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We propose methodologies to automatically classify time-varying warning signals from an acoustic monitoring system that in-
dicate the potential catastrophic structural failures of reinforced concrete structures. Since missing even a single warning signal
may prove costly, it is imperative to develop a classifier with high probability of correctly classifying the warning signals. Due
to the time-varying nature of these signals, various time-frequency classifiers are considered. We propose a new time-frequency
decomposition-based classifier using the modified matching pursuit algorithm for an actual acoustic monitoring system. We in-
vestigate the superior performance of the classifier and compare it with existing classifiers for various sets of acoustic emissions,
including warning signals from real-world faulty structures. Furthermore, we study the performance of the new classifier under
different test conditions.
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1. INTRODUCTION

1.1. Acoustic monitoring systems

Acoustic monitoring systems are used in many applications
to determine the integrity of structures such as buildings and
bridges. The purpose of these monitoring systems is to lis-
ten for any warning signals that may indicate future catas-
trophic effects. This premonition of future events can pro-
vide invaluable time to prevent catastrophic failures that may
follow. Figure 1 shows a typical monitoring system of struc-
tures along with a warning event [1, 2, 3, 4]. For example,
in real life situations, the warning event could be the break-
ing sound of metals in steel bridges, the abnormal knocking
sound in aircraft and automobile engines, or the breaking
sound of metals in prestressed concrete structures with re-
inforcing metals.

There are numerous reasons why it is desirable to ascer-
tain the condition of a structure to determine if failure is im-
minent. The failure of a structure may result in the loss of
its use which usually implies loss of revenue. In addition to

this, the replacement cost after the failure is generally much
more than preventive maintenance costs. As a result of col-
lateral expenses, the cost of structural failure may far exceed
the cost of the structure itself. Bymonitoring for warning sig-
nals that indicate future failures, we can prevent the failure of
the structure by repairing it before the failure occurs. The ex-
act location of the distress can be determined by employing
multiple sensors.

1.2. Automatic acoustic classifiers

Even though monitoring systems are intended to record
some specific warning sounds, we cannot prevent the sensor
from recording all other undesirable acoustic events. For ex-
ample, in a monitoring system of prestressed concrete struc-
ture with reinforcing metals, even though we are looking for
the breaking noise of reinforcing metals, the monitoring sys-
tem will also record other undesirable sounds such as sounds
from passing workers, birds, animals, machinery, automo-
biles, or rain. Hence, it is important to classify the warning
signals from all these other signals. This classification can be
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Figure 1: Typical acoustic monitoring system of structures.

donemanually by listening to all the sounds that are recorded
by the monitoring system and using manual signal analysis
combined with human judgment to identify the warning sig-
nals. However, in practice, it is not uncommon for less than
one percent of recorded emissions to be of diagnostic value.
Hence, manual classification becomes a tedious process. This
necessitates the use of an automatic acoustic classifier.

Automatic classifiers are used in diverse fields ranging
from digital communications [5] to surveillance applications
[6]. Due to the diverse applications of classification theory,
many advancements have been made over the last couple of
decades through extensive research. Although many classifi-
cation theories have been developed, classification of time-
varying signals whose frequency content varies with time is
still a challenging task. Due to the time-varying nature of
the signals recorded by an acoustic monitoring system of a
concrete structure, the performance of some well-established
one-dimensional (1D) time domain classification methods
may not be satisfactory.

Time-frequency representations (TFRs) are two-dimen-
sional (2D) transformations of time and frequency that are
powerful tools for analyzing time-varying signals [7, 8, 9, 10].
This is because TFRs can provide the time-localized fre-
quency information of a signal. As a result, TFRs or time-
frequency-(TF) based methods have been used for classifi-
cation of time-varying signals, and they have been shown to
outperform the conventional 1D time- or frequency-based
methods. Note, however, that this improved performance
may not be sufficient.

In our application, an acoustic monitoring system can af-
ford to have a small number of false positive classifications
provided that it does not significantly increase the effort of
the manual analysis of detected warning signals. However,
the system demands that the probability of correct classifi-
cation of warning signals should be close to one. Since the
main objective of an acoustic monitoring system is the pre-
monition of catastrophic failures, missing even a fewwarning
signals may prove to be very costly.

