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This paper studies the joint estimation problem of ranges, DOAs, and frequencies of near-field narrowband sources and pro-
poses a new computationally efficient algorithm, which employs a symmetric uniform linear array, uses eigenvalues together with
the corresponding eigenvectors of two properly designed matrices to estimate signal parameters, and does not require searching
for spectral peak or pairing among parameters. In addition, the proposed algorithm can be applied in arbitrary Gaussian noise
environment since it is based on the fourth-order cumulants, which is verified by extensive computer simulations.
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1. INTRODUCTION

In array signal processing, there exist many methods to esti-
mate the directions of arrival (DOAs) of far-field sources im-
pinging on an array of sensors [1], such as MUSIC, ESPRIT,
and so forth. Most of these methods make an assumption
that sources locate relatively far from the array, and thus the
wavefronts from the sources can be regarded as plane waves.
Based on this assumption, each source location can be char-
acterized by a single DOA [1]. When the source is close to the
array, namely, in the near-field case, however, this assump-
tion is no longer valid. The near-field sources must be char-
acterized by spherical wavefronts at the array aperture and
need to be localized both in range and in DOA [2, 3, 4]. The
near-field situation can occur, for example, in sonar, elec-
tronic surveillance, and seismic exploration.

To deal with the joint range-DOA estimation problem
of near-field sources, many approaches have been presented
[2, 3, 4, 5, 6, 7, 8, 9]. The maximum likelihood estima-
tor proposed in [2] has optimal statistical properties, but
it needs multidimensional search and is highly nonlinear.
Huang and Barkat [3] and Jeffers et al. [4] extended the

conventional one-dimensional (1D) MUSIC method to the
two-dimensional (2D) ones for range and DOA estimates.
Since 2D MUSIC requires an exhaustive 2D search, their ap-
proaches are computationally inefficient. To avoid multidi-
mensional search, Challa and Shamsunder [7] developed a
total least squares ESPRIT-like algorithm which applies the
fourth-order cumulants to estimate the DOAs and ranges of
near-field sources. Nevertheless, it still requires heavy com-
putations to construct a higher-dimensional cumulant ma-
trix in order to obtain the so-called signal subspace, and
the computational load becomes even intolerable when the
number of sensors is very large. More recently, a weighted
linear prediction method for near-field source localization
was presented in [9], but it needs additional computation to
solve the pairing problem among parameters in the case of
multiple sources.

All the methods above assume that the carrier frequen-
cies are available. If the carrier frequencies are unknown, the
location problem of near-field sources is actually a three-
dimensional (3D) one because three parameters of the DOA,
range, and the associated frequency of each source should
be estimated and paired correctly. This paper proposes a
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Figure 1: Sensor configuration of near-field sources.

computationally efficient algorithm for joint estimation of
the DOA, range, and frequency of each near-field source.
Without constructing the higher-dimensional cumulant ma-
trix, the proposed algorithm applies a symmetric uniform
linear array and uses eigenvalues together with the corre-
sponding eigenvectors of two properly designed matrices to
jointly estimate signal parameters, and it does not require any
spectral peak searching since the parameters are automati-
cally paired.

This paper is organized as follows. Section 2 introduces
the signal model and Section 3 develops a new algorithm. In
Section 4, a series of computer simulations are presented to
demonstrate the effectiveness of the proposed algorithm, and
finally, conclusions are made in Section 5.

2. PROBLEM FORMULATION

Consider the narrowband model for array processing of
near-field sources, as shown in Figure 1. Suppose that there
are K sources of interest with complex baseband representa-
tions si(t), i = 1, . . . ,K . Let the band of interest have a center
frequency fc and the ith source has a carrier frequency fc+ fi.
After demodulation to intermediate frequency, the signal due
to the ith source is e j2π fitsi(t) and the signal received at the
mth antenna is

xm(t) =
K∑
i=1

si(t)e j2π fite jτmi + zm(t), −Nx + 1 � m � Nx,

(1)

in which zm(t) is the additive noise, fi is the frequency of the
ith source, and τmi is the phase difference in radians between
the ith source signal arriving at sensor m and that at the ref-
erence sensor 0.

Applying the Fresnel approximation, one has the phase
difference τmi as follows [2, 3, 4, 5, 6]:

τmi = 2πri
λi

(√
1 +

m2d2

r2i
− 2md sin θi

ri
− 1

)
≈ γim + φim

2,

(2)

γi = −2π d

λi
sin
(
θi
)
, (3)

φi = π
d2

λiri
cos2

(
θi
)
, (4)

where d is the interelement spacing of the uniform linear ar-
ray, while λi, ri, and θi are the wavelength, range, and bearing
of the ith source, respectively.

