness for parallel video servers,”
Parallel and Distributed Computing Practices, vol. 4, no. 4, pp.
451–465, 2003.

[24] J. Santos, R. Muntz, and B. Ribeiro-Neto, “Comparing ran-
dom data allocation and data striping in multimedia servers,”
in Proc. International Conference on Measurement and Model-
ing of Computer Systems, pp. 44–55, Santa Clara, Calif, USA,
June 2000.



Medusa: A Novel Stream-Scheduling Scheme 329

Hai Jin is a Professor at the School
of Computer Science and Technology,
Huazhong University of Science and Tech-
nology (HUST), Wuhan, China. He re-
ceived M.S. and Ph.D. degrees at HUST in
1991 and 1994, respectively. He was a Post-
doctoral Fellow at the Department of Elec-
trical and Electronics Engineering, Univer-
sity of Hong Kong, and a visiting scholar
at Department of Electrical Engineering-
System, University of South California, Los Angeles, USA, from
1999 to 2000. His research interests include cluster computing, grid
computing, multimedia systems, network storage, and network se-
curity. He is the Editor of several journals, such as International
Journal of Computers and Applications, International Journal of Grid
and Utility Computing, and Journal of Computer Science and Tech-
nology. He is now leading the largest grid project in China, called
ChinaGrid, funded by the Ministry of Education, China.

Dafu Deng received his Bachelor degree
in engineering from the Tongji University,
Shanghai, China, in 1997, and is a Ph.D.
candidate at the School of Computer Sci-
ence and Technology, Huazhong Univer-
sity of Science and Technology (HUST),
Wuhan, China. His research interests in-
clude cluster computing, grid computing,
multimedia systems, communication tech-
nologies, and P2P systems.

Liping Pang is a Professor at the School
of Computer Science and Technology,
Huazhong University of Science and Tech-
nology (HUST), Wuhan, China. In 1995,
she was awarded the “Golden medal in ed-
ucation of China.” In the recent three years,
she has over 40 publications and 3 books in
computing science and education. Her re-
search interests include parallel and distri-
bution computing, grid computing, cluster
computing, and multimedia technology.


	1. INTRODUCTION
	2. RELATED WORKS
	3. MEDUSA SCHEME
	3.1. The basic idea of the Medusa scheme
	3.2. Scheduling rules of the Medusa scheme

	4. DETERMINISTIC TIME INTERVAL
	5. PERFORMANCE EVALUATION
	5.1. Analysis for the required server bandwidth
	5.2. Experiment
	5.2.1. Experiment environment
	5.2.2. Results


	6. DISCUSSIONS
	6.1. Homogenous client network versus heterogeneous client network
	6.2. Effect of the segment placement policy

	7. CONCLUSIONS AND FUTUREWORKS
	ACKNOWLEDGMENT
	REFERENCES

