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Maximum system mutual information is considered for a group of interfering users employing single user detection and antenna
selection of multiple transmit and receive antennas for flat Rayleigh fading channels with independent fading coefficients for
each path. In the case considered, the only feedback of channel state information to the transmitter is that required for antenna
selection, but channel state information is assumed at the receiver. The focus is on extreme cases with very weak interference or
very strong interference. It is shown that the optimum signaling covariance matrix is sometimes different from the standard scaled
identity matrix. In fact, this is true even for cases without interference if SNR is sufficiently weak. Further, the scaled identity
matrix is actually that covariance matrix that yields worst performance if the interference is sufficiently strong.
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1. INTRODUCTION

Multiple-input multiple-output (MIMO) channels formed
using transmit and receive antenna arrays are capable of pro-
viding very high data rates [1, 2]. Implementation of such
systems can require additional hardware to implement the
multiple RF chains used in a standard multiple transmit and
receive antenna array MIMO system. Employing antenna se-
lection [3, 4] is one promising approach for reducing com-
plexity while retaining a reasonably large fraction of the high
potential data rate of a MIMO approach. One antenna is se-
lected for each available RF chain. In this case, only the best
set of antennas is used, while the remaining antennas are not
employed, thus reducing the number of required RF chains.
For cases with only a single transmit antenna where standard
diversity reception is to be employed, this approach, known
as “hybrid selection/maximum ratio combining,” has been
shown to lead to relatively small reductions in performance,
as compared with using all receive antennas, for considerable
complexity reduction [3, 4]. Clearly, antenna selection can
be simultaneously employed at the transmitter and at the re-
ceiver in aMIMO system leading to larger reductions in com-
plexity.

Employing antenna selection both at the transmitter and
the receiver in aMIMO system has been studied very recently
[5, 6, 7]. Cases with full and limited feedback of information
from the receiver to the transmitter have been considered.
The cases with limited feedback are especially attractive in
that they allow antenna selection at the transmitter without
requiring a full description of the channel or its eigenvector

decomposition to be fed back. In particular, the only infor-
mation fed back is the selected subset of transmit antennas to
be employed. While cases with this limited feedback of infor-
mation from the receiver to the transmitter have been studied
in these papers, each assume that the transmitter sends a dif-
ferent (independent) equal power signal out of each selected
antenna. Transmitting a different equal power signal out of
each antenna is the optimum approach for the case where se-
lection is not employed [8] but it is not optimum if antenna
selection is used. The purpose of this paper is to find the op-
timum signaling. This problem is still unsolved to date. For
simplicity, we ignore any delay or error that might actually be
present in the feedback signal. We assume the feedback signal
is accurate and instantly follows any changes in the environ-
ment.

Consider a system where cochannel interference is
present from L− 1 other users. We focus on the Lth user and
assume each user employs nt transmit antennas and nr re-
ceive antennas. In this case, the vector of received complex
baseband samples after matched filtering becomes

yL = √
ρLHL,LxL +

L−1∑
j=1

√
ηL, j HL, jx j + n, (1)

where HL, j and x j represent the normalized channel ma-
trix and the normalized transmitted signal of user j, respec-
tively. The signal-to-noise ratio (SNR) of user L is ρL and
the interference-to-noise ratio (INR) for user L due to in-
terference from user j is ηL, j . For simplicity, we assume all
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of the interfering signals x j , j = 1, . . . ,L − 1, are unknown
to the receiver and we model each of them as being complex
Gaussian distributed, the usual form of the optimum signal
in MIMO problems. Then if we condition on HL,1, . . . ,HL,L,
the interference-plus-noise from (1),

∑L−1
j=1
√ηL, jHL, jx j + n,

is complex Gaussian distributed with the covariance matrix
RL =

∑L−1
j=1 ηL, jHL, jS jHH

L, j + Inr , where S j denotes the covari-
ance matrix of x j and Inr is the covariance matrix of n. Un-
der this conditioning, the interference-plus-noise is whitened
by multiplying yL by R

−1/2
L . After performing this multiplica-

tion, we can use results from [2, 8, 9] (see also [10, pp. 12–23,
pp. 250,256]) to express the ergodic mutual information be-
tween the input and output for the user of interest as in the
following:

I
(
xL;

(
yL,H

))
= E

{
log2

[
det

(
Inr+ρL

(
R−1/2L HL,L

)
SL
(
R−1/2L HL,L

)H)]}
= E

{
log2

[
det

(
Inr + ρLHL,LSLHH

L,LR
−1
L

)]} (2)

(H reminds us of the assumed model for HL,1, . . . ,HL,L). In
(2), the identity det (I + AB) = det (I + BA) was used. If we
wish to compute total systemmutual information, we should
find S1, . . . , SL to maximize

Ψ
(
S1, . . . , SL

)
=

L∑
i=1

I
(
xi;

(
yi,H

))

=
L∑
i=1

E


log2


det


Inr + ρiHi,iSiHH

i,i

×
(
Inr+

L∑
j=1, j �=i

ηi, jHi, jS jHH
i, j

)−1



.
(3)

