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The functional transformation method (FTM) is a well-established mathematical method for accurate simulations of multidimen-
sional physical systems from various fields of science, including optics, heat and mass transfer, electrical engineering, and acoustics.
This paper applies the FTM to real-time simulations of transversal