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Estimating a channel that is subject to frequency-selective Rayleigh fading is a challenging problem in an orthogonal frequency di-
vision multiplexing (OFDM) system. We propose three EM-based algorithms to efficiently estimate the channel impulse response
(CIR) or channel frequency response of such a system operating on a channel with multipath fading and additive white Gaussian
noise (AWGN). These algorithms are capable of improving the channel estimate by making use of a modest number of pilot tones
or using the channel estimate of the previous frame to obtain the initial estimate for the iterative procedure. Simulation results
show that the bit error rate (BER) as well as the mean square error (MSE) of the channel can be significantly reduced by these
algorithms. We present simulation results to compare these algorithms on the basis of their performance and rate of convergence.
We also derive Cramer-Rao-like lower bounds for the unbiased channel estimate, which can be achieved via these EM-based algo-
rithms. It is shown that the convergence rate of two of the algorithms is independent of the length of the multipath spread. One

of them also converges most rapidly and has the smallest overall computational burden.
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1. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) [1],
a spectrally efficient form of frequency division multiplex-
ing (FDM), divides its allocated channel spectrum into sev-
eral parallel subchannels. OFDM is inherently robust against
frequency-selective fading since each subchannel occupies a
relatively narrowband, where the channel frequency char-
acteristic is nearly flat. OFDM has an additional advan-
tage of being computationally efficient because the fast
Fourier transform (FFT) technique can be used to imple-
ment the modulation and demodulation functions [2]. Fur-
thermore, the OFDM system can eliminate interframe in-
terference (IFI') through the use of a cyclic prefix (CP)
that is longer than the order of the channel impulse re-

'In the literature, the term intersymbol interference (ISI) is used, but we
believe IFI is more appropriate in this paper.

sponse (CIR). OFDM has already been used in European
digital audio broadcasting (DAB), digital video broadcasting
(DVB) systems, high performance radio local area network
(HIPERLAN) and IEEE 802.11a wireless local area networks
(WLAN). It has also been shown that OFDM is an effective
way of increasing data rates and simplifying the equalization
in wireless communications [3].

However, it is not possible to make reliable data decisions
unless a good channel estimate is available for coherent de-
modulation. Although differential detection could be used to
detect the transmitted signal in the absence of channel infor-
mation, it would result in about a 3 dB loss in signal-to-noise
ratio (SNR) compared with coherent detection. A number
of channel estimation algorithms have been reported in the
literature (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18].
For some of these algorithms, however, the channel esti-
mate is continuously updated by transmitting pilot sym-
bols using specified time-frequency lattices. One class of
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F1GURE 1: Baseband OFDM system model.

such pilot-assisted estimation algorithms adopt an interpola-
tion technique with fixed parameters (two-dimensional (2D)
[6, 7] or one-dimensional (1D) [5]) to estimate the channel
frequency response by using the channel estimate obtained
at the lattices assigned to the pilot tones. Linear, spline, and
Gaussian filters have all been studied [5]. Another method
in this category adopts a known channel frequency covari-
ance matrix and uses a channel estimate at pilot tones to
estimate the CIR in the sense of minimum mean square
error (MMSE) [4, 8, 9, 11]. Shortcomings of these algo-
rithms include (1) a large error floor that may be incurred
by a mismatch between the estimated and real CIR, (2) dif-
ficulty in obtaining the channel frequency covariance matrix
and the resultant error due to channel statistics mismatch,
and (3) spectrum inefficiency due to the overhead (typi-
cally 20%) associated with use of pilot symbols. In addition,
several kinds of blind channel estimation algorithms have
been proposed in order to improve transmission efficiency.
These algorithms are based on the statistical property of re-
ceived signals (e.g., second-order statistics [12, 13, 14, 15]),
the characteristic of virtual subcarriers [16], and the finite-
alphabet property of transmitted signals [18]. However, each
of these blind estimation algorithm has its limitation. For
example, second-order statistics-based algorithms cannot be
used in a high mobility environment (i.e., a large Doppler
spread) since they require many blocks of data to carry out
the estimation procedure. A finite-alphabet-based algorithm
can be applied only to a constant modulus signal. In con-
trast, in this paper, we extend and enhance some existing
pilot-based channel estimation algorithms by substantially
reducing the number of pilot symbols using the expectation-
maximization (EM) algorithm.

The EM algorithm [19, 20] is a technique for finding
maximum likelihood (ML) estimates of system parameters
in a broad range of problems where observed data are in-
complete. The EM algorithm consists of two iterative steps:

the expectation (E) step and the maximization (M) step. The
E-step is performed with respect to the unknown underlying
parameters, using current estimates of the parameters, con-
ditioned upon the incomplete observations. The M-step then
provides new estimates of the parameters that maximize the
expectation of the log-likelihood function defined over com-
plete data, conditioned on the most recent observation and
the last estimate. These two steps are iterated until the esti-
mated values converge.

The main objective of this paper is to investigate the use
of the EM algorithm for channel estimation of an OFDM sys-
tem that is subject to slow time-varying frequency-selective
fading. Three different algorithms have been developed and
compared. In each of the algorithms, the initial channel esti-
mate is obtained either from pilot symbols (that are inserted
in the OFDM frame) or from the channel estimate of the pre-
vious OFDM frame (where there is no pilot symbol in the
current OFDM frame).

The rest of the paper is organized as follows. In Section 2,
we will describe the baseband OFDM system model and dis-
cuss some assumptions. In Section 3, the three different EM-
based channel estimation algorithms are derived and fully
discussed. The Cramer-Rao lower bound (CRLB) and mod-
ified CRLB (MCRB) are discussed in Section 4 for both con-
stant and nonconstant modulus signals. Comprehensive sim-
ulation results and discussion are given in Section 5. Finally,
we draw some conclusions in Section 6.

2. SYSTEM MODEL AND ASSUMPTIONS

The schematic diagram (Figure 1) is a baseband equivalent
representation of an OFDM system. The input binary bits?
are first fed into a serial-to-parallel (S/P) converter. Each

2We only consider uncoded OFDM systems.
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data stream then modulates the corresponding subcarrier by
MPSK or MQAM. The modulation scheme may vary from
one subcarrier to another in order to achieve the maximum
capacity or the minimum bit error rate (BER) for a given
channel characteristic and total signal power constraint. In
this paper, we assume, for simplicity, that only QPSK or 16
QAM is used in any of these subcarriers. We use M to de-
note the number of subcarriers in the OFDM system. The
modulated data symbols, represented by complex variables
X(0),...,X(M — 1), are then transformed by the inverse fast
Fourier transform (IFFT). The output symbols are denoted

as x(0),...,x(M — 1) and are given by
| Mo
x(k) = —= > X(m)er kM 0 <k <M-1. (1)
\/M m=0

In order to avoid IFI, CP symbols, which replicate the end
part of the IFFT output symbols, are added in front of each
frame, that is,

x(k) =x(M+k), —-Ngp=<k=<-1, (2)
where N, denotes the length of the CP. The parallel
data are converted back to a serial data stream, that is,
x(M — Ng)y...sx(M — 1),x(0),...,x(M — 1), and trans-
mitted over the frequency-selective channel with addi-
tive white Gaussian noise (AWGN). The received data
Y(=Nep)s..., y(=1), ¥(0),..., y(M — 1) are converted back
to Y(0),...,Y(M — 1) after discarding the prefix symbols
¥(=Nep),..., y(=1), and applying the FFT and demodula-
tion to the remainder y(0),..., y(M — 1).

The channel model we adopt in the present paper is
a multipath slowly time-varying (unchanged in any one
OFDM frame) fading channel, which can be described by

L-1
yk)= > mxtk—D+nk), 0<k<M-1. (3)
1=0

The CIR ks (0 < I < L—1) are independent complex-valued
Gaussian random variables (which represents a frequency-
selective Rayleigh fading channel), and n(k)’s (0 < k <
M — 1) are i.i.d. complex-valued Gaussian random variables
with zero mean and variance o2 for both real and imaginary
components. L is the length of the CIR.