Now, assume that each receiver selects nsr < nr receive an-
tennas and nst < nt transmit antennas based on the channel
conditions and feeds back the information to the transmit-
ter.1 Then the observations from the selected antennas fol-
low the model in (1) with nt and nr replaced by nst and nsr ,
respectively, and Hi, j replaced by H̃i, j . The matrix H̃i, j is ob-
tained by eliminating those columns and rows of Hi, j corre-
sponding to unselected transmit and receive antennas. Thus
we can write H̃i, j = g(Hi, j), where the function g will choose
H̃i, j to maximize the instantaneous (and thus also the er-
godic) mutual information (or some related quantity for the
signaling approach employed). In order to promote brevity,
we will restrict attention in the rest of this paper to the case
where nst = nsr so we will only use the notation for nst. We
note that the majority of the results given carry over imme-
diately for the case of nst �= nsr , and since this will be obvious
in these cases, we will not discuss this further.

It is important to note that we restrict attention to nar-
rowband systems using single user detection, equal power

1The case where each user employs a different nst and nsr is also easy to
handle.

(constant over time) for each user, and fixed definitions
of the transmitting and receiving users. Future extensions
which remove some assumptions are of great interest. How-
ever, as we will show, these assumptions lead to interesting
closed form results which we believe give insight into the fun-
damental properties of MIMO with antenna selection.

In Section 2, we give a general discussion and some use-
ful relationships used to study the convexity and concavity
properties of the system mutual information. In Section 3,
we study cases with weak interference. We follow this, in
Section 4, with our results for strong interference. The results
in Sections 3 and 4 are general for any nst = nsr ,nt,nr , and
L. Section 5 is devoted to numerical studies for the particu-
lar case of nr = nt = 8, nsr = nst = L = 2 to illustrate the
agreement with the theory from Sections 3 and 4. The results
in Section 5 also show that our asymptotic results give use-
ful information for nonasymptotic cases as well. The paper
concludes with Section 6.

2. GENERAL ANALYSIS OF SYSTEM
MUTUAL INFORMATION

Clearly, the nature of the functional2 Ψ(S1, . . . , SL) will de-
pend on the SNRs ρi, i = 1, . . . ,L, and the INRs ηi, j , i, j =
1, . . . ,L, i �= j. This can be seen by considering the convexity
and the concavity of Ψ(S1, . . . , SL) as a function of S1, . . . , SL.
Towards this goal, we define a general convex combination of
two possible solutions (S1, . . . , SL) and (Ŝ1, . . . , ŜL) as follows:

(
S̄1, . . . , S̄L

) = (1− t)
(
S1, . . . , SL

)
+ t

(
Ŝ1, . . . , ŜL

)
= (

S1, . . . , SL
)
+ t

((
Ŝ1, . . . , ŜL

)− (
S1, . . . , SL

))
= (

S1, . . . , SL
)
+ t

(
S′1, . . . , S

′
L

)
(4)

for 0 ≤ t ≤ 1 a scalar. ThenΨ(S1, . . . , SL) is a convex function
of (S1, . . . , SL) if [12]

d2

dt2
Ψ
(
S̄1, . . . , S̄L

) ≥ 0 ∀S̄1, . . . , S̄L. (5)

Similarly,Ψ(S1, . . . , SL) is a concave function of (S1, . . . , SL) if

d2

dt2
Ψ
(
S̄1, . . . , S̄L

) ≤ 0 ∀S̄1, . . . , S̄L. (6)

There are several useful known relationships for the deriva-
tive of a function of a matrix Φ with respect to a scalar pa-
rameter t. In particular, we note that [13, Appendix A, pp.
1342, 1345, 1349, 1351, 1359, 1401]

d

dt
ln
[
det (Φ)

] = trace
[
Φ−1

(
d

dt
Φ
)]

,

d

dt
Φ−1 = −Φ−1

(
d

dt
Φ
)
Φ−1.

(7)

2In the case without antenna selection [11], it is possible to argue that
each S j can be taken as diagonal. These arguments are based on the joint
Gaussianity of theHi j which does not hold after selection.
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Assuming selection is employed, we can use (3) and (7) to
find (interchanging a derivative and an expected value)

d

dt
Ψ
(
S̄1, . . . , S̄L

) = 1
ln (2)

L∑
i=1

E
{
trace

[
Q−1i

d

dt
Qi

]}
, (8)

where

Qi = Inst + ρiH̃i,iS̄iH̃H
i,i


Inst +

L∑
j=1, j �=i

ηi, jH̃i, j S̄ jH̃H
i, j



−1

= Inst + ρiH̃i,iS̄iH̃H
i,iQ̃

−1
i ,

(9)

d

dt
Qi = ρiH̃i,iS′iH̃

H
i,iQ̃

−1
i − ρiH̃i,iS̄iH̃H

i,iQ̃
−1
i

(
d

dt
Q̃i

)
Q̃−1i , (10)

d

dt
Q̃i =

L∑
j=1, j �=i

ηi, jH̃i, jS′jH̃
H
i, j . (11)

A second derivative yields

d2

dt2
Ψ
(
S̄1, . . . , S̄L

)

= 1
ln (2)

L∑
i=1

E
{
trace

[
Q−1i

(
d2

dt2
Qi

)

−Q−1i

(
d

dt
Qi

)
Q−1i

(
d

dt
Qi

)]}
(12)

with

d2

dt2
Qi =− 2ρiH̃i,iS′iH̃

H
i,iQ̃

−1
i

(
d

dt
Q̃i

)
Q̃−1i

+ 2ρiH̃i,iS̄iH̃H
i,iQ̃

−1
i

(
d

dt
Q̃i

)
Q̃−1i

(
d

dt
Q̃i

)
Q̃−1i .