In this paper, we develop an automatic classifier that clas-
sifies time-varying acoustic emissions from amonitoring sys-
tem using TF decomposition-based techniques. In particular,
the classifier is based on a modified version of the matching
pursuit decomposition (MPD) algorithm [11, 12, 13] that
decomposes a signal into basic components throughout the
TF plane. As we will demonstrate, the new classifier achieves

higher performance when compared to other TF classifiers
proposed in the literature.

This paper is organized as follows. In Section 2, we de-
scribe some existing TF-based classifiers. In Section 3, we de-
velop the new classifier using a modified matching pursuit
algorithm. The classification results of the various proposed
classifiers for real data, together with comparisons to other
methods, are discussed in Section 4.

2. CURRENT CLASSIFIERS

There exist many classification methods depending on the
nature of the signals. In this section, we discuss some TF-
based classification methods of acoustic events. The effec-
tiveness of these classification methods is evaluated using
acoustic signals from an actual acoustic monitoring system.1

Figure 2 shows twelve TFRs, each representing the spec-
trogram of a learning signal from different acoustic event
classes. As seen from the figure, only Class 1 and Class 3
acoustic events have high-frequency components, whereas
all other classes consist largely of low-frequency signals. For
example, in this acoustic monitoring system, low-frequency
signals like machinery, human voice, or automobile noises
are often recorded. For the example in Figure 2, the empir-
ical data indicates that Class 1 is the warning signal which
usually precedes a catastrophic failure, and thus must be clas-
sified accurately.

2.1. Time-domain classifier

For binary linear classification, if X1 and X2 are the charac-
teristic deterministic feature vectors of two classes embedded
in additive white Gaussian noise (AWGN), then the matched
filter operation minimizes the probability of misclassifica-
tion. Any heuristic approach to the choice of feature can be
used, provided it leads to a minimum misclassification rate.
A common feature that we can consider are the time samples
of the signal itself. Hence, the template vectors X1 and X2 of
Class 1 and Class 2, respectively, in AWGN can be defined as
follows:

Xl =
[
xl[0] xl[1] · · · xl[N − 1]

]
, l = 1, 2, (1)

1As the data used throughout this paper is proprietary, the different sig-
nal types are generically referred to by class number.
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Figure 2: Sample spectrograms of acoustic signals from twelve different classes. The dark areas indicate greater energy.



350 EURASIP Journal on Applied Signal Processing

50
0−50 τ0

50
100150

ν

0

0.5

1

Class 1

|A
F x
(τ
,ν
)|

50
0−50 τ0

50
100150

ν

0

0.5

1

Class 3

|A
F x
(τ
,ν
)|

Figure 3: The narrowband auto ambiguity function of signals from
Class 1 and Class 3.

where N is the number of samples, and

xl[n] = 1
Pl

Pl∑
p=1

x
p
l [n], n = 0, . . . ,N − 1, (2)

denotes the sample mean of the number Pl of learning signals
of Class l.

Based on the matched-filter decision rule [14], a test sig-
nal x[n] with feature vector X is classified in Class 1 if

〈
X,X1

〉
>
〈
X,X2

〉
, (3)

where the inner product is given by 〈X,Xl〉 =
∑

n x[n]x
∗
l [n].

If the signals are time-varying and the initial phase of the
signal is random, then the matched filter results in poor per-
formance. In this case, other features that reveal the time-
varying information of the signals may be used for classifica-
tion.

2.2. Time-frequency-representation-based classifiers

In [15], TF points were used as a feature to classify time-
varying signals. In order to obtain specific TF points to
form a feature vector, we use the discrete time and dis-
crete frequency version of a TFR. Consider, for example,
the discrete version of the spectrogram TFR [8] given as
SPECx(nT , kF) = SPECx[n, k], where T is the sampling pe-
riod, F is the frequency separation:

SPECx[n, k] =
∣∣∣∣∣∣
N−1∑
m=0

x[m]h∗[m− n]e− j2πkm/N

∣∣∣∣∣∣
2

, (4)

and h[n] is the analysis window of the spectrogram. Here, we

assume that each TF point in the TF plane is Gaussian2 for
large N . Using the TF points of the spectrogram as a feature
vector, the authors in [15] extended the matched-filter deci-
sion strategy to the TF domain. Specifically, for binary clas-
sification, one can deduce that the test signal x[n] belongs to
Class 1 if