If we add the CP in each OFDM data frame, with its
length chosen to be longer than L, there will be no IFI be-
tween OFDM frames. Thus, we only need to consider one
OFDM frame at a time in deriving the system model. After
discarding the CP and performing an FFT at the receiver, we
can obtain the received data frame in the frequency domain:

M-1
Y(m) = \/LA_/I > (ke kM 0 <m < M —1. (4)
k=0

Then using the CP condition (2), we obtain the following
simple expression:

Y(m)=X(mH(m)+N(m), 0<m<M-1, (5)

where H(m) is the frequency response of the channel at sub-
carrier m defined as follows:

L-1
H(m)= > he 270M g <m<M—-1,  (6)
1=0

and the set of the transformed noise variables N(m), 0 <
m=<M—1,

n(k)e i2mkM) g < <M —1, (7)

| M-l
are ii.d. complex-valued Gaussian variables and have the
same distribution as n(k), that is, with mean zero and vari-
ance 2. In a regular OFDM system, the channel delay spread
L is much smaller than the number of subcarriers. This
leads to a high correlation between the channel frequency re-
sponses H(m),0 <m <M — 1,even when h;,0 <l <L -1,
are independent.

In this paper, we assume the CIR is constant in each
OFDM frame and varies from frame to frame according to
the fading rate. However, in the derivation below, we assume,
for generality, that the channel is constant during D OFDM
frames. Note that intercarrier interference (ICI) is also elim-
inated at the FFT output because of the orthogonality be-
tween the subcarriers under the assumption that the CP is
longer than the channel delay spread. Furthermore, we as-
sume the system has perfect timing and frequency synchro-
nization.

Notation

We use the standard notation, that is, (-)* denotes the trans-
pose, (+)* denotes the complex conjugate, (-)" denotes the
Hermitian, underscore letters stand for column vectors, and
bold letters stand for matrices. We denote the pth estimates
of the channel response in the frequency domain as H'*’ and
in the time domain as #”, and transmitted signals as X ().

3. EM-BASED CHANNEL ESTIMATION ALGORITHMS

3.1. Introduction to the EM algorithm

The EM algorithm [19, 20] is an iterative method to find the
ML estimates of parameters in the presence of unobserved
data. The idea behind the algorithm is to augment the ob-
served data with latent data, which can be either missing data
or parameter values, so that the likelihood function condi-
tioned on the data and the latent data has a form that is easy
to manipulate. The algorithm can be broken down into two
steps: the E-step and the M-step. We assume that the data
Z (“complete” data) can be separated into two components,
Z = (X,%Y), where X are the observed data (“incomplete”
data) and Y are the missing data. We denote 6 as the un-
known parameter we try to estimate from Y.

The E-step finds Q(6]6?)), the expected value of the log-
likelihood of 6, log f(Z|6), where the expectation is taken
with respect to Y conditioned on X and the latest estimate
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of 6, 8P);
Q(0|9(1’)) =E{logf(Z\9)|X,6(P>}. (8)

The M-step then finds 0P+, the value of 6 that maxi-
mizes Q(0|6?)) over all possible values of 6:

6Pt = arg max Q(6]6). 9)

This procedure is repeated until the sequence 6,61,
6@,... converges. The EM algorithm is constructed in such
a way that the sequence of 6?)’s converges to the ML estimate
of 0.

Applications of the EM algorithm to estimation problems
in communications systems have appeared a lot in the liter-
ature. Channel estimation [21] and signal detection [22, 23]
are two typical applications of the EM algorithm. Georghi-
ades and Han [22] provide a general study of data sequence
estimation in the presence of random parameters. Zeger and
Kobayashi [23] give a simplified algorithm to detect contin-
uous phase modulated signals in fading channels. In the re-
mainder of this section, we propose three different EM-based
channel estimation and signal detection algorithms by defin-
ing different “complete” and “incomplete” data sets for these
algorithms.

3.2. Algorithm 1: estimating the channel
frequency response

OFDM divides its allocated channel spectrum into several
parallel subchannels that are only subjected to frequency flat
fading. Thus, we only need to estimate the individual H(m),
0 < m < M — 1, separately, which will result in a considerable
reduction in computational complexity. To simplify the ex-
pressions, we omit the subcarrier index m, and simply write
Y, X, and H instead of Y (m), X (m), and H(m).

We assume that the frequency-domain signal X of a given
subcarrier represents a QPSK or 16 QAM signal with constel-
lation size C(= 4 or 16, respectively). We denote the symbols
in the signal constellation by {X;, 1 <i < C}.

Due to the Gaussian noise assumption, the probability
density function (pdf) of Y given X and H is given by

F(YIX,H) =

1 1
- — Y—HXZ}. 1
2mo? exp{ 202 | | (10)

By assuming that all C symbols are equally likely and averag-
ing the conditional pdf of (10) over the variable X, we obtain
the pdf of Y given H as follows:

C
1 1 2
f(Y|H)_zlmexp{—272|Y—HX,| } (11)

i=

Suppose the channel is static over the period of D OFDM
frames. Different values of D can be applied in different ap-
plications depending on how rapidly the channel changes.
We define the received signal vector Y = [Y!,...,YP] and
the transmitted signal vector X = [X',...,XP] for a specific

subcarrier over D frames. Then we call Y and (Y, X) “incom-
plete” and “complete” data, respectively, following the termi-
nology of the EM algorithm. Assuming that additive Gaus-
sian noise is independent from frame to frame for each sub-
carrier, we can write the conditional pdf of the incomplete
data as follows:

D
fYIH,X) =[] f(Y4|H,X?). (12)
d=1
Thus, the log-likelihood function of the incomplete data is

D
log f(Y|H,X) = > log f(Y!|H,X), ~ (13)
d=1
and the log-likelihood function of the complete data is given
by

D

log (X, XIH) = 3 {log o f (V[ XD | (1)
=1

In the conventional ML estimation, we try to find an es-
timate of H that maximizes f(Y|H). But since log f (Y |H),
(11), is not easy to manipulate (summation of several ex-
ponential functions), we resort to the EM algorithm, which
increases the likelihood at each step. Each iterative process
p =0,1,2,... in the EM algorithm for estimating H from Y
consists of the following two steps:

E-step:
QH[H®) = Ex{log f(V,X|H)|Y,HP};  (15)
M-step:

HP = arng?XQ(H|H(p))) (16)

where (see Appendix A)

C D 1 f(Y4|H?,X;)
Q(H|H®P) = ; dzllog{gf(Yle,Xi)}W-
(17)

H*D is the tentative estimate of H directly from (16). The
final (p + 1)st estimate of H, that is, H®*D, will be obtained
through additional manipulation on H»*1, The conditional
pdfs f(Y4|H®P),X;) and f(Y?|H)) can be calculated from
(10) and (11), where X; is the ith signal in the constellation.

The value of H that maximize (17) is found as (see
Appendix B) follows:

¢ D g xy 1!
~ Y H‘D)Xl
gD = [Z > |X1.|2M]

2 M sy
D]

It should be pointed out that the above maximization
problem is actually a weighted least square (LS) problem.
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FIGURE 2: Lowpass filter structure.

In this paper, we assume that L, the delay spread in the
CIR, is known. In practice, however, L is another unknown
parameter. In such a case, we need to perform channel-order
detection and parameter estimation. Alternatively, we may
use some upper bound for L, which may be easier to obtain
than trying to estimate the exact value of L. However, use of
an upper bound of L would degrade the estimation perfor-
mance. One obvious upper bound of L can be the length of
the CP since its length is chosen to be longer than L.

The channel estimate of the form (18) obtained for the M
subcarriers, which we denote H?*)(m),0 < m < M —1, can
be refined by taking advantage of the structure of OFDM sys-
tems and the fact that L is much smaller than M, the number
of subcarriers. We will proceed as follows:

1 ~
R = MW?H(PH), (19)

where we use the notation defined in Section 3.3 for mathe-
matical simplification and Wy, is an M X L matrix:

5 1 '2L_1
—Jim —J]im
1 e M ... e M
W, = .

M-l (LD

—j2n S

_1 e M e e M dse
(20)

Finally, we can obtain the (p+1)st estimate of the channel
frequency response as follows:

HPY = WP, (21)

The above procedure can be simply realized by applying the
IFFT followed by the FFT, as schematically shown in Figure 2.

The values h;pﬂ), L <1 <M — 1, obtained by the IFFT must
be set to zero before performing the FFT. The reason is to
eliminate the estimation noise from paths that do not actu-
ally exist.