(13)

3. OPTIMUM SIGNALING FORWEAK INTERFERENCE

We can use (12) to investigate convexity and concavity for
any particular set of SNRs ρi, i = 1, . . . ,L, and INRs ηi, j , i, j =
1, . . . ,L, i �= j. We investigate extreme cases, weak or strong
interference, to gain insight. The following lemma considers
the case of very weak interference.

Lemma 1. Assuming sufficiently weak interference, the best
(S1, . . . , SL) (that maximizes the ergodic system mutual infor-
mation) must be of the form

(
S̄1, . . . , S̄L

)
= α

(
γ1Inst +

(
1− γ1

)
Onst , . . . , γLInst +

(
1− γL

)
Onst

)
,
(14)

where Onst is an nst by nst matrix of all ones, α = 1/nst , and
0 ≤ γi ≤ 1, i = 1, . . . ,L.

Outline of the proof. For the case of very weak interference,
we ignore terms which are multiples of ηi, j (essentially, we

set ηi, j → 0 for i = 1, . . . ,L, j = 1, . . . ,L, and j �= i) and we
find (d/dt)Q̃i = 0 so that (d2/dt2)Qi = 0 which leads to

d2

dt2
Ψ
(
S̄1, . . . , S̄L

)

= − 1
ln (2)

L∑
i=1

E
{
trace

[(
Inst + ρiH̃i,iS̄iH̃H

i,i

)−1
ρiH̃i,iS′iH̃

H
i,i

× (
Inst + ρiH̃i,iS̄iH̃H

i,i

)−1
ρiH̃i,iS′iH̃

H
i,i

]}
.

(15)

Since S̄i is a covariance matrix, (Inst + ρiHi,iS̄iHH
i,i)
−1 =

(UHU + UHΛU)−1 = (U(Inst + Λ)−1UH) = U(Ω)2UH =
U(Ω)UHU(Ω)UH , where U is unitary and Λ and Ω are
diagonal matrices with nonnegative entries. Define A =
ρiHi,iS′iH

H
i,i and note that AH = A due to S′i being a

difference of two covariance matrices (easy to see using
UΛUH expansion for each covariancematrix). Thus the trace
in (15) can be written as trace[U(Ω)2UHAU(Ω)2UHA] =
trace[UΩUHAU(Ω)2UHAUΩUH] = trace[BBH] since
trace [CD] = trace [DC] [13]. We see trace[BBH] must be
nonnegative since the matrix inside the trace is nonnegative-
definite so that (15) implies that Ψ(S1, . . . , SL) is concave.
This will be true for sufficiently small ηi, j , i, j = 1, . . . ,L,
i �= j, relative to ρi, i = 1, . . . ,L. To recognize the sig-
nificance of the concavity, we note that given any permu-
tation matrix Π, we know [8] that H̃i, j has the same dis-
tribution as H̃i, jΠ (switching the ordering or names of se-
lected antennas cannot change the physical problem), so
Ψ(ΠS1ΠH , . . . ,ΠSLΠH) = Ψ(S1, . . . , SL). Let

∑
Π denote the

sum over all the different permutation matrices and let N
denote the number of terms in the sum. From concavity,
Ψ((1/N)

∑
Π ΠS1ΠH , . . . , (1/N)

∑
Π ΠSLΠH) ≥ Ψ(S1, . . . , SL)

[8] which implies that the optimum (S1, . . . , SL) must be of
the form such that it is invariant to transforms by permu-
tation matrices. This implies that the best (S1, . . . , SL) must
be of the form given in (14). We refer the interested reader
to [14] for a rigorous proof of this (taken from a single user
case).

Before considering specific assumptions on the SNR,
we note the similarity of (14) to (4) with (S1, . . . , SL) =
(1/nst)(Onst , . . . ,Onst ), (Ŝ1, . . . , ŜL) = (1/nst)(Inst , . . . , Inst ), and
t = γ1 = · · · = γL.

Small SNR

Thus we have determined the best signaling except for the
unknown scalar parameters γ1, . . . , γL which we now inves-
tigate. Generally, the best approach will change with SNR.
First, consider the case of weak SNR for which the following
lemma applies (recall we have now already focused on very
weak or no interference).