Sample the received signals at proper rate f = 1/Ts and
denote

x(k) = [x−Nx+1
(
kTs
)
, . . . , x0

(
kTs
)
, . . . , xNx

(
kTs
)]T

,

z(k) = [z−Nx+1
(
kTs
)
, . . . , z0

(
kTs
)
, . . . , zNx

(
kTs
)]T

,

s(k) = [s1(kTs
)
e jω1k, . . . , sK

(
kTs
)
e jωKk

]T (5)

in which the superscript T denotes transpose and ωi =
2π fiTs, then (1) can be written, in a matrix form, as

x(k) = Bs(k) + z(k), (6)

where B is a 2Nx×K matrix with the ith column vector given
by

bi
(
θi, ri

) = [e j(−Nx+1)γi+ j(−Nx+1)2φi , . . . ,

e j(−γi+φi), 1, e j(γi+φi), . . . , e jNxγi+ jN2
x φi
]T

.
(7)

The objective of this paper is to deal with the joint esti-
mation problem of the range ri, the bearing θi, and the fre-
quency fi. For this purpose, the following assumptions are
made:

(A1) the source signals s1(t), . . . , sK (t) are statistically mutu-
ally independent, non-Gaussian, narrowband station-
ary processes with nonzero kurtoses;

(A2) the sensor noise zm(t) is zero-mean (white or colored)
Gaussian signal and independent of the source signals;

(A3) the range parameters of the sources are different from
each other, that is, φi �= φj for i �= j;

(A4) the array is a uniform linear array with spacing d ≤
λi/4, i = 1, . . . ,K ;

(A5) the array is a symmetric array with 2Nx antenna sen-
sors and Nx > K .

3. A NEW JOINT ESTIMATION ALGORITHM
FOR 3D PARAMETERS

To develop a new joint estimation algorithm, we begin with
the fourth-order cumulant matrix C1, the (m,n)th element
of which is defined by

C1(m,n) � cum
{
x∗m(k), xm+1(k), x∗n+1(k), xn(k)

}
,

0 � m,n � Nx − 1,
(8)

where the superscript ∗ denotes complex conjugate. Sub-
stituting (1) into (8) and using the multilinearity property
of cumulant together with the assumptions (A1) and (A2),
straightforward but slightly tedious manipulations yield [8]

C1(m,n) =
K∑
i=1

c4si e
j2(m−n)φi (9)
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in which c4si = cum{|si(k)|4} denotes the (nonnormalized)
kurtosis of si(k). Let C4s = diag[c4s1 , . . . , c4sK ] be a diagonal
matrix composed of the source kurtoses; we have

C1 = AC4sAH , (10)

where the superscript H denotes Hermitian transpose, A =
[a1, . . . , aK ] is an Nx × K matrix, and

ai =
[
1, e j2φi , . . . , e j2(Nx−1)φi]T , i = 1, . . . ,K. (11)

Since all the source signals are assumed to have nonzero kur-
toses, C4s is an invertible diagonal matrix. Additionally, due
to (A3), different sources have different range parameters, A
is of full column rank. Hence, C1 is an Nx × Nx matrix with
rank K , and it is not of full rank for the assumption (A5) that
K < Nx.

Let {ρ1, . . . , ρK} and {v1, . . . , vK} be the nonzero eigen-
values and the corresponding eigenvectors ofC1, respectively,
that is, C1 =

∑K
i=1 ρiviv

H
i ; we may obtain the pseudoinverse

matrix of C1, denoted as C†1 , and

C†1 =
K∑
i=1

ρ−1i vivHi . (12)

Due to (10),A has the same column span asV = [v1, . . . , vK ],
and thus the projection of ai onto span{v1, . . . , vK} equals ai,
that is, VVHA = A. Therefore, it holds that

C1C
†
1A =

K∑
i=1

ρivivHi ·
K∑
p=1

ρ−1p vpvHp · A

= VVHA = A.

(13)

Furthermore, for different sensor lags, we define

C2(m,n) � cum
{
x∗m−1(k), xm(k), x

∗
−n(k), x1−n(k)

}
,

C3(m,n) � cum
{
x∗m(k + 1), xm+1(k), x∗n+1(k), xn(k)

}
,

(14)

and similar to (10), we can show that

C2 = AC4sΩ
HAH , (15)

C3 = AC4sΛ
HAH , (16)

where the narrowband assumption, that is, si(k) ≈ si(k + 1),
is used [10] and

Ω = diag
[
e− j2γ1 , . . . , e− j2γK

]
, (17)

Λ = diag
[
e jω1 , . . . , e jωK

]
. (18)

Clearly, both Ω and Λ are of full rank, so C2 and C3 have the
same rank K as C1.