The iterative procedure should be terminated as soon as
the difference between H'**! and H'?) is sufficiently small,
since at this point, H”) has presumably converged to the esti-
mate we are seeking. Once the frequency-domain channel re-
sponse H is found, the ML estimate of the transmitted signal

can be obtained by solving

X(m) = argg{nircl | Y (m) - H(m)X(m)|2, 0O<m=<M-1,
(S

(22)
which leads to the final estimates of the transmitted signals
as follows:

Y (m)
H(m)

X(m) = QuantizationjL }, O<m=<M-1. (23)

For a constant modulus signal, for example, a PSK mod-
ulation signal |X(m)|> = A for all m, where A is a positive
constant. Thus, we can simplify (18) as follows:

C

D a1 x.
To+1) — - axr S (Y LHD, X5)
A" = (CDA) 1><LZIEIYX,. FaED) |

(24)

Notice that only the noise variance o2 is used to calcu-
late f(Y9|H'?), X;) in this algorithm. Any other statistical in-
formation about the channel is not necessary. Moreover, in
Section 5, we will show that the accuracy of 2 will not affect
the performance very much. Thus, this algorithm is fairly ro-
bust to the noise variance.

3.3. Algorithm 2: estimating the transmitted signals

In this algorithm, we try to improve the performance of the
detection accuracy of the transmitted signal X¢(m),0 < m <
M —1,1 < d < D, as well as the CIR from the observation
Y9m),0 <m <M-1,1<d < D, using the EM algo-
rithm. To simplify the expressions, we use H, h, X, Y, N to
denote the vectors of frequency-domain CIR, time-domain
CIR, modulated input data, output data, and white Gaus-
sian noise, respectively, where h = [ho,...,h;-1]7, )_(d =
(X4(0),...,X4M — 1)]T, Y4 = [Y40),...,Y4M — 1D]7,
N% = [N9(0),...,N4M — 1)]T, and H = W, h. We also use
the notation X4 = diag(Xd), which denotes an M X M ma-
trix with X (m) as its (m, m) entry and zeros elsewhere. The
system model can be expressed in the vector form for the dth
OFDM frame as follows:

Y? = XYW, h + N (25)

We still assume that the channel is static over the pe-
riod of D frames for generality. To process the chan-
nel estimation algorithm using observed data in all D
frames, we define some variables: X = [(X)7T,...,(X")T]7,
Y = (YD, @) N = (D, )T X =
diag(X), Y = diag(Y), and Wip = [Wy,...,W;]T with D
copies of Wi. With this notation, the system model can be
modified as follows:

Y =XW;ph+N. (26)

The “incomplete” and “complete” data are defined as (Y)
and (Y, h), respectively. Each iterative process p = 0,1,2,...
in the EM algorithm for estimating X from Y consists of the
following two steps:
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E-step:

QX |X®) = Ep{log f(Y,hIX)| Y, X}, (27)
M-step:

X" = argmax Q(X| X7). (28)

In the E-step at the (p + 1)st iteration, we compute the ex-
pected value of log f (Y, h|X), given Y and X (P) the estimates
obtained in the pth iteration. The M-step of the (p + 1)st it-
eration determines the transmitted signal X'?*! that maxi-
mizes Q(X|X?) given X,

After some calculations (see Appendix C), we obtain the
solution of (28):

X = arg max Q(X | X'”")

(p)\H T (29)
= ! () "WLY)
where
Cp = diag(C,...,C)mpxmb; (30)
C = diag (Cos...,Cy-1), (31)
L-1L-1 %
Cp = o2 ((k=m)m/M) (Z(P)(k,n) + h;cp) h;P)), (32)
k=0 n=0
H H
B 5o (M +E’1E{h}) (33)
— 02 a4 b
H_(x(p)yHx(p) -
50 _ (WLD(X ;2 X7 Wip ) L (39

h” and =) are called the estimated posterior mean and
posterior covariance matrix at the pth iteration. Therefore, in

each iteration, the updated estimation of CIR h®) is obtained

automatically as a by-product. After quantizing X 0 H), we

obtain the (p + 1)st estimate

)_((P“) = Quantization{X(PH) }. (35)

The limitation of this algorithm is that the mean E{h}
and the covariance matrix X of time-domain CIR are also as-
sumed to be known. In a practical situation, these channel
statistics may not be known. Fortunately, as we examine (33)
and (34), we find that when ¢2 is small (i.e., SNR is high),
the contribution of ! and 7 'E{h} is so small that we can
eliminate them and still expect similar performance. Further-
more, for an MPSK modulated signal, that is, |X(m)|?> = A
for all m, the signal estimation can be performed by using
only the phase information. Thus, we can simplify (35) to

X0 = Quantization{(XHX(" )WLDW?DY)T}' (36)

Consequently, only multiplication and addition operations
are required. Furthermore, WLDWfD can be calculated and
stored ahead of time. Thus, the computational complexity is
considerably reduced for the high SNR case.

A closer examination of (36) reveals that the simplified
Algorithm 2 is a combination of ML channel estimation as-
suming X'”) = X and ML signal detection assuming h'? = p.
This has been proposed in [17] in a different context. To
conclude, Algorithm 2 is the extension of the iterative ML
channel estimation algorithm when we take advantage of the
channel statistics. The corresponding simplified algorithm is
the same as the iterative ML channel estimation algorithm.

3.4. Algorithm 3: estimating the channel
impulse response

In this section, we try to estimate the time-domain chan-
nel response by applying the parameter estimation algorithm
proposed by Feder and Weinstein [24] for the general esti-
mation problem based on the EM algorithm. We still assume
that the channel is static over the period of D frames for gen-
erality. The system model used here is the same as the previ-
ous algorithm stated in (26). We define A = XWyp which is
a MD X L matrix, and rewrite the system model as follows:

-1
Y =Ah+N= > Ahi+N, (37)
i=0
where A; is the ith column of the matrix A. Note from (37)
that each element of Y, Y(m), consists of L superimposed
signals and AWGN which can be represented by

L-1
Y(m) = > ai(m)hi + N(m),

i=0

0<m<MD-1. (38)

Following [24], a natural choice for the “complete” data Z,,
is defined by decomposing the observed data Y (m) into L
components, that is, Z,, = [Zo(m),...,Z;_1(m)]T, where

Zi(m) = a;(m)h; + N;(m), 0<m <MD — 1. (39)

Here, a;(m) is the (m, i)th entry of the matrix A and N;(m),
0 < i < L — 1, are obtained by arbitrarily decomposing the
total noise N (m) into L components such that

L-1
> Ni(m) = N(m). (40)
i=0

Thus, the relation between the “complete” data Z,, and “in-
complete” data Y (m) is given by

L-1
Y(m) =Y Zim). (41)
i=0

It is convenient to choose the Nj(m) to be statistically in-
dependent Gaussian random variables with zero mean and
variance o7, where

o2 => al. (42)

The EM-based algorithm is used here to obtain an esti-
mation of h that maximizes f(Y|h). The “incomplete” and
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“complete” data for mth element of Y, as stated before, are
(Y(m)) and (Z,,), respectively. We then group all Z,, for all
D OFDM frames and all M subcarriers into a new vector
Z = [Zg,...,Z&D,l]T. Each iterative process p = 0,1,2,...
in the EM algorithm for estimating k from Y consists of the
following two steps:

(i) E-step:

Q(Z|h?) = Ez{log f(ZIh)| Y, h'P}, (43)
(ii) M-step:

K2 = arg m,ng(zlh("))- (44)

In the E-step at the (p+1)st iteration, we compute the ex-

pected log-likelihood function log f(Z|h), given Y and h(P )
the estimates obtained in the pth iteration. The M-step of the
(p +1)stiteration determines the transmitted CIR h(‘p U that
maximizes Q(Zlh(p)).

After some calculation (see Appendix D), we obtain the
solution of (44):

MD- Z(pﬂ( )

1
hY = , 0<i<L-1, (45
MD = ai(m) ! (45)

where

L-1
P(m) = 2P (m) + /%(Y(m) -3 z}”(m)), (46)
j=0

ﬁ,‘ > 0, (47)

L—-1
Z ﬁi = 1)
i=0

P (m) = ai(m)h?. (48)

Observe that f3;, the ith decomposition factor, can be ar-
bitrarily selected with the constraint (47) due to the arbitrary
selection of the independent noise components N;(m). Dif-
ferent sets of f3; will give different system performance and
we will discuss the selection of f3; with simulation results in
the next section.