Lemma 2. Let h̃(p, p)i, j denote the (i, j)th entry of the ma-
trix H̃p,p and define S̄1, . . . , S̄L from (14). Assuming sufficiently
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weak interference and sufficiently weak SNR,

d

dγp
Ψ
(
S̄1, . . . , S̄L

)

= − 1
nst ln (2)

ρpE

{ nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

h̃∗(p, p)i, j h̃(p, p)i, j′
}

for p = 1, . . . ,L.
(16)

Outline of the proof. Using the similarity of (14) to (4),
(d/dγp)Ψ can be seen to be the pth component of the sum in
(8) with (S1, . . . , SL) = (1/nst)(Onst , . . . ,Onst ), (Ŝ1, . . . , ŜL) =
(1/nst)(Inst , . . . , Inst ), and t = γp. To assert the weak signal
and interference assumptions, we set ηi, j → 0 for all i, j and
ρi → 0 for all i and in this case we find

Q−1i
d

dt
Qi −→ d

dt
Qi −→ ρiH̃i,iS′iH̃

H
i,i (17)

and using (8) gives

d

dγp
Ψ
(
S̄1, . . . , S̄L

)

= 1
nst ln (2)

E
{
trace

[
H̃p,p

(
Inst −Onst

)
H̃H

p,p

]}
,

(18)

where the nst × nst matrix can be explicitly written as

Inst −Onst =




0 −1 · · · −1 −1 −1
−1 0 −1 · · · −1 −1
−1 −1 0 −1 · · · −1
...

...
...

...
...

...
−1 −1 · · · −1 −1 0



. (19)

Explicitly carrying out the operations in (18) gives (16).

Notice that without selection (in this case H̃p,p = Hp,p),
the quantity in (16) becomes zero under the assumed model
for Hp,q (i.i.d complex Gaussian entries). Thus selection
turns out to be an important aspect in the analysis. The fol-
lowing lemmas will be used with the result in Lemma 2 to
develop the main result of this section.

Lemma 3. Let h̃(p, p)i, j denote the (i, j)th entry of the ma-
trix H̃p,p and define S̄1, . . . , S̄L from (14). Assuming sufficiently
weak interference and sufficiently weak SNR,

Ψ
(
S̄1, . . . , S̄L

)

= 1
nst ln (2)

L∑
p=1

ρp

× E

{ nst∑
i=1

nst∑
j=1

∣∣h̃(p, p)i, j∣∣2

+
(
1− γp

) nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

h̃∗(p, p)i, j h̃(p, p)i, j′
}
.

(20)

Outline of the proof. Consider an nst × nst nonnegative def-
inite matrix A and let λ1(A), . . . , λnst (A) denote the eigen-
values of A. For sufficiently weak SNR ρi, we can approxi-
mate ln[det(I+ρiA)] = ln[

∏nst
j=1(1+ρiλj(A))] =

∑nst
j=1 ln[1+

ρiλj(A)] ≈ ρi
∑nst

j=1 λj(A) = ρi trace(A). Now, consider Ψ it-
self, from (3), for the set of covariance matrices in (14) and
assume that selection is employed. Thus we consider the re-
sulting Ψ as a function of (γ1, . . . , γL) and we see

Ψ
(
S̄1, . . . , S̄L

)

= 1
nst ln (2)

L∑
p=1

ρp

× E
{
trace

[
H̃p,p

[
γpInst +

(
1− γp

)
Onst

]
H̃H

p,p

]}
.

(21)

Note that the nst × nst matrix can be explicitly written as

[
γpInst +

(
1− γp

)
Onst

]

=




1 1− γp · · · 1− γp 1− γp 1− γp
1− γp 1 1− γp · · · 1− γp 1− γp
1− γp 1− γp 1 1− γp · · · 1− γp

...
...

...
...

...
...

1− γp 1− γp · · · 1− γp 1− γp 1



.
(22)

Using (22) in (21) with further simplification gives (20).

Lemma 4. Assuming sufficiently weak interference and suffi-
ciently weak SNR, the antenna selection that maximizes the er-
godic system mutual information will make

E

{ nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

h̃∗(p, p)i, j h̃(p, p)i, j′
}

(23)

positive.

Outline of the proof. First, consider the antenna selection ap-
proach for the pth link which maximizes the ergodic system
mutual information in (20) when γp = 1 in (14). Thus the se-
lection approach will maximize the quantity in the pth term
in the first sum in (20) when γp = 1 by selecting antennas
for each set of instantaneous channel matrices to make the
terms inside the expected value as large as possible. It is im-
portant to note that the choice (if γp = 1) depends only on
the squared magnitude of elements of the channel matrices.

If we use this selection approach when γp �= 1, then the
terms multiplied by (1− γp) in (20) will be averaged to zero
due to the symmetry in the selection criterion. To see this,
first note that the contribution to the ergodic mutual infor-
mation due to the pth term is

∫
· · ·

∫
h(p,p)1,1,...,h(p,p)nt ,nr

nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

h̃∗(p, p)i, j h̃(p, p)i, j′

× fh(p,p)1,1,...,h(p,p)nt ,nr
(
h(p, p)1,1, . . . ,h(p, p)nt ,nr

)
× dh(p, p)1,1 · · ·dh(p, p)nt ,nr

(24)
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times the constant ρp/nst ln (2). In (24),

fh(p,p)1,1,...,h(p,p)nt ,nr
(
h(p, p)1,1, . . . ,h(p, p)nt ,nr

)
(25)

is the probability density function of the channel coefficients
prior to selection, the integral is over all values of the argu-
ments and the selection rule H̃ = g(H) is important in de-
termining the integrand. If the optimum selection rule for
(20) with γp = 1 will select a particular set of transmit and
receive antennas for a particular instance of h(p, p)1,1, . . . ,
h(p, p)nt ,nr , then due to symmetry, this same selection will
also occur several more times as we run through all the pos-
sible values of h(p, p)1,1, . . . ,h(p, p)nt ,nr . Thus assume that
terms with |h(p, p)î ĵ|2 = a and |h(p, p)î ĵ′ |2 = b in (20) with
γp = 1 are large enough to cause the corresponding antennas
to be selected by the selection criterion trying to maximize
(20) with γp = 1 for some set of h(p, p)11, . . . ,h(p, p)nst ,nst .
Then due to the symmetry,