〈
SPECx, SPEC1

〉
>
〈
SPECx, SPEC2

〉
, (5)

where, for a 2D function, 〈SPECx, SPECl〉 is the 2D inner
product

∑
n

∑
k SPECx[n, k]SPECl[n, k]. The average spec-

trogram of Class l, SPECl, is obtained by averaging the spec-
trogram of all the learning signals in Class l, that is,

SPECl[n, k] = 1
Pl

Pl∑
p=1

SPECx
p
l
[n, k], l = 1, 2, (6)

where SPECx
p
l
[n, k] is the spectrogram of the pth learning

signal in Class l and Pl is the number of learning signals in
Class l [15]. Thus, the inner product between the spectro-
gram of the test signal and the average spectrogram of the
learning signals of Class 1 and Class 2 is used as the test statis-
tic. The test signal will be assigned to the class whose 2D spec-
trogram correlation with the spectrogram of the test signal is
maximum. For an L-class signal classification, the classifica-
tion rule is

x[n]εCj ⇐⇒ j = argmax
l

{〈
SPECx, SPECl

〉}
(7)

for l = 1, . . . ,L, where Cj is the jth class.
Instead of using the TF points of a spectrogram as the

feature vector, we can also use the TF points of other TFRs.
Since most of the acoustic events recorded by the monitor-
ing system are multicomponent, we decided not to use the
well-known Wigner distribution (WD) because, for a multi-
component test or learning signal, the WD suffers from os-
cillatory cross terms [7, 8, 9, 10]. Although cross terms can
provide discriminatory information, for our application, the
extra information could over resolve individual signal types
within a class. The representation would then be specific to
the given signal rather than a more generic representation of
the class of signals as a whole. There exist other TFRs that
do not suffer from cross terms that correspond to smoothed
versions of the WD. A highly localized reassigned spectro-
gram [18, 19] was also chosen for our testing to investigate
whether TF localization is important in this TF classification
problem. The reassigned spectrogram TFR is a spectrogram
whose every TF point is moved to the local centroids of the
WD, thus achieving very high localization in the TF plane
[18, 19]. The resulting classifier is in the form of (7) except
that the spectrogram is replaced by the reassigned spectro-
gram. As we will show, the higher localization offered by this
TFR results in better classification results when compared

2Although recent studies [16, 17] showed that the distribution of TF pix-
els could be, for example, χ2, the Gaussian assumption has worked well for
our application.
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to the spectrogram that can suffer from spreading due to
smoothing. Note that there have been other studies on TF de-
tection and classification techniques, some of which include
[20, 21, 22, 23, 24, 25]. Acoustic signal classification has also
been considered, for example, in [21, 23, 24].

2.3. Ambiguity-function-based classifier

The narrowband ambiguity function (AF) of a continuous
time signal x(t) is defined as follows:

AFx(τ, ν) = e jπτν

∫
x(t)x∗(t − τ)e− j2πνtdt, (8)

and it corresponds to the 2D Fourier transform of theWD. In
the AF domain, the auto terms of a multicomponent signal
x(t) are centered around the origin (τ, ν) = (0, 0), and all the
cross terms are away from the origin [9]. The AFs of the dif-
ferent signals to be classified in our acoustic data are remark-
ably different. For example, Figure 3 shows the AF of a Class
1 signal and a Class 3 signal. The Class 3 signal is an 8 kHz
deterministic signal that is used to check whether the detec-
tor is properly detecting the acoustic signals. The AF of each
signal corresponds to an auto term, but the origin concentra-
tion differs due to the properties of each signal. Since Class 3
is a deterministic signal and its time samples are highly corre-
lated, we can expect an appreciable amount of correlation for
nonzero time lags. Moreover, since the Class 3 signal contains
most of its energy at 8 kHz, there will be less frequency cor-
relation for nonzero frequency lags. Thus, it is clear from the
figure that the AF of the third class signal has peaks all along
the τ-axis with the maximum peak at the origin, whereas the
AF of the first class signal has peaks only around the origin.
As the magnitude of the AF, the ambiguity surface, is differ-
ent for different classes, we define a test statistic as [12]