Note that the elements of A = XW|p, are dependent on
the transmitted signals X. However, we do not know all these
transmitted signals in the OFDM frames except for some pi-
lot symbols. Thus, in order to proceed, we adopt the pth esti-
mates X’ instead of the actual values (which are unknown)
to calculate the matrix A. In this case, the elements of X ()
are given by

Y (m)

(p) — - N
X'P)(m) Quantlzat10n<Wmh(P)

), 0<m=<MD -1,

(49)
where W,,, is the (m + 1)st row of matrix Wyp.

Notice that we do not need any information about the
channel in this algorithm except the choice of the set 3;. How-
ever, we can always choose f3; = 1/L which will give near opti-
mum performance as demonstrated in the simulation results.
Thus, this algorithm is also very robust.

3.5. |Initialization

As is known from the general convergence property of the
EM algorithm, there is no guarantee that the iterative steps
converge to the global maximum. For a likelihood function
with multiple local maxima, the convergence point may be
one of these local maxima, depending on the initial esti-
mates H?, X,, and h(o). Therefore, we propose to use pilot
symbols distributed at certain locations in the OFDM time-
frequency lattices to find appropriate initial values of H®
Xy, and h% if there are pilot symbols inserted in the current
OFDM frame. On the other hand, if there is no pilot sym-
bol, we just set the initial channel estimates of the current
OFDM frame as the final channel estimates of the previous
OFDM frame assuming the channel is changing slowly. This
is more likely to lead us to the true maximum point, as can
be observed in the numerical results. Another benefit of this
selection of the initial estimates of the CIR is that we do not
need to do time-domain filtering or interpolation. Thus, we
can considerably reduce the detection latency since we can
carry out channel estimation and signal detection procedures
as soon as we have received signals for each OFDM frame.
For those OFDM frames with pilot symbols, we define
the pilot position set S = {s},...,s|s;}. The corresponding
FFT matrix only with those rows belonging to S is denoted
as Ws. Thus, we use the simple LS algorithm to obtain the
channel frequency response [8] at each pilot position by

Y (si)
X(si)’

Then, we apply the IFFT on H(s;),..., H'

A0 (s;) = 0<i<ISl. (50)

9(s)s/) and obtain

the initial CIR by
1 ~
W = wiE?, (51)
where H(O) = [HO(s),..., HO(s5)]". Next, we apply the

FFT on hw) and obtain the initial estimates of the channel
frequency response for all subcarriers as H” = w. A", Fi-
nally, the initial estimates of the transmitted signals are ob-
tained from

Y (m)
HO) (m)

XO(m) = Quantization{ }, O<m=<M-1.

(52)

4. CRAMER-RAO LOWER BOUND

The CRLB is an important criterion to evaluate how good
any unbiased estimator can be since it provides the MMSE
bound among all unbiased estimators. In this section, we will
derive the CRLB for the CIR in OFDM systems. In Section 5,
we will show the performance of the three proposed EM-
based channel estimation algorithms and compare it to the
CRLB. We note that in [25], Morelli and Mengali discuss the
CRLB for channel estimators in OFDM, but they only treat
PSK modulation in their discussion. We will discuss below
the modified and averaged CRLB for the CIR with noncon-
stant modulus modulation.
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The CRLB for the channel estimation is given by (see
Appendix E)

CRLB(h) = trace (I"'(h)), (53)
where
1 o H
I(h) = 5 5Wi! dZI (X4)"XIW. (54)

Clearly, the CRLB changes from a set of D frames to another
due to the different sets of transmitted signals. We define the
average CRLB [26] denoted CRLB(h) as follows:

CRLB(h) = E{ CRLB(h)}, (55)

where the expectation is carried out with respect to the trans-
mitted data X in D frames.

Another CRLB is called the modified CRLB [27], denoted
by MCRB. It is defined as

L-1 1

MCRB(h) = T
,;') E{1(0)}

3 2Lo?

- ME{ 3 |xe)?}
_ 2Lo? 1

- MD E{|Xd|2}'

(56)

We note that we use M to denote the number of subcarriers
in this paper. It also could be the number of effective sub-
carriers which exclude the null subcarriers as the guard fre-
quency band. Of course, in the presence of null subcarriers,
we have to make some modifications on Wy, by deleting those
rows corresponding to the null subcarriers.

It is easy to show that CRLB(h) = MCRB(h) by sim-
ply applying the Cauchy-Schwarz inequality. This is equiv-
alent to saying that the CRLB(h) is always tighter than the
MCRB(h) [27]. We will discuss the specific CRLB for con-
stant and nonconstant modulus signals in the following.

4.1. CRLB for constant modulus signals

For constant modulus signals, |X9(m)|* = A for all d’s and
m’s (for instance, PSK modulated signals). Thus, we can sim-
plify (53) as follows:

2Lo*?
MDA’

CRLB(h) = (57)

It is obvious that the above CRLB is inversely propor-
tional to the number of observed OFDM frames D, num-
ber of subcarriers M, and SNR A/2¢2. Note that CRLBs of
different frames for OFDM channel estimation are constant
and do not depend on the channel response H or h. Conse-
quently, this CRLB can be applied to any multipath fading
channel. Another important observation is that

CRLB(h) = CRLB(h) = MCRB(h) (58)

in the case of constant modulus signals.

107!

MSE

Ep/No

—-o- MCRB
—— Numerical evaluation

FIGURE 3: Analytical and numerical evaluation of MCRB(h) with 16
QAM modulated signals for each subcarrier.

4.2. CRLBfor nonconstant modulus signals

For nonconstant modulus signals, | X 4(m)|? is no longer con-
stant (e.g., 16 QAM modulated signals). Thus, the CRLB in
this case changes from D frames to another D frames. In ad-
dition, it is not straightforward to obtain an explicit expres-
sion for the CRLB(k) because I(h) can no longer be easily in-
verted. However, the MCRB(h) can be computed assuming
the transmitted signals are independent. This results in

E{(x*)"X!} = Ay, (59)

Thus, the MCRB(h) can be calculated as follows:

2Lg?

MCRB(h) = v

(60)

which is the same as the constant modulus CRLB in the case
of the same average signal energy A. Figure 3 shows the the-
oretical curve of MCRB(h) and the numerically evaluated
curve of 16 QAM signals. These two curves agree and justify
the use of MCRB(h) as a performance measure for unbiased
channel estimation algorithms in OFDM systems, both for
constant modulus and nonconstant modulus signals.

5. SIMULATION AND DISCUSSION

We constructed an OFDM simulation model, which is simi-
lar to the specifications of 802.11a, to demonstrate the valid-
ity and effectiveness of the EM-based channel estimation and
signal detection algorithms. The entire channel bandwidth
is 800 kHz, and is divided into 64 subcarriers (or tones). To
make the tones orthogonal to each other, the symbol du-
ration is chosen as 80 microseconds. An additional 20 mi-
croseconds CP (N, = 16) is used to provide protection
from IFI and ICI due to channel delay spread. Thus, the total
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OFDM frame length is T; = 100 microseconds and sub-
channel symbol rate is 10 kbaud. The modulation scheme
used in the system is QPSK. One OFDM frame out of 8
OFDM frames (N; = 8) has pilot symbols and 8 pilot sym-
bols (Ny = 8) are inserted into such a frame with equal
space, where N; and Ny denote the pilot spacing along the
frequency and time domains, respectively. Thus, the over-
head caused by pilot symbols is only 1/64. The simulated sys-
tem can transmit uncoded data at 1.28 Mbps. The maximum
Doppler frequency f; is chosen to be 100 Hz, which implies
faTs = 0.01. The CIRs used in the simulations are given by

hi(n) = 0.8ap0(n) + 0.60:6(n — 1),

4
ho(n) = Ciz S ek apd(n — k), o
k=0

7
h3(n) = S > e My d(n —k),
G5

where C, = /Si_ge 2k and C; = /3/_, ek are the nor-

malization constants and o, 0 < k < 7, are independent
complex-valued Gaussian random variables with unit vari-
ance, which vary in time according to the Doppler frequency.
The amplitude of ay are Rayleigh distributed. This is a con-
ventional exponential decay multipath channel model. We

set the stopping criterion as A" — h'|12 < 1073,

5.1. Simulation results of Algorithm 1

The channel model we use to test the performance of Al-
gorithm 1 is h3(n). Since we normalize the average chan-
nel power, the BER performance of different channel mod-
els should be the same. However, the MSE is proportional
to the channel length L as shown in (57). For those OFDM
frames containing pilot symbols, the initial estimate of CIR is
obtained by using these 8 equally spaced pilot symbols. For
those OFDM frames without pilot symbols, the initial esti-
mate of CIR comes from the channel estimate of the previous
OFDM frame.