(
h̃(p, p)∗i j , h̃(p, p)i j′

) = (√
ae jφa ,

√
be jφb

)
,

(
h̃(p, p)∗i j , h̃(p, p)i j′

) = (√
ae jφa ,−

√
be jφb

)
,

(
h̃(p, p)∗i j , h̃(p, p)i j′

) = (−√ae jφa ,√be jφb),
(
h(p, p)∗i j ,h(p, p)i j′

) = (−√ae jφa ,−√be jφb)
(26)

will all appear in (24). Since each of these four possible val-
ues appear for four equal area (actually probability) regions
in channel coefficient space, a complete cancellation of these
terms results in (24). In fact, this leads to (24) averaging to
zero. Thus if we use the selection approach that will maxi-
mize (20) with γp = 1, this is the best we can do.

However, if γp �= 1, we can do better. Due to the cross
terms in (20) in the term multiplied by (1 − γp), we can
use selection to do better by modifying the selection ap-
proach. To understand the basic idea, let H̃′ denote the ma-
trix H̃p,p for a particular selection of antennas and H̃′′ de-
note the same quantity for a different selection of anten-
nas. Now consider two selection approaches which are the
same except the second approach will choose H̃′′ in cases
where

nst∑
i=1

nst∑
j=1

∣∣H̃′′
i j |2 =

nst∑
i=1

nst∑
j=1

∣∣H̃′
i j|2,

nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

H̃′′
i j H̃

′′∗
i j′ > 0,

(27)

and (in the sum, both a term and its conjugate appear, giving
a real quantity)

nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

H̃′
i j H̃

′∗
i j′ < 0. (28)

Assume the first selection approach is the one trying to max-

imize (20) with γp = 1 so it will just select randomly if

nst∑
i=1

nst∑
j=1

∣∣H̃′′
i j

∣∣2 = nst∑
i=1

nst∑
j=1

∣∣H̃′
i j

∣∣2, (29)

since it ignores the cross terms in its selection.
From (20), the second selection approach will give larger

instantaneous mutual information for each event where the
selection is different. Since the probability of the event that
makes the two approaches different is greater than zero un-
der our assumed model, then the second antenna selec-
tion approach will lead to improvement (if γp �= 1) and
it will do this by making the term multiplied by (1 − γp)
in (20) positive. Clearly the optimum selection scheme will
be at least as good or better, so it must also give improve-
ment by making the term multiplied by (1 − γp) in (20)
positive.

We are now ready to give the main result of this section.

Theorem 1. Assuming sufficiently weak interference, suffi-
ciently weak SNRs, and optimum antenna selection, the best
(S1, . . . , SL) (that maximizes the ergodic system mutual infor-
mation) uses

(
S̄1, . . . , S̄L

) = 1
nst

(
Onst , . . . ,Onst

)
. (30)

Outline of the proof. The assumption of weak SNRs
implies that ρp is small for all 1 ≤ p ≤ L. In
this case, optimum selection will attempt to make
E{∑nst

i=1
∑nst

j=1
∑nst

j′=1, j′ �= j h̃
∗(p, p)i, j h̃(p, p)i, j′} as large as

possible as shown in Lemma 3. Lemma 4 builds on
Lemma 3 to show that optimum selection can always
make E{∑nst

i=1
∑nst

j=1
∑nst

j′=1, j′ �= j h̃
∗(p, p)i, j h̃(p, p)i, j′} positive.

Lemma 2 shows that (d/dγp)Ψ is directly proportional to
the negative of E{∑nst

i=1
∑nst

j=1
∑nst

j′=1, j′ �= j h̃
∗(p, p)i, j h̃(p, p)i, j′ }

which the selection is making positive and large. Thus it
follows that (d/dγp)Ψ is always negative which implies that
the best solution employs γp = 0 since any increase in γp
away from γp = 0 causes a decrease in Ψ. Since ρp is small
for all p, the theorem follows.

Large SNR

Now consider the case of large SNR, where the following the-
orem applies.