〈∣∣AFx ∣∣,∣∣AFl∣∣〉

=
∫
τ

∫
ν

∣∣AFx(τ, ν)∣∣∣∣AFl(τ, ν)∣∣dτ dν, l = 1, . . . ,L,
(9)

where

∣∣AFl(τ, ν)∣∣ = 1
Pl

Pl∑
p=1

∣∣∣AFxpl (τ, ν)
∣∣∣, (10)

|AFxpl (τ, ν)| is the absolute value of the AF of the pth learn-
ing signal in Class l, and Pl is the number of learning (i.e.,
training) signals in Class l. The classification rule for an L-
class classifier using the AF surface is given by

x[n]εCj ⇐⇒ j = argmax
l

〈∣∣AFx ∣∣,∣∣AFl∣∣〉, (11)

for l = 1, . . . ,L, where Cj is the jth class. Based on this
heuristic approach, we developed this test statistic using the
feature set obtained from the AF of a signal. Note that the AF
plane was also considered for classification, for example, in
[24] and in radar applications. This classification approach
was computationally less expensive than other methods con-
sidered as it did not require a large number of correlations.

3. TF-DECOMPOSITION-BASED CLASSIFIER

3.1. Need for a new classifier

The TF classification techniques that were discussed in
Section 2 are better matched to the time-varying nature of
the signals and can perform better than the classical 1D
methods. However, as will be demonstrated in Section 4,
their results need further improvements since the classifica-
tion of acoustic signals from an acoustic monitoring system
requires a very high probability of correct classification of the
warning signals with reduced probability of false positives.
Since the main objective of an acoustic monitoring system is
the premonition of catastrophic failures to be followed, miss-
ing some warning signals may prove to be very costly. Hence,
we need to design a new classification algorithm that can pro-
vide us with a very low misclassification rate (less than 1%).
The new technique discussed next is based on an iterative
classification algorithm that demonstrates high performance
with a trade-off of increased computational time. This can
be avoided, however, using some preprocessing classification
algorithms.

3.2. Modifiedmatching pursuit

Over the last two decades, different types of TFRs were in-
troduced to provide signal analysis with high TF resolution
and reduced cross terms [7, 8, 9, 10]. New TFRs were ob-
tained in [11, 26, 27] by decomposing an analysis signal into
its elementary components, and then using the weighted sum
of the WD of the decomposed components as the resulting
TFR. One of these decomposition methods is the MPD [11].
The MPD decomposes any signal into a linear expansion of
waveforms that belong to a redundant dictionary. The dictio-
nary of the MPD consists of a collection of TF atoms which
are the scaled, time-shifted, and frequency-shifted versions of
a single basic atom d(t). Specifically, I different elements are
obtained as d(t; i) = d(βit− τi)e j2πνit, i = 1, . . . , I , by varying
the time shift τi, the frequency shift νi, and the scaling factor
βi. Although the MPD is an iterative nonlinear algorithm, it
can preserve signal energy due to its use of orthogonal ex-
pansions and can guarantee convergence [11]. The MPD has
been used in many applications including analysis and clas-
sification [28, 29, 30].

When the analysis signal has multiple components with
different TF structures, the MPD uses many dictionary el-
ements to decompose it, and thus becomes very computa-
tionally intensive. In [26], rotated Gaussian atoms were used
as dictionary elements to decompose linear chirps more effi-
ciently and with fewer waveforms. In order to process signals
with different types of TF characteristics, a modified MPD
(MMPD) algorithm was used in [31, 32], where the analysis
signal was expanded into dictionary waveforms that matched
it in structure. These dictionary elements include signals that
may have linear phase functions or nonlinear (such as loga-
rithmic or power) phase functions. The advantage of using
a dictionary that is matched to the analysis data is that only
a small number of elements is used to decompose a signal
leading to a parsimonious representation, and hence fewer
number of iterations is required.
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We propose to design the TF-decomposition-based clas-
sifier using the MMPD for classifying time-varying signals.
For our MMPD approach, we need to decompose and clas-
sify acoustic signals. Thus, we must form a dictionary3 from
the acoustic signals for a successful decomposition. To en-
sure completeness, we use TF-shifted versions of the learn-
ing signals from each class to form our dictionary. Our main
objective in using the MMPD is to obtain some distinctive
feature set for each class during the iterative procedure of the
signal decomposition algorithm and to use these parameters
to classify time-varying signals.