In what follows, we apply (10), (15), and (16) to de-
rive a new algorithm for joint estimation of the range, DOA,
and frequency parameters. For convenience of statement,

we denote

C = CH
2 C

†
1 , (19)

C̄ = CH
3 C

†
1 . (20)

Postmultiplying both sides of (19) by A, and applying
(15), we obtain

CA = AΩC4sAHC†1A. (21)

On the other hand, since A is of full column rank, from (10)
we have

C4sAH = (AHA
)−1

AHC1. (22)

Therefore, substituting (22) and (13) into (21) results in

CA = AΩ. (23)

Similarly, it is not difficult to show that

C̄A = AΛ. (24)

Since from (23) and (24), it can be inferred that the ma-
trices C and C̄ have the same ranks K and the same eigenvec-
tors, we have the following eigendecompositions:

C =
K∑
i=1

ϕiuiuHi , (25)

C̄ =
K∑

i′=1

i′ui′u

H
i′ . (26)

Based on (18), (24), and (26), we obtain the estimate of
the frequency, given by

ω̂i = angle
(

i
)
, (27)

where angle(·) denotes the phase angle operator.
According to the assumption (A4), that is, d � λi/4, (3)

implies −π � 2γi � π. Hence, we have from (17), (23), and
(25) that angle(ϕi) = −2γi. Substituting this equation into
(3), we get the estimated DOA as

θ̂i = sin−1
(

λi
4πd

· angle (ϕi
))

. (28)

Additionally, (23), (24), (25), and (26) indicate that A
has the same column span as U = [u1, . . . ,uK ], that is,
span{a1, . . . , aK} = span{u1, . . . ,uK}, therefore, ai can be es-
timated by the associated eigenvector ui. Mimicking [11],
one may obtain φ̂i by minimizing a least squares cost func-
tion

∑Nx−1
m=1 (mφi − angle(ui(m + 1)/ui(1)))2 given by

φ̂i = 12
Nx(Nx − 1)

(
2Nx − 1

) Nx−1∑
m=1

m angle
(
ui(m + 1)
ui(1)

)
. (29)
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Once θ̂i and φ̂i are available, the range ri can be estimated
using (4), yielding

r̂i = π
d2

λiφ̂i
cos2

(
θ̂i
)
. (30)

For the proposed algorithm, we point out that, since the
eigenvectors (associated with the K nonzero eigenvalues) of
C are easily matched with those of C̄ by contrasting the two
sets of eigenvectors [12], while they can be both considered
as estimates of the K column vectors of A, it is easy to deter-
mine the correct pairing of the range, DOA, and frequency
parameters of each source.

Finally, it is helpful to compare the proposed algorithm
to the ESPRIT-like one [7]. Both methods require construct-
ing cumulant matrices, but they estimate the DOA and range
parameters in different ways. Besides the eigenvalues, the
eigenvectors are also used in this paper. More importantly,
the proposed algorithm employs ably the narrowband as-
sumption of the sources to estimate the frequencies, and it
need not construct the higher-dimensional cumulant matrix,
which takes advantages over the one presented in [7]. Con-
cerning the computational complexity, we ignore the same
computational load of the two methods that is compara-
tively small (e.g., calculations involved in (19) and (20) in
this paper and similar operations in the ESPRIT-like one)
and consider the major part, namely, multiplications in-
volved in calculating the cumulant matrices and in per-
forming the eigendecompositions, our algorithm requires
27(2Nx+1)2M+(4/3)N3

x , while the ESPRIT-like one requires
36(2Nx+1)2M+(4/3)(3Nx)3, whereM is the number of snap-
shots and Nx is the number of sensor. Clearly, the proposed
algorithm is computationally more efficient, and in general
cases, M � Nx, it has the computational load, at most, 75
percent of the ESPRIT-like one [7].