Theorem 2. Assuming sufficiently weak interference, suffi-
ciently large SNRs, and optimum antenna selection, the best
(S1, . . . , SL) (that maximizes the ergodic system mutual infor-
mation) uses

(
S̄1, . . . , S̄L

) = 1
nst

(
Inst , . . . , Inst

)
. (31)
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Outline of the proof. Asserting the weak interference, large
SNR assumption in (8) gives

Q−1i
d

dt
Qi −→

(
ρiH̃i,iS̄iH̃H

i,i

)−1
ρiH̃i,iS′iH̃

H
i,i, (32)

so that

(
d/dγp

)
Ψ
(
S̄1, . . . , S̄L

)
= 1

ln (2)
E
{
trace

[(
H̃p,p

[
γpInst +

(
1− γp

)
Onst

]
H̃H

p,p

)−1

×
(
H̃p,p

[
Inst −Onst

]
H̃H

p,p

)]}

= 1
ln (2)

E
{
trace

[[
H̃H

p,p

]−1[
γpInst +

(
1− γp

)
Onst

]−1
× [

Inst −Onst

]
H̃H

p,p

]}

= 1
ln (2)

E
{
trace

[(
γpInst +

(
1− γp

)
Onst

)−1(
Inst −Onst

)]}

= nst
(
nst − 1

)(
γp − 1

)
γp
((
nst − 1

)
γp − nst

)
ln (2)

≥ 0

(33)

which is positive for 0 < γp < 1 (since (nst − 1)γp < nst)
and zero if γp = 1. In (33), we used trace [CD] = trace [DC]
[13]. Thus for the large SNR case (large ρp for all p) when
the interference is very weak, the best signaling uses (14) with
γp = 1. Since this is true for all p, the theorem follows.

As a further comment on Theorem 2, we note that the
proof makes it clear that if ρp is large only for certain p, then
γp = 1 for those p only. Likewise, it is clear from Theorem 1
that if ρp is small only for certain p, then γp = 0 for those p
only. Of course, this assumes weak interference. Thus we can
image a case where the best signaling uses γp = 1 for some p
and γp′ = 0 for some p′ �= p with proper assumptions on the
corresponding ρp, ρp′ . One can construct similar cases where
only some of the ηi, j are small and easily extend the results
given here in a straight forward way.

4. STRONG INTERFERENCE

Now consider the other extreme of dominating interference
where ηi, j , i = 1, . . . ,L, j = 1, . . . ,L, is large (compared to
ρ1, . . . , ρL). The following lemma addresses the worst signal-
ing to use.

Lemma 5. Assuming sufficiently strong interference, the worst
(S1, . . . , SL) (that minimizes the ergodic system mutual infor-
mation) must be of the form

(
S̄1, . . . , S̄L

)
= α

(
γ1Inst +

(
1− γ1

)
Onst , . . . , γLInst +

(
1− γL

)
Onst

)
,
(34)

where Onst is an nst by nst matrix of all ones, α = 1/nst , and
0 ≤ γi ≤ 1, i = 1, . . . ,L.

Outline of the proof. Provided ηi, j is sufficiently large, we can
approximate (9) as

Qi = Inst + ρiH̃i,iS̄iH̃H
i,i

(
Inst +

L∑
j=1, j �=i

ηi, jH̃i, j S̄ jH̃H
i, j

)−1
≈ Inst .

(35)

After applying this to (12) and using (13) for large ηi, j so that

Q̃−1i ≈ (
∑L

j=1, j �=i ηi, jH̃i, j S̄ jH̃H
i, j)

−1, we find the first term in-
side the trace in (12) depends inversely on ηi, j , while the sec-
ond term inside the trace in (12) depends inversely on η2i, j
so that the first term dominates for large ηi, j . Further, we
can interchange the expected value and the trace in (12) so
we are concerned with the expected value of (13). Now note
that the first term in (13) consists of the product of a term
A = H̃i,iS′iH̃

H
i,i and another term depending on H̃i, j for j �= i.

Now consider the expected value of (13) computed first as an
expected value conditioned on {H̃i, j , j �= i} and then this ex-
pected value is averaged over {H̃i, j , j �= i}. Now note that the
conditional expected value of A becomes the zero matrix.3

Thus the contribution from the first term in (13) averages to
zero so that

d2

dt2
Ψ
(
S̄1, . . . , S̄L

)

≈ 1
ln (2)

L∑
i=1

trace
[
E
{
d2

dt2
Qi

}]

≈ 1
ln (2)

L∑
i=1

E


 trace


2ρiH̃i,iS̄iH̃H

i,i

×

 L∑

j=1, j �=i
ηi, jH̃i, j S̄ jH̃H

i, j



−1

×

 L∑

j=1, j �=i
ηi, jH̃i, jS′jH̃

H
i, j




×

 L∑

j=1, j �=i
ηi, jH̃i, j S̄ jH̃H

i, j



−1

×

 L∑

j=1, j �=i
ηi, jH̃i, jS′jH̃

H
i, j




×

 L∑

j=1, j �=i
ηi, jH̃i, j S̄ jH̃H

i, j



−1



(36)

which is nonnegative. To see this, we can use a few
of the same simplifications used previously. Ex-
pand the nonnegative definite matrices 2ρiH̃i,iS̄iH̃H

i,i

and (
∑L

j=1, j �=i ηi, jH̃i, j S̄ jH̃H
i, j)

−1 using the unitary ma-
trix/eigenvalue expansions as done after (15). Then the
matrix inside the expected value in (36) can be factored

3Recall S′i = Ŝi−Si and use the appropriate eigenvector expansions, prob-
lem symmetry, and constraints on trace [Ŝi], trace [Si].
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into BBH after manipulations similar to those used after
(15). Thus Ψ(S1, . . . , SL) is convex. Thus using the same
permutation argument as used for the weak interference
case, the result stated in the theorem follows.