From Figures 4 and 5, we observe that the EM-based Al-
gorithm 1 reduces the BER and MSE simultaneously. Fur-
thermore, the BER can achieve performance close to the
known channel case and the MSE can almost achieve the
CRLB in the high SNR region. For example, the MSE is very
close to the CRLB when E;/Ny > 14 dB, which is a very fa-
vorable result since we only sacrifice 1/64 spectral efficiency
ignoring the effect caused by the CP. One drawback of the
algorithm is that the BER cannot be improved from the ini-
tial estimate when SNR is low. It is clear from Figure 6 that
the algorithm needs more iterations in the low SNR region
than in the high SNR region for the iterative procedure to
converge. Indeed, for low SNR case, the BER may increase
after a few iterations, while the MSE still decreases from the
initial value. That is because the EM algorithm is used to ob-
tain the true values of the CIR and better estimates of CIR
(less MSE) do not necessarily lead to lower BER. Therefore,
this algorithm is practical only when SNR is large. We see that
the number of necessary iterations decreases rapidly as E,/Ny

10°

107!

BER

1072

1073
E,/No

— Perfect CIR
—— Initial estimation
—o— Algorithm 1

FIGURE 4: BER versus Ep/Nj in the 8-path channel model using Al-
gorithm 1.
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F1Gure 5: MSE versus E;/Nj in the 8-path channel model using Al-
gorithm 1.

increases. When E,/Ny = 20dB, for instance, only three or
four iterations are needed to achieve the convergence in the
8-path channel. It turns out that the number of iterations
does not depend on the channel delay spread L, which is not
illustrated here.

For this algorithm, we need to know the Gaussian noise
variance 02 in order to compute f;(Y¢|H®)(m)) in each iter-
ation. In practice, the noise variance is not known directly at
the receiver and the error in the noise variance estimate will
degrade channel estimation accuracy. We performed such a
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F1GURE 6: The number of iterations versus E,/Nj in the 8-path chan-
nel model using Algorithm 1.
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FiGure 7: The effect of noise variance error on the system perfor-
mance. The exact E,/N, is 10 dB.

simulation to illustrate this effect. This is shown in Figure 7.
The exact Ep/Nj of the system is 10 dB and the horizontal axis
is the E;/Ny we adopted in the EM-based algorithm. From
this figure, it is seen that the effect of noise variance error is
relatively small on the system performance (BER) when the
noise variance error is within —2 dB and 3 dB. Therefore, we
can use the following method to estimate the Gaussian noise
variance on the fly with only negligible effect on the system
performance:

M
6= = > |[¥(m) ~ HemX om)]* (62)
m=0

10°
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0 2 4 6 8 10 12 14 16 18 20
Eu/Ny

— Perfect CIR
—v— Initial estimation

—o— Algorithm 2
—e— Simplified algorithm 2

FIGURE 8: BER versus E,/Nj in the 8-path channel model using Al-
gorithm 2.
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FIGURE 9: MSE versus E;/Nj in the 8-path channel model using Al-
gorithm 2.

The E,/Ny computed by the above equation is about 11 dB by
using the initial estimates of the CIR and transmitted signals.
In this way, the performance degradation caused by using the
estimated noise variance would be relatively small.

5.2. Simulation results of Algorithm 2

The channel model we use to test the performance of Algo-
rithm 2 is still i3(n). Figure 8 shows the BER performance of
EM-based Algorithm 2 and Figure 9 displays the correspond-
ing MSE. The initial channel estimates are obtained using
the same method stated above. In the EM-based Algorithm
2, we use the estimate of the previous OFDM frame as the
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FiGure 10: The number of iterations versus E,/Np in the 8-path
channel model using Algorithm 2.

initial value for the current OFDM frame if there are no pi-
lot symbols in the current frame. From these two figures, we
can see that the EM-based Algorithm 2 can also achieve al-
most as good performance as the ideal case in terms of BER,
where the channel characteristics are completely known and
faTs = 0.01, that is, the channel does not change very fast.
Furthermore, the MSE of the EM-based channel estimation
2 converges to the CRLB when SNR becomes large. Another
interesting result obtained from our simulation is that the
performance degradation is quite small when we use the sim-
plified Algorithm 2 that does not use the channel statistics.
Degradation occurs only when the E;/Nj is less than 10 dB.
Thus, this algorithm is well suited in practical situations.

In Figure 10, we plot the number of iterations required
for the estimates X » to converge versus E,/Ny at the receiver
input. We see that the numbers of necessary iterations for
both the simplified and nonsimplified algorithms are rela-
tively small for a broad range of SNR. And the simplified al-
gorithm causes only a very small increase in the number of it-
erations required to converge. This demonstrates that the al-
gorithm can achieve a substantial performance improvement
with only a modest increase in the computational complexity
(details are in Section 5.5). This is due to the additional com-
putation for the iterations. Furthermore, it turns out that the
number of iterations does not depend on the channel length
L, which is the same as Algorithm 1. Here, however, there are
fewer iterations compared to Algorithm 1.

5.3. Simulation results of Algorithm 3

The channel model we use to test the performance BER and
MSE of Algorithm 3 is also h3(n). However, we tested all three
channel models to study the effect of the number of iterations
needed to converge. Figure 11 shows the BER performance of
Algorithm 3 and Figure 12 displays the corresponding MSE.

Ey/No

— Perfect CIR
—v— Initial estimation
—o— Algorithm 3

FiGureg 11: BER versus E;/Nj in the 8-path channel model using
Algorithm 3.
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FIGURE 12: MSE versus E,/Ny in the 8-path channel model using
Algorithm 3.

Similar conclusions can be drawn about the performance of
BER and MSE as with Algorithms 1 and 2.

Figure 13 shows the relationship between the number of
iterations needed for convergence versus the channel delay
spread L for different E,/Ny. From this figure, we observe that
the number of iterations decreases when E,/Ny increases; the
number of iterations increases when the channel delay spread
increases under the same E,/Ny. Furthermore, we see that the
number of iterations is almost proportional to the channel
delay spread L; for example, when L doubles, the number of
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FIGURE 13: The number of iterations versus E,/Np in the 8-path
channel model using Algorithm 3.

100

MSE

104 L L L L L L L L L

Ey/No

~v- Scheme 3
— CRLB

—o— Scheme 1
-¢- Scheme 2

F1GURE 14: MSE versus E;,/Nj in the 8-path model using Algorithm
3. Three different schemes of the set 3; are compared.

iterations approximately doubles. Therefore, this algorithm
is more suitable for the case of small channel delay spread.
Figure 14 shows the MSEs using different sets of f3; over
the 8-path channel. Scheme 1 corresponds to §; = 1/8.
Scheme 2 corresponds to f; = E{h?} = e7/Cs. Scheme 3
corresponds to 3; equal to the energy of ith path obtained in
each iteration. It changes from iteration to iteration. From
this figure, we find that Scheme 1 has the best MSE perfor-
mance and the other two schemes have larger MSE, especially
in the large Ep/N, region. Furthermore, Scheme 1 is sim-
pler than the other two since it only needs to know L, while
Scheme 2 has to know the average energy of each path of the

channel and Scheme 3 has additional computation in each
iteration. Based on these preliminary simulations, it appears
that Scheme 1 has the best performance without additional
knowledge of the channel and additional computation.

5.4. Performance in different time-varying channels

Since the three algorithms show similar performance pat-
terns, we choose Algorithm 2 to display the channel esti-
mation performance in various time-varying channels with
faT = 0.01,0.03, and 0.05, respectively. Some interesting
observations can be noted from Figures 15 and 16. As f;T
increases, that is, the channel varies faster, the performance
of our algorithms degrades. However, the degradation is
not so significant, especially when f;T < 0.03. The pi-
lot pattern definitely affects the channel estimation and sys-
tem performance [10]. However, our algorithms show sim-
ilar performance with different number of pilot symbols in
the frequency domain as long as Ny = M/L. Most per-
formance degradation comes from the time-varying nature
of the channel. For those fast time-varying channels (e.g.,
faT = 0.05), reducing the pilot spacing along the time do-
main will improve the system performance as well as chan-
nel estimation accuracy. But, for slowly and moderately time-
varying channels (e.g., f47 = 0.01 and 0.03), it does not help
much as our algorithms have already achieved near-optimal
performance. Thus, our algorithms are able to achieve near-
optimal performance by using very few pilot symbols both
for slowly and fast time-varying channels.