4. SIMULATION RESULTS

To verify the effectiveness of the proposed algorithm, we con-
sider a uniform linear array consisting of N = 14 sensors
with element spacing d = min (λi/4). Two equi-power sta-
tistically independent sources impinge on the linear array,
and the received signals are polluted by zero-mean additive
Gaussian noises. We assume that the two sources are nar-
rowband (bandwidth = 25 kHz) amplitude modulated sig-
nals with the center frequency equal to 2MHz and 4MHz,
respectively. The data are sampled at a rate of 20MHz. The
performance is measured by the estimated root mean square
error (RMSE):

ERMSE =

√√√√√ 1
Ne

Ne∑
i=1

(
α̂i − αtrue

)2
(31)

in which α̂i denotes estimate of the true parameter αtrue ob-
tained in the ith run, while Ne is the total number of Monte-
Carlo runs.
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Figure 2: The RMSE of the estimated DOA over 500 Monte Carlo
runs versus the input SNR; 14 sensors and 1000 snapshots are used
and the two equi-power sources approach the array from 38◦ and
20◦, respectively.

For comparison, we execute the ESPRIT-like algorithm
proposed in [7] at the same time and simulate two different
cases.

In the first experiment, the first source locates at θ1 = 38◦

with range r1 = 1.3λ1 and the other locates at θ2 = 20◦ with
range r2 = 0.65λ2. The RMSE of range parameter is nor-
malized (divided) by the signal wavelength λ. The number of
snapshots is set to 1000 and the signal-to-noise ratio (SNR)
varies from 0dB to 25dB. The additive Gaussian noise may
be white or colored. Since the results are alike, we simply con-
sider the colored Gaussian noise as below:

z(k) = e(k) + 0.9e(k − 1) + 0.385e(k − 2) (32)

in which e(k) is white Gaussian noise whose variance is ad-
justed so that σ2z = 1.

The averaged performances over 500 Monte Carlo runs
for range, DOA, and frequency estimates of both sources are
shown in Figures 2, 3, and 4, respectively, from which we can
see the following facts:

(1) the proposed algorithm has a slightly worse estimation
accuracy of DOA than the ESPRIT-like one at low SNR
regions;

(2) although for each algorithm, the RMSE of the range
estimate of source 2 (the source closer to the array) is
much lower than that of source 1, our algorithm per-
forms clearly better than the ESPRIT-like one;

(3) the proposed algorithm has satisfactory frequency es-
timation accuracy even at low SNR regions. (By con-
trast, the ESPRIT-like one assumes that the carrier fre-
quency is known a priori.)



390 EURASIP Journal on Applied Signal Processing

Input SNR (dB)

0 5 10 15 20 25

R
M
SE

(λ
)

10−4

10−3

10−2

10−1

100

The proposed method, source 1
The proposed method, source 2
The ESPRIT-like method, source 1
The ESPRIT-like method, source 2

Figure 3: The RMSE of the estimated range over 500 Monte-Carlo
runs versus the input SNR; 14 sensors and 1000 snapshots are used,
and the two equi-power sources approach the array from 38◦ and
20◦, respectively.
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Figure 4: The RMSE of the estimated frequency over 500 Monte
Carlo runs versus the input SNR; 14 sensors and 1000 snapshots are
used and the two equi-power sources approach the array from 38◦

and 20◦, respectively.

In the second experiment, we use the same parameters in
the first experiment, except that the SNR is fixed at 15dB and
that the number of snapshots varies from 100 to 1900. The
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Figure 5: The RMSE of the estimated frequency over 500 Monte
Carlo runs versus the number of snapshots; 14 sensors are used and
the SNR is fixed at 15dB. Two equi-power sources approach the ar-
ray from 38◦ and 20◦, respectively.
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Figure 6: The RMSE of the estimated frequency over 500 Monte
Carlo runs versus the number of snapshots; 14 sensors are used and
the SNR is fixed at 15dB. Two equi-power sources approach the ar-
ray from 38◦ and 20◦, respectively.

results are shown in Figures 5, 6, and 7. Obviously, similar
conclusions can be made. As compared with the ESPRIT-like
one [7], the proposed algorithm has greatly improved range
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Figure 7: The RMSE of the estimated frequency over 500 Monte
Carlo runs versus the number of snapshots; 14 sensors are used and
the SNR is fixed at 15dB. Two equi-power sources approach the ar-
ray from 38◦ and 20◦, respectively.

estimation accuracy since it makes full use of the information
of the matrices C and C̄.

5. CONCLUSION

Based on a symmetric uniform linear array, a computation-
ally efficient algorithm based on the fourth-order cumu-
lants is presented in this paper for joint estimation of the
range, DOA, and frequency parameters of multiple near-
field sources. The 3D parameters are estimated by the eigen-
values and the corresponding eigenvectors of two properly
constructed matrices, and hence no additional algorithm is
needed to pair among parameters. Extensive computer sim-
ulations show that the proposed algorithm performs more
satisfactorily than the existing one [7].
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