3.3. Design of theMMPD classifier

In order to design the MMPD classifier, we need to select ap-
propriate learning signals for each class and then form our
dictionary by TF shifting these learning signals. By observ-
ing the representative spectrograms of the different classes in
Figure 2, the range of frequency shifts is limited. Thus, we
only choose a small number of frequency shifts to decrease
the misclassification rate. In order to reduce the complex-
ity of our MMPD classifier, we incorporate the time shift of
the dictionary elements in the cross-correlation computation
described in the algorithm steps below. That is, rather than
storing a lot of time-shifted atoms, we instead use a cross-
correlation between the atom and the residue. This virtu-
ally positions the atoms at every lag in the cross-correlation,
thereby effecting time shifts without having to store time-
shifted copies of the atom in the dictionary. The following
steps demonstrate how to classify any test signal4 from the
given acoustic system with the MMPD technique.

Step 1. The test signal x[n] = x0[n] is cross-correlated with
all the dictionary elements.

Step 2. The dictionary element whose cross-correlation with
the test signal is maximum is chosen. This element, denoted
by d1l [n], best matches the test signal and belongs to Class l.
The corresponding cross-correlation a1l = 〈x0,d1l 〉 quantifies
the similarity between x0[n] and d1l [n].

Step 3. The chosen dictionary element is subtracted from the
test signal, and the class number of the chosen dictionary el-
ement is noted. The residual signal after the first iteration is
given by

x1[n] = x0[n]− a1l d
1
l [n]. (12)

Step 4. As the MMPD is iterative, we continue to decompose
the residual signal from the previous iteration. At the kth it-
eration,

xk[n] = xk−1[n]− akl d
k
l [n], k = 1, . . . ,K , (13)

3Wave-based dictionaries were also used in [30] to process scattering
data.

4For accurate classification, both the test signals and the learning signals
must originate from monitoring hardware of the same design.

where xk[n] is the residual signal after the kth iteration, and
dkl [n] is the best matched dictionary element at the kth iter-
ation that happens to belong to Class l. The correlation co-
efficient akl at the kth iteration is given by akl = 〈xk−1,dkl 〉
for k = 1, . . . ,K . Step 4 is repeated for K iterations. The al-
gorithm stopping criterion is a minimum of the correlation
coefficient or a maximum number of iterations. Specifically,
when the correlation coefficient is much smaller than the
threshold, then further iteration only results in adding an er-
ror to the decomposition. A similar concept is true for a large
number of iterations.

Step 5. When the algorithm stops, the net contribution of
the correlation coefficients from each class is used as the test
statistic. Specifically, the test statistic for Class l is given by

γl =
M∑

m=1

∣∣akml
∣∣, (14)

where km is the iteration number in which Class l was chosen
during the decomposition, and M is the number of times in
which Class l was chosen. Finally, the unknown test signal is
classified in Class j based on

x[n]εCj ⇐⇒ j = argmax
l

γl, l = 1, . . . ,L. (15)

As the residual signal xk[n] is uncorrelated with the best
matched dictionary element dkl [n], the MMPD is an orthog-
onal decomposition which guarantees energy conservation.

Step 5 is demonstrated next with an example, with L = 8
different classes. For a given test signal, if the MMPD yields
the following correlation coefficients after 8 iterations: a11 =
0.9, a21 = 0.8, a31 = 0.7, a42 = 0.6, a53 = 0.5, a64 = 0.4,
a75 = 0.3, and a86 = 0.2, then the test statistics for each class
are γ1 = 0.9 + 0.8 + 0.7 = 2.4, γ2 = 0.6, γ3 = 0.5, γ4 = 0.4,
γ5 = 0.3, γ6 = 0.2, γ7 = 0, and γ8 = 0. Recall that a31 is the
correlation coefficient from the third iteration, and the best
matched dictionary element at the third iteration belongs to
Class 1; γ1 is the test statistic for Class 1. Based on the clas-
sification rule in (15), this test signal is classified in Class 1.
Figure 4 shows the basic block diagram of the algorithm of
this classifier.