5.5. Comparison with existing methods

In order to compare the performance with existing meth-
ods, we choose the method with MMSE in the frequency
domain [8] and linear interpolation (LI) in the time do-
main [7] (MMSE + LI) as an example, since MMSE esti-
mation in the frequency domain demonstrates a good and
robust performance. The reason to use LI in the time do-
main is to make the demodulation latency and necessary
memory requirement as small as possible. For example, if
N; = 8, the largest demodulation latency is 7 OFDM frames’
period and 9 OFDM frames’ data must be stored in the
memory. Comparing Figure 17 with Figure 15 and Figure 18
with Figure 16, it is obvious that MMSE + LI performs much
worse under the same channel model and pilot pattern, es-
pecially in the high SNR region. Our algorithms are CRLB
achievable, whereas MMSE + LI is not. Furthermore, there
is an error floor for MSE in fast time-varying channels us-
ing MMSE + LI. In order to remove it, more pilot symbols
in the time domain must be inserted. This will reduce the
system spectrum efficiency. Another advantage of our algo-
rithms is that they do not have demodulation latency except
the processing time because our algorithms are based on the
received signals of the current OFDM frame. MMSE + LI
or other pilot-symbols-assisted channel estimation methods
have some extent of demodulation latency as long as they ap-
ply some kinds of time-domain interpolation or filtering.
One major disadvantage of our algorithms is the large
computational complexity due to the iterative nature. We
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FiGure 15: BRE through time-varying channels with different f;T

of Algorithm 2.
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FiGure 16: MSE of channel estimates through time-varying chan-
nels with different f;T of Algorithm 2.

select Ny = 8, Ny = 8, and L = 8 as the correspond-
ing system parameters. MMSE + LI needs M/8 + 2 complex-
variable multiplications per subcarrier. Algorithms 1, 2, and
3 need 17 + 2log, M, 10 + log, M, and 26 +log, M complex-
variable multiplications per subcarrier per iteration. Obvi-
ously, the complexity of our algorithms is larger than the

FiGURrE 18: MSE of channel estimates through time-varying chan-
nels with different f;T of MMSE + LI

simple MMSE + LI method shown in Figure 19, especially
when SNR is small. Among the three EM-based algorithms,
Algorithm 2 has the least complexity and Algorithm 3 has
the most. This suggests that our algorithms are suitable for
a high SNR environment with comparable complexity as ex-
isting methods, while achieving much better performance.
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FiGure 19: Complexity comparison measured by complex-variable
multiplications per subcarrier.

6. CONCLUSION

In this paper, we proposed three EM-based iterative algo-
rithms to efficiently estimate the CIR and demodulate the
transmitted signals in an OFDM system. By defining differ-
ent “complete” data sets for the EM algorithm, we are led to
the three algorithms: (1) estimating the frequency response
of the channel; (2) estimating the transmitted signals; and
(3) estimating the CIR. Making use of a modest number of
pilot symbols or the channel estimate of the previous OFDM
frame to obtain the initial estimate, these algorithms can
achieve near-optimal estimates after a few iterations. We also
derived the CRLB and MCRB for the channel estimate for
both constant and nonconstant modulus signals. Advantages
and disadvantages of each algorithm have been discussed and
illustrated by means of simulation. The simulations reveal
that the first two (estimating the frequency response and
demodulating the transmitted signals directly) converge at
a rate independent of the multipath spread. Bypassing the
channel estimate by demodulating the transmitted signals di-
rectly (Algorithm 2) is the fastest converging procedure and,
thus, has the smallest overall computational burden. Algo-
rithm 2 has the least complexity among the three and is com-
parable with MMSE + LI. However, the performance is much
better than that of MMSE + LI, especially in the high SNR
region. All three algorithms are able to work in a fast fad-
ing environment. These algorithms can easily be extended to
estimate multiple-input multiple-output (MIMO) channels
in MIMO-OFDM systems. Our results indicate that the per-
formance is acceptable only when E;/Nj is larger than 8 dB.
In the small SNR region, these algorithms need to be uti-
lized with channel coding schemes to further improve per-
formance.

APPENDICES
A. DERIVATION OF (17)

Q(H|H(P))
= E{log f(Y,X|H)|Y,H"}
C D

if(Yd|H,Xi)}f(Xi | Y4, HP)

Il
[]
2
&

g»—w

i=1 d=1
S Y4|H®P),X;) f(X;|HP)
=Zlgllog{éf(Yd|H,Xi)}f( LUBHLL
C D Y4 H(p),X,‘
"2 %bg{éf(Yd'H’Xf)}W’

(A1)

where we assume X;, 1 < i < C, and H®) are independent
random variables.

B. DERIVATION OF (18)

arg max Q(H|H"?)

f(yd |H(P),X,-)
f(Yd|H®P)
2 f (Y[ HWP), X))
f(Y4|H®P)
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= argmax log {f(Y¢|H,X;)}

T
L
0y
L

| Y4 - X;H|

Ma
Mo

= argmin
H *

i

L
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L

(B.1)

Then differentiating the last expression with respect to H,
and setting it to zero, we have

C D 2f(Yd|H(P),X,-) -1
= |:Z Z |Xz| f(Yd|H(P)) :|

S yay S (Y HD, X))
|22 Sty |

(B.2)

C. DERIVATION OF ALGORITHM 2

Equation (27) can be rewritten as follows:
Q| X7 = [ [log f(¥,hX)]f (] Y. XP)dh, (.1

where the log-likelihood function can be expressed as fol-
lows:

log f(Y, h|X) = log f(Y|h,X) +log f (h|X). (C2)

The conditional pdf f(h|Y, X)) is used in (C.1) to take
the conditional expectation over the unknown parameters h.
We assume that i and X are independent of each other. This
is a reasonable assumption since the CIR does not depend
on the transmitted signal in general. Thus, for the purpose
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of maximization in (28), the Q function of (C.1) can be re-
placed by

QUX|X) o< [ [log f(Y I X)1f (B Y,X'P)dh  (C3)
The conditional pdf f(h|Y,X (P)) can be calculated by

FY|RXP)f(h|XP)
FY[x,)

_ [ XP) f(h)
o f]x®)

f(h|Y,xP) =
(C4)

>

where we use the assumption that 4 and X?) are independent
of each other. Thus, (C.3) can be further reduced to

QUXIX'P) o [ [log f(Y1X))f (¥ X'P) f (1,
(C.5)

since f(Y|X (P)y does not depend on X. Hence, it can be dis-
carded in the last expression.

We now compute the above Q(X IX(P)) for a fading
channel with AWGN. The conditional pdfs f(Y|h,X) and
f(Y|h, X'?)) take the forms

Y- XWphl[*
202 ’

(XYl X) = (2m02) M exp{

_x® 2
f(X|h,X(p)):(2n02)_MDexp{ _ [|[Y — XPIWphl| },

202
(C.6)

where o2 is the variance of both real and imaginary compo-
nents of complex-valued Gaussian white noise. The pdf f(h)
is given by

f= exp | 5 (0~ B(h)) "2 (- B
(C.7)

where E{h} and X are the mean and covariance matrix of the
complex-valued CIR vector h. By omitting the constant term
and the scaling factor, (C.3) can be expressed as follows:

1
(2m)L| detX|

QUXIX) o< = [ 1Y~ XWiphl[*f (] Y. X7 dh, (C.8)

and f(h|Y,X (p )) can be represented as follows:

(C9)

where K; and K, are constants. h(P ) and ) are called the
estimated posterior mean and posterior covariance matrix at

the pth iteration and are given by

B = 0 (W (XP)"y/0? + 2 ER}),

. o (Ca0)
=) = (W, (XP) " XPW;p/o? +271) .