The following theorem builds on Lemma 5 to specify the
exact γ1, . . . , γL giving worst performance.

Theorem 3. Assuming sufficiently strong interference and opti-
mum antenna selection, the worst (S1, . . . , SL) (that minimizes
the ergodic system mutual information) uses

(
S̄1, . . . , S̄L

) = 1
nst

(
Inst , . . . , Inst

)
. (37)

Outline of the proof. Consider Ψ(S1, . . . , SL) for (S1, . . . , SL)
of the form given by Lemma 5 which is (from (2) and (3))

Ψ
(
S1, . . . , SL

)

=
L∑
i=1

E
{
log2

[
det

(
Inst + ρiH̃i,iSiH̃H

i,iR
−1
i

)]}

≈
L∑
i=1

ρiE
{
trace

[
H̃i,iSiH̃H

i,iR
−1
i

]}

= 1
nst ln (2)

L∑
p=1

ρp

× E

{ nst∑
i=1

nst∑
j=1

∣∣ĥ(p, p)i, j∣∣2

+
(
1− γp

) nst∑
i=1

nst∑
j=1

nst∑
j′=1, j′ �= j

ĥ∗(p, p)i, j ĥ(p, p)i, j′
}
,

(38)

where the first simplification follows from large ηi, j and the
same simplifications used in (21). The second simplification
follows from those in (20) but now ĥ(p, p)i, j denotes the
(i, j)th entry of the matrix R−1/2p H̃p,p. Now note that antenna
selection will attempt to make the second term in the last line
of (38), which multiplies the positive constant 1−γp, as large
and positive as it possibly can. In fact, it is easy to argue that
antenna selection can always make this term positive as done
previously for (20). We skip this since the problems are so
similar. Thus we see that the best performance for (S1, . . . , SL)
of the form given by Lemma 5 must be obtained for γp = 0
and the worst performance must occur at γp = 1. Since this
is true for all p, the result in the theorem follows.

The result in Theorem 3 tells us that the best signaling
for cases without interference and selection is the worst for
strong interference and selection. It appears that the best sig-
naling for (S1, . . . , SL) of the form given by Lemma 5 (see the
discussion in Theorem 3) may be the best signaling overall.
However, it appears difficult to show this generally.

The following intuitive discussion gives some further in-
sight. Due to convexity, the best performance will occur at a
point as far away from the point giving worst performance

(S1, . . . , SL) = (1/nst)(Inst , . . . , Inst ) as possible (recall that the
γ1 = · · · = γL = 1 point gives the worst performance). Thus
the best performance occurs for a point on the boundary of
our space of feasible (S1, . . . , SL) and this point must be as far
away from the point giving the worst performance as possi-
ble. One such point is (S1, . . . , SL) = (1/nst)(Onst , . . . ,Onst ). It
can be shown generally (for any nst) that this solution is the
farthest from (S1, . . . , SL) = (1/nst)(Inst , . . . , Inst ) (Frobenius
norm). This follows because (1/nst)Onst is the farthest from
(1/nst)Inst . Note that S with one entry of 1 and the rest zero is
equally far from (1/nst)Inst but numerical results in some spe-
cific cases indicate that the rate of increase in this direction
is not as great as the rate of increase experienced by mov-
ing along the line (S1, . . . , SL) = γ(1/nst)(Inst , . . . , Inst ) + (1 −
γ)(1/nst)(Onst , . . . ,Onst ) away from γ = 1 towards γ = 0.

5. NUMERICAL RESULTS FOR nst = nsr = L = 2,
nt = nr = 8

Consider the case of nst = nsr = L = 2, nt = nr = 8,
η1,2 = η2,1 = η, and ρ1 = ρ2 = ρ and assume that the op-
timum antenna selection (to optimize system mutual infor-
mation) is employed. First consider the case of no interfer-
ence and assume a set of covariance matrices of the form
(S1, S2) = γ(1/2)(I2, I2) + (1 − γ)(1/2)(O2,O2). Thus since
ρ1 = ρ2 = ρ and η1,2 = η2,1 = η, we set γ1 = γ2 = γ. Figure 1
shows a plot of the γ giving the largest mutual information
versus SNR, for SNR (ρ) ranging from−10 dB to +10 dB. We
see that the best performance for very small ρ is obtained for
γ = 0 which is in agreement with our analytical results given
previously. For large ρ, the best signaling uses γ = 1 which is
also in agreement with our analytical results given previously.
Figure 1 shows that the switch from where γ = 0 is optimum
to where γ = 1 is optimum is very rapid and occurs near
ρ = −3 dB.

Now consider cases with possible interference. Again
consider the case of nst = nsr = L = 2, nt = nr = 8,
η1,2 = η2,1 = η, and ρ1 = ρ2 = ρ and assume that the opti-
mum antenna selection (to optimize systemmutual informa-
tion) is employed. To simplify matters, we constrain S1 = S2
in all cases shown. First we considered three specific signaling
covariance matrices which are

S1 = S2 =



1
2

0

0
1
2


 ,

S1 = S2 =



1
2

1
2

1
2

1
2


 ,

S1 = S2 =
(
1 0
0 0

)
.