4. CLASSIFICATION RESULTS

For our real-data classification, we compare the performance
of the four classifiers presented in Sections 2 and 3. Specifi-
cally, we use the spectrogram-based classifier in (7), the re-
assignment spectrogram-based classifier (with the spectro-
gram replaced with the reassigned spectrogram in (7)), the
AF-based classifier in (11), and the new MMPD classifier
in (15). For the MMPD classifier stopping criteria, we set
the correlation coefficient threshold value at 0.15, and we
use a maximum number of K = 10 iterations. All the test
and learning signals used were sampled at 20 kHz, and the
duration of each data vector is 0.1024 seconds (2, 048 data



Classification of Acoustic Emissions Using Modified Matching Pursuit 353

Stop

x[n]εCj ⇐⇒ j = argmax
l

γl
Choose the class which produce
the largest decision statistic

γl =
∑

m |akml | Calculate the decision statistic

Yes

k > 10 or
akl < 0.15

No
Criterion for stopping the iteration

xk[n] = xk−1[n]− akl d
k
l [n]

Subtract the residual signal from
the chosen dictionary signal

Select the dictionary element whose time
correlation with the test signal is maximum

k = k + 1 Increment the iteration number

akl = 〈xk, dkl 〉
Find the weighted contribution of
the best match dictionary element
to the expanded signal

k = 0
x0[n] = x[n] Assign the signal to x0[n]

Start

Figure 4: Implementation of the MMPD classification algorithm.

samples). Based on this, the size of both the spectrogram and
reassignment spectrogram was 1024 × 128, whereas the AF
was only 50 × 256. Twelve classes of signals were used to
compare the different techniques. Figure 2 shows the spec-
trogram of a characteristic sample signal from each of the
twelve different types of signals. Table 1 shows the number of
learning and test signals used for each class. We have config-
ured Class 1 to be the major class of interest (warning signal)
and the other classes to be nuisance events. As we are inter-
ested in the classification of the warning signals, we have used
more learning signals from Class 1. By having more learning
signals, the probability of correctly classifying a Class 1 signal
of varying TF structure increases. Moreover, we have used a
large number of test signals of Class 1 to make a fair conclu-
sion about the performance of each classifier. Note that we

are not using large data sets because the probability of cor-
rect classification is more pertinent to our problem than the
probability of false positive. Specifically, we used all the true
positive data (warning signals) we had, some for training and
some for testing, and we used a random assortment of false
positive data (nuisance signals). In our classification, even
probabilities of false positive as high as 0.5 were accepted as
it would reduce half the amount of human analysis required;
it was important that the probability of correct classification
be kept high so as not to miss any warning signals.

4.1. Twelve-Class classifier

In general, of utmost importance is the differentiation of
warning signals from nonwarning signals in order to de-
tect the imminent failure of the structure. However, further
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Table 1: Number of learning and test signals in each class. Learning
signals are used to train the classifier and test signals are used to
evaluate the classifier.

Class no. No. of learning signals No. of test signals

Class 1 59 381

Class 2 10 42

Class 3 4 45

Class 4 5 44

Class 5 8 19

Class 6 9 42

Class 7 8 54

Class 8 8 42

Class 9 12 31

Class 10 4 4

Class 11 9 41

Class 12 6 7

subclassification of the nonwarning signals can provide in-
formation useful to field technicians. For example, if an ex-
cessive number of biological noises (such as bird chirps) is
detected, then it may be necessary for a field technician to
provide supplemental acoustic insulation at the monitoring
site. This will reduce the total number of unclassified detec-
tions and permit longermonitoring due to less acquired data.
Moreover, due to the cost involved, it would be prohibitive to
circumvent the problem by arbitrarily acoustically insulating
every monitoring station regardless of whether or not there
is a problem.

Table 2 provides the number of misclassified test signals
for each of the twelve possible classes using the four dif-
ferent classification methods. Specifically, the second row of
Table 2 compares the performance of the different classifiers
in classifying warning signals (Class 1). This table also shows
the number of false classification events that correspond to
the number of test signals from Class 2 to Class 12 (nui-
sance signals) that were classified in Class 1 (warning sig-
nals). Table 3 provides the probability of correct classification
(PCC) of Class 1 test signals using the four different meth-
ods. Note that by combining the information from Tables 1,
2, and 3, it can be observed that the MMPD-based classi-
fier misclassifies only 3 out of 381 Class 1 test signals which
yields PCC = 0.9921. However, the TF-based classifiers using
the spectrogram, reassigned spectrogram, and AF misclas-
sify 19, 21, and 39 Class 1 test signals, respectively. Moreover,
only 7 test signals are misclassified in Class 1 yielding a prob-
ability of false classification PFC = 0.0188. The remaining
misclassified events of nuisance test signals are misclassified
in ten other possible classes. By comparing the misclassifica-
tion rate for other class test signals in Table 2, the MMPD-
based classifier has the best performance. Thus, the MMPD-
based classifier appears well suited for applications like this,
where we require a high probability of correct classification
of warning signals.