Maximizing (C.8) is equivalent to minimizing the dis-
tance

argmax Q(X | X7)) = argmin E{[lY - XWyphl[*| v, X7},
R R (C.11)

This minimization can be further simplified as follows:

maxE{h"E + F"h - h"Gh|Y, X7}, (C.12)

where
F = WXy, (C.13)
G = WELXHXW . (C.14)

Since the distribution of random vector Y given h and
X?) is Gaussian with mean h(p ) and covariance matrix £,
it is easy to compute

E{h"E+F'h| Y, XV} = (W?)"F+ FTR?.  (C.15)
Moreover, all entries of matrix G are given in terms of the

signal energies, that is, |X(0)[%,...,|X(M — 1)|%. Thus, we
can compute the third part of (C.12) as follows:

D M-1
E{RGh| Y, xP} =S S C,|X4m)|>,  (C.16)
d=1 m=0

where C,;, 0 < m < M — 1, are real values dependent on h(P)
and Z») and can be obtained by the following equation:

L-1L-1
: *
Cn=3 > eiznltkommmn (Z(P)(k, n) +h,(f’) hff’)). (C.17)
k=0 n=0

In order to calculate Q(X|X?) completely with respect
to X, we write (C.13) as follows:

F = WHLYx*. (C.18)
Thus, maximizing Q(X|X p) is the same as
m}gx{ (WY WH YX* + XTYAW, phP
N (C.19)

D M-1
-3S culxtom .
d=1 m=0
Equation (C.19) can be solved as follows:

~ T
X" = argmaxQ(x|X7) = G5! (1) "WiLY)
- (C.20)
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where Cp = diag(C,...,C)upxmp and C = diag(C%,...,
Cii_1)- After quantizing X o ), we obtain the (p + 1)st es-
timate

XD = Quantization{X(pH)}. (C.21)

D. DERIVATION OF ALGORITHM 3

Equation (43) can be rewritten as follows:

Q(z|K?)
MD— —
1
= K - { Z Z 57 11Zim) —ai(m)hi||2|Y,h(p)}
m=0 i=0 <%i
MD-1 L-1 1 () )
=K, - Z" (m) = ai(m)hil[",

02i

m=0 i

(D.1)
where K; and K; are some constants independent of i, and
2P (m) = E{Zi(m) | Y (m), hP}. (D.2)

Here we use the fact that Z;(m) only depends on Y (m). Since
Zi(m) and Y (m) are jointly Gaussian distributed and satisfy
(41), then it is easy to obtain

1
2P (m) = ZP (m) + p; > (Y(m) Zz}f’)(m)), (D.3)
0

where
(p) _ (p)
(m) = ai(m)h;", (D.4)

and p; is the cross-correlation between Z;(m) and Y (m) given
1), which is

__ E{Ni(m)N(m)} _0i
\/Var(Nl-(m)) Var (N(m)) 9

(D.5)

Substituting (D.5) into (D.3), we obtain

L-1
29 (m) = 22 (m) +ﬁi(y<m> -3 zj.f’)(m)>, (D.6)
j=0

where ; = 07/0? are real-valued scalars satisfying

L-1
Z ﬁi =1, /31' > 0. (D7)
i=0

After obtaining Zf (m),0 < i< L—1,for each data index
m, we need to maximize Q(Z| h(p )), which is the same as

) MD-1 L1
argmm > > ||Z Y(m) — ai(m)h; H (D.8)
= m=0 i=0

The above minimization problem can be separated into L
simple minimization problems by just exchanging the order

of the two summations. These L minimization problems are

MD-1
[ —argmin 3’ 129 (m) — ai(m)hil|, 0<i<L-—1,
tom=0
. (D.9)
which can be solved by
MD-1 5(p)
(p+n) _ 1 Zi~ (m) ,
h; , 0<i<L-1 D.10
! ~ MD = ai(m) ! ( )

E. DERIVATION OF CRLB

In [25], the authors derive the CRLB by separating the com-
plex vector A into real and imaginary parts. We will simplify
the derivation by applying derivatives with respect to the
complex vector itself. Recall the OFDM system model can be
represented as in (26), where we use the same notation as in
Section 3.3. We again assume for generality that the channel
is static over the period of D frames. We will derive a CRLB
by using all the data from the D frames. The parameter vec-
tor here is obviously 8 = h. The CRLB gives a lower bound
[28] for the variance of an unbiased estimate:

CRLB(h) =I'(Ww O=<i<L-1,  (E1)

where I(h) is the Fisher information matrix

a H
1<h>=—§ og f(r 1) <  log f(X1)) } (E2)

Following (26), we have the conditional pdf of Y given h:

F(YIR) = Ly = xwiphlP], (63)

1
e
(2r62)™P 2
where we assume the data matrix X is known. Therefore, the
pdf is not conditioned on X. After differentiating the loga-
rithm of (E.3) with respect to h, we obtain
1

S (X = Wi LXH)XW;p]".

s log f(Y|h) =

g (E.4)

Then the Fisher information matrix is obtained as follows:

H
I(h) = {alogf(Ylh)< logf(Ylh)) }

:E{z [ - BWELXT )XW ]

212[(YH Wwh XH)XWLD]} (E.5)

= —W LXHXWp
1 D

H
=Wl > (x4 xXwWy.
d=1

The CRLB for the CIR of the ith tap is I~ (/). We define the
CRLB for the overall CIR as follows:

L-1
D" CRLB (h;) = trace (I"'(h)).

i=0

CRLB(h) = (E.6)



1476

EURASIP Journal on Applied Signal Processing

ACKNOWLEDGMENT

This work has been supported, in part, by Grants from
the New Jersey Center for Wireless Telecommunications
(NJCWT), the National Science Foundation (NSF), Mit-
subishi Electric Research Labs, Murray Hill, NJ, and Mi-
crosoft Fellowship Program.

REFERENCES

(1]

(2]

(11]

[12]

(14]

L. J. Cimini Jr., “Analysis and simulation of a digital mo-
bile channel using orthogonal frequency division multiplex-
ing,” IEEE Trans. Communications, vol. 33, no. 7, pp. 665-675,
1985.

S. B. Weinstein and P. M. Ebert, “Data transmission by
frequency-division multiplexing using the discrete Fourier
transform,” [EEE Trans. Communications, vol. 19, no. 5, pp.
628-634, 1971.

H. Sari, G. Karam, and 1. Jeanclaude, “Transmission tech-
niques for digital terrestrial TV broadcasting,” IEEE Commu-
nications Magazine, vol. 33, no. 2, pp. 100-109, 1995.

Y. Li, L. J. Cimini Jr., and N. R. Sollenberger, “Robust chan-
nel estimation for OFDM systems with rapid dispersive fad-
ing channels,” IEEE Trans. Communications, vol. 46, no. 7, pp.
902-915, 1998.

J. K. Moon and S. I. Choi, “Performance of channel estimation
methods for OFDM systems in a multipath fading channels,”
IEEE Transactions on Consumer Electronics, vol. 46, no. 1, pp.
161-170, 2000.

P. Hoeher, S. Kaiser, and P. Robertson, “Two-dimensional
pilot-symbol-aided channel estimation by Wiener filtering,”
in Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing
(ICASSP °97), vol. 3, pp. 1845-1848, Munich, Germany, April
1997.

F. Said and A. H. Aghvami, “Linear two dimensional pilot
assisted channel estimation for OFDM systems,” in Proc. 6th
IEE Conference on Telecommunications, pp. 32-36, Edinburgh,
UK, March—April 1998.

J.-J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. O.
Borjesson, “On channel estimation in OFDM systems,” in
Proc. 45th IEEE Vehicular Technology Conference (VIC ’95),
vol. 2, pp. 815-819, Chicago, IlI, USA, July 1995.

O. Edfors, M. Sandell, J.-J. van de Beek, S. K. Wilson, and P. O.
Borjesson, “OFDM channel estimation by singular value de-
composition,” IEEE Trans. Communications, vol. 46, no. 7, pp.
931-939, 1998.

R. Nilsson, O. Edfors, M. Sandell, and P. O. Borjesson, “An
analysis of two-dimensional pilot-symbol assisted modula-
tion for OFDM,” in Proc. IEEE International Conference on
Personal Wireless Communications (ICPWC ’97), pp. 71-74,
Mumbai, India, December 1997.

B. Yang, K. B. Letaief, R. S. Cheng, and Z. Cao, “Channel esti-
mation for OFDM transmission in multipath fading channels
based on parametric channel modeling,” IEEE Trans. Com-
munications, vol. 49, no. 3, pp. 467—479, 2001.