(39)

We tried each of these for SNRs and INRs between −10dB
and +10dB. Then we recorded which of the approaches
provided the smallest and the largest system mutual infor-
mation. These results can be compared with the analytical
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Figure 1: Optimum γ versus ρ1 = ρ2 = SNR for cases with no
interference and nst = nsr = 2, nt = nr = 8. Note that γ = 0
is the best for −10dB < SNR < −3dB and γ = 1 is the best for
−2dB < SNR < 10dB.
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Figure 2: The worst signaling (of the three approaches) versus SNR
and INR for nst = nsr = L = 2, nt = nr = 8, ρ1 = ρ2 = SNR, and
η1,2 = η2,1 = INR.

results given in Sections 3 and 4 of this paper for weak and
strong interference and SNR. Figure 2 shows the worst sig-
naling we found versus SNR and INR for ρ1 = ρ2 = SNR
and η1,2 = η2,1 = INR. For large INR, Figure 2 indicates
that S1 = S2 = (1/2)I2 leads to worst performance which
is in agreement with our analytical results given previously.
Figure 2 also shows that either S1 = S2 = (1/2)I2 (for weak
SNR) or (for large SNR) S1 = S2 with only one nonzero entry
(a one which must be along the diagonal) will lead to worst
performance for weak interference.

For weak interference, Figure 3 shows that the best per-
formance is achieved by either S1 = S2 = (1/2)O2 (for weak
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Figure 3: The best signaling (of the three choices) versus SNR and
INR for nst = nsr = L = 2, nt = nr = 8, ρ1 = ρ2 = SNR, and
η1,2 = η2,1 = INR.

SNR) or S1 = S2 = (1/2)I2 (for large SNR). This agrees with
our analytical results presented previously. Figure 3 shows
that the best performance is achieved by S1 = S2 = (1/2)O2

for large interference and this also agrees with our analytical
results presented previously. We note that in the cases of in-
terest (those for which we give analytical results), the differ-
ence in mutual information between the best and the worst
approach in Figures 2 and 3 was about 1 to 3 bits/s/Hz.

We selected a few SNR-INR points sufficiently (greater
than 2dB) far from the dividing curves in Figures 2 and 3.
For these points, we attempted to obtain further information
on whether the approaches shown to be the best and worst in
Figures 2 and 3 are actually the best and the worst of all valid
approaches under the assumption that S1 = S2. We did this
by evaluating the system mutual information for

S1 = S2 =
(
a b
b∗ ρ − a

)
(40)

for various values of the real constant a and the complex
constant b on a grid. When we evaluated (40) for all real
a and b an a grid for a range of values consistent with the
trace (power) and nonnegative definite enforcing constraints
on S1 = S2, we did find the approaches in Figures 2 and 3
did indicate the overall best and worst approaches for the
few cases we tried. Limited investigations involving complex
b (here the extra dimension complicated matters, making
strong conclusions difficult) indicated that these conclusions
appeared to generalize to complex b also.

Partitioning the SNR-INR Plane

Based on Sections 3 and 4, we see that generally the space of
all SNRs ρi, i = 1, . . . ,L, and INRs ηi, j , i, j = 1, . . . ,L, i �= j,
can be divided into three regions: one where the interference
is considered weak (where Figure 1 and its generalization
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apply), one where the interference is considered to dominate
(where Figure 3 and its generalization apply), and a transi-
tion region between the two.

For the case with nst = nsr = L = 2, nt = nr = 8,
η1,2 = η2,1 = η, and ρ1 = ρ2 = ρ, we have used (12)
to study the three regions. We first evaluated (12) numeri-
cally using Monte Carlo simulations for a grid of points in
SNR and INR space. The Monte Carlo simulations just de-
scribed were calculated over a very fine grid over the region
−10dB ≤ ρ ≤ 10dB and −10dB ≤ η ≤ 10dB. For each
given point in SNR and INR space, we evaluated (12) for
many different choices of (S1, . . . , SL), (Ŝ1, . . . , ŜL), and the
scalar t. We checked for a consistent positive or negative value
for (12) for all (S1, . . . , SL), (Ŝ1, . . . , ŜL), and the scalar t on the
discrete grid (quantize each scalar variable, including those
in each entry of each matrix). In this way, we have viewed the
approximate form of these three regions. We found that gen-
erally for points sufficiently far (more than 2 dB from closest
curve) from the two dividing curves in Figures 2 and 3, the
convexity and concavity follows that for the asymptotic case
(strong or weak INR) in the given region. Thus the asymp-
totic results appear to give valuable conclusions about finite
SNR and INR cases. Limited numerical investigations suggest
this is true in other cases but the high dimensionality of the
problem (especially for nst,nsr ,L > 2) makes strong conclu-
sions difficult.

6. CONCLUSIONS

We have analyzed the (mutual information) optimum sig-
naling for cases where multiple users interfere while using
single user detection and antenna selection. We concentrate
on extreme cases with very weak interference or very strong
interference. We have found that the best signaling is some-
times different from the scaled identity matrix that is best
for no interference and no antenna selection. In fact, this is
true even for cases without interference if SNR is sufficiently
weak. Further, the scaled identity matrix is actually the co-
variance matrix that yields worst performance if the interfer-
ence is sufficiently strong.
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