Table 2: Number of misclassified test signals for four different clas-
sifiers: spectrogram (SPEC), reassigned spectrogram (RSPEC), am-
biguity function (AF), and modified matching pursuit decomposi-
tion (MMPD).

Class no. SPEC RSPEC AF MMPD

Class 1 19 21 32 3

Class 2 2 2 2 2

Class 3 0 0 1 4

Class 4 0 0 1 1

Class 5 5 3 4 0

Class 6 6 6 12 6

Class 7 3 7 5 2

Class 8 3 3 5 4

Class 9 9 15 13 0

Class 10 1 1 1 1

Class 11 12 8 23 11

Class 12 2 3 1 5

No. of FC 0 0 39 7

Table 3: Probability of correct classification (PCC) and false classi-
fication (PFC) for Class 1 test signals using all four methods (for 12
classes).

Classifier PCC PFC

MMPD 0.9921 0.0188

SPEC 0.9501 0

RSPEC 0.9449 0

AF 0.9160 0.1049

The poor performance of the 2D classifiers using the
spectrogram, reassigned spectrogram, and AF can be at-
tributed to the fact that the template for each class is ob-
tained by averaging the TFR or AF of the learning signals.
Because of this averaging, the templates may not be able to
represent any subtle differences that exist between learning
signals of the same class. However, in the case of the MMPD,
there is no such averaging involved in the classification pro-
cess. We can expect better results using these 2D signal rep-
resentations by individually computing the 2D inner product
of the TFR or AF of a test signal with the TFR or AF of all the
learning signals. Then a test signal will be classified in Class
l when its 2D inner product with a Class l learning signal is
maximum. However, this individual computation of 2D in-
ner products may not be practically feasible due to memory
and processing time constraints. It was possible, however, to
reduce processing time (without degrading classifier perfor-
mance) by applying some simple preclassification rules for
classes which are easily separated from other classes. For ex-
ample, Class 3 signals consist of bandpass signals highly con-
centrated around 8 kHz. Detecting high levels of energy in
this band was sufficient for classifying these signals without
resorting to the MMPD.
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4.2. Binary classifier

In Section 4.1, we have seen the classification results of TF-
and MMPD-based 12-class classifiers, where it is desirable to
classify all the test signals in 1 of 12 possible classes. For ex-
ample, it is required to distinguish automobile noise from
bird chirping noise or dog barking noise. However, this kind
of classification may not be necessary for an acoustic mon-
itoring system. Hence, consider a scenario where it is suffi-
cient to determine whether a test signal is a Class A warn-
ing signal or not. In this scenario, there are only 2 classes,
namely, Class A (warning signals as in Class 1 in Table 1) and
Class B (nuisance signals). Two kinds of binary classifiers are
discussed in this section based on whether we use learning
signals from Class B or not.

4.2.1. MMPDwith only Class A learning signals

The dictionary of theMMPD in Section 4 is composed of TF-
shifted learning signals from 12 classes. However, in this bi-
nary classifier, the dictionary is composed of only TF-shifted
versions of learning signals from Class A. Since only the
learning signals of Class A are used in this classifier, we can-
not use the decision strategy in (15). Instead, we use either
the residual energy or the correlation coefficient akl of the
MMPD after some specific number of iterations. Since there
are no representative signals for Class B, we can anticipate
that the residual energy of a test signal that belongs to Class B
after some specific number of iterations will be higher when
compared to a test signal from Class A. Alternatively, we ex-
pect to have a low correlation value coefficient when the test
signal actually belongs to Class B.