R. W. Heath Jr. and G. B. Giannakis, “Exploiting input cy-
clostationarity for blind channel identification in OFDM sys-
tems,” IEEE Trans. Signal Processing, vol. 47, no. 3, pp. 848—
856, 1999.

B. Muquet and M. de Courville, “Blind and semi-blind chan-
nel identification methods using second order statistics for
OFDM systems,” in Proc. IEEE Int. Conf. Acoustics, Speech, Sig-
nal Processing (ICASSP °99), vol. 5, pp. 2745-2748, Phoenix,
Ariz, USA, March 1999.

X. Caiand A. N. Akansu, “A subspace method for blind chan-
nel identification in OFDM systems,” in Proc. IEEE Interna-
tional Conference on Communications (ICC ’00), vol. 2, pp.
929-933, New Orleans, La, USA, June 2000.

[15] X. Zhuang, Z. Ding, and A. L. Swindlehurtst, “A statistical
subspace method for blind channel identification in OFDM
communications,” in Proc. IEEE Int. Conf. Acoustics, Speech,
Signal Processing (ICASSP ’00), vol. 5, pp. 2493-2496, Istan-
bul, Turkey, June 2000.

[16] C. Liand S. Roy, “Subspace based blind channel estimation
for OFDM by exploiting virtual carrier,” in Proc. IEEE Global
Telecommunications Conference (GLOBECOM °01), vol. 1, pp.
295-299, San Antonio, Tex, USA, November 2001.

[17] P. Chen and H. Kobayashi, “Maximum likelihood channel
estimation and signal detection for OFDM systems,” in Proc.
IEEE International Conference on Communications (ICC °02),
vol. 3, pp. 1640-1645, New York, NY, USA, April-May 2002.

[18] S.Zhou and G. B. Giannakis, “Finite-alphabet based channel
estimation for OFDM and related multicarrier systems,” IEEE
Trans. Communications, vol. 49, no. 8, pp. 1402-1414, 2001.

[19] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum
likelihood from incomplete data via the EM algorithm,” Jour-
nal of the Royal Statistical Society (B), vol. 39, no. 1, pp. 1-38,
1977.

[20] T. K. Moon, “The expectation-maximization algorithm,”
IEEE Signal Processing Magazine, vol. 13, no. 6, pp. 47-60,
1996.

[21] H. Zamiri-Jafarian and S. Pasupathy, “EM-based recursive es-
timation of channel parameters,” IEEE Trans. Communica-
tions, vol. 47, no. 9, pp. 1297-1302, 1999.

[22] C.N. Georghiades and J. C. Han, “Sequence estimation in the
presence of random parameters via the EM algorithm,” IEEE
Trans. Communications, vol. 45, no. 3, pp. 300-308, 1997.

[23] L. M. Zeger and H. Kobayashi, “A simplified EM algorithm
for detection of CPM signals in a fading multipath channel,”
Wireless Networks, vol. 8, no. 6, pp. 649-658, 2002.

[24] M. Feder and E. Weinstein, “Parameter estimation of super-
imposed signals using the EM algorithm,” IEEE Trans. Acous-
tics, Speech, and Signal Processing, vol. 36, no. 4, pp. 477-489,
1988.

[25] M. Morelli and U. Mengali, “A comparison of pilot-aided
channel estimation methods for OFDM systems,”  IEEE
Trans. Signal Processing, vol. 49, no. 12, pp. 3065-3073, 2001.

[26] R. W. Miller and C. B. Chang, “A modified Cramér-Rao
bound and its applications (Corresp.),” IEEE Transactions on
Information Theory, vol. 24, no. 3, pp. 398—400, 1978.

[27] A.N. D’Andrea, U. Mengali, and R. Reggiannini, “The mod-
ified Cramer-Rao bound and its application to synchroniza-
tion problems,” IEEE Trans. Communications, vol. 42, no. 234,
pp. 1391-1399, 1994

[28] S. M. Kay, Fundamentals of Statistical Signal Processing: Es-
timation Theory, Prentice-Hall, Englewood Cliffs, NJ, USA,
1993.

Xiaogiang Ma received the B.E. and M.S.
degrees in electrical engineering from Ts-
inghua University, Beijing, China, in 1996
and 1999, respectively, and is now pursu-
ing the Ph.D. degree in electrical engineer-
ing from Princeton University. He was with
Mitsubishi Lab, Murryhill, NJ, during the
summer of 2000 and with Microsoft Re-
search, Redmond, Wash, during the sum-
mer of 2003. His research interests are in the
general areas of digital communication theory and signal process-
ing applications in wireless communications. He focuses more on
the multicarrier related system design and performance analysis,
including equalization, channel estimation, synchronization, and
peak-to-average power ratio reduction.




EM-Based Channel Estimation Algorithms for OFDM 1477

Hisashi Kobayashi is the Sherman Fairchild
University Professor of Electrical Engineer-
ing and Computer Science at Princeton
University, NJ, since 1986, when he joined
the Princeton faculty as the Dean of the
School of Engineering and Applied Science
(1986-1991). He worked for the IBM Re-
search Center in Yorktown Heights for fif-
teen years (1967-1982), and then served as
the Founding Director of the IBM Tokyo
Research Laboratory (1982-1986). He was a radar designer at
Toshiba, Japan (1963-1965). He received his Ph.D. from Prince-
ton University in 1967, and his B.E. and M.E. degrees from the
University of Tokyo in 1961 and 1963, respectively. His research
experiences include radar systems, high speed data transmission,
seismic signal processing, coding for high density digital recording,
image compression algorithms, performance modeling and analy-
sis of computers and communication systems. His current research
activities include network security, OFDM and UWB communica-
tion systems, and network performance modeling. He has been a
Fellow (1977) and a Life Fellow (2003) of IEEE, and received the
Humboldt Prize from Germany (1979). He was elected a Member
of the Engineering Academy of Japan (1992) and a Fellow of IEICE,
Japan (2004).

Stuart C. Schwartz received the B.S. and
M.S. degrees from MIT in 1961 and the
Ph.D. degree from the University of Michi-
gan in 1966. At MIT, he was associ-
ated with the Naval Supersonic Laboratory
and the Instrumentation Laboratory (now
the Draper Laboratories). During the year
1961-1962, he was at the Jet Propulsion
Laboratory in Pasadena, California, work-
ing on problems in orbit estimation and
telemetry. During the academic year 1980-1981, he was a member
of the technical staff at the Radio Research Laboratory, Bell Tele-
phone Laboratories, Crawford Hill, NJ, working in the area of mo-
bile telephony. He is currently a Professor of electrical engineering
at Princeton University. He was Chair of the department during the
period 1985-1994, and served as Associate Dean for the School of
Engineering during the period from July 1977 till June 1980. Dur-
ing the academic year 1972-1973, he was a John S. Guggenheim
Fellow and Visiting Associate Professor at the Department of Elec-
trical Engineering, Technion, Haifa, Israel. He has also held visit-
ing academic appointments at Dartmouth, University of Califor-
nia, Berkeley, and the Image Sciences Laboratory, ETH, Zurich. His
principal research interests are in the application of probability and
stochastic processes to problems in statistical communication the-
ory and signal processing.




	1. INTRODUCTION
	2. SYSTEM MODEL AND ASSUMPTIONS
	3. EM-BASED CHANNEL ESTIMATION ALGORITHMS
	3.1. Introduction to the EM algorithm
	3.2. Algorithm 1: estimating the channel frequency response
	3.3. Algorithm 2: estimating the transmitted signals
	3.4. Algorithm 3: estimating the channel impulse response
	3.5. Initialization

	4. CRAMER-RAO LOWER BOUND
	4.1. CRLB for constant modulus signals
	4.2. CRLB for nonconstant modulus signals

	5. SIMULATION AND DISCUSSION
	5.1. Simulation results of Algorithm 1
	5.2. Simulation results of Algorithm 2
	5.3. Simulation results of Algorithm 3
	5.4. Performance in different time-varying channels
	5.5. Comparison with existing methods

	6. CONCLUSION
	APPENDICES
	A. DERIVATION OF (17)
	B. DERIVATION OF (18)
	C. DERIVATION OF ALGORITHM 2
	D. DERIVATION OF ALGORITHM 3
	E. DERIVATION OF CRLB

	ACKNOWLEDGMENT
	REFERENCES