The performance of the classifier using either the correla-
tion or the residual energy as a stopping criterion gives poor
results. For example, we found that for a PCC = 0.99, the cor-
responding PFC is close to 0.8 when the residual energy cri-
terion is used. Thus, if we want to achieve a Class A misclas-
sification rate of 1% (4 wrong out of 381 test signals), then
the Class B misclassification rate will be 0.8 (297 out of 372
test signals). We can infer that neither of the two MMPD pa-
rameters are sufficient to clearly differentiate Class A signals
from Class B signals. This poor classification performance is
obtained since there are no representative signals from Class
B. However, the MMPD will still choose a best matched dic-
tionary element for any test signal including one from Class
B.

4.2.2. MMPDwith learning signals from both classes

To improve classification performance, we added 31 Class B
learning signals to the dictionary. The decision strategy for
this binary classifier is the same as in (15) but with l = 1, 2
corresponding to A, B, respectively. Table 4 shows the clas-
sification results of this method using (a) 5 and (b) 10 it-
erations as the stopping criterion. The table shows that the
MMPD with Class B learning signals performs much better
than the MMPD with no learning signals from Class B. This
method misclassifies only 3 out of 381 (PCC = 0.9921) Class
A test signals, and the number of false classifications (signals
from Class B that were classified in Class A) is 4 out of 372
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Figure 5: Comparison of the four different classifiers (for 2 classes)
based on the number of misclassified warning signals which equals
381.
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Figure 6: Comparison of the four different classifiers (for 2 classes)
based on the number of misclassified nuisance signals which equals
372.

(PFC = 0.0108). The average processing time using 5 itera-
tions was 19 seconds per test signal file and for 10 iterations,
it was 33 seconds per test signal file.5 However, both iteration
numbers gave the same results in this particular real-data ap-
plication. Figures 5 and 6 compare the classification results
of the binary MMPD classifier with the other three classifi-
cation methods discussed in Section 2 based on the number
of misclassified signals in Class A and Class B. As can be seen
in the figures, the binary MMPD classifier performs signifi-
cantly better than the other three methods.

5Processing was done with Matlab running under Linux on a 800MHz
processor.
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Table 4: Binary classifier misclassification rate with Classes A and
B learning signals.

Class name 10 iterations 5 iterations
A (warning signals) 3/381 = 0.0079 3/381 = 0.0079
B (nuisance signals) 4/372 = 0.0108 4/372 = 0.0108

4.3. Other classificationmethods
A method not discussed in this paper uses TFR log deviation
[15] as a test statistic to classify time-varying signals. Another
test statistic is used in [33, 34, 35] which depends upon taking
the reciprocal of the TF points of a TFR. Note that it is dif-
ficult to use these two methods in signal classification when
the signals to be classified (like the acoustic events) have no
common nonzero values within a band of frequencies. As a
result, we did not compare our results with these methods.
Moreover, the log deviation method limits the type of TFR,
because only positive TFRs like the spectrogram or the reas-
signed spectrogram can be used.

5. CONCLUSION

We have used existing as well as new techniques to classify
real acoustic signals from an acoustic monitoring system. For
signals similar to those used in this report, our new MMPD-
based method provides promising classification results. The
only drawback of the MMPD is the processing time. Since
signal processing can be done offline in an acoustic monitor-
ing system of concrete structures, the processing time is not
of great concern when considered with the highly accurate
classification performance. For situations where the process-
ing time is critical, some preclassifier methods can be applied
before using the MMPD. However, the performance of such
preclassifiers can increase only when the number of classes
that can be preclassified with more confidence increases.

We have illustrated the performance of theMMPD-based
classifier for multiclass and binary classification. The flexibil-
ity of the MMPD-based classifier allows one to implement
both cases by simply changing the learning signal sets in the
dictionary. Thus, the implementation of the MMPD-based
classifier can be easily modified to classify signals from other
acoustic monitoring systems by changing the learning signal
set. However, care should be taken in selecting the range of
frequency shifts of the learning signals used to form the dic-
tionary, since a higher range of frequency shift may increase
the misclassification rate. This is due to the fact that when
a learning signal of a particular class is frequency shifted by
a large amount, then it is possible that the TF structure of
this frequency-shifted learning signal may resemble a learn-
ing signal of another class.

The automatic classifiers discussed in this paper act as
tools that can be used in acoustic monitoring to separate
events which are important for further analysis, and to re-
ject a rather large number of signals that are of no diagnostic
value. With this capability, it is possible to significantly re-
duce the amount of manual classification often required in
acoustic monitoring.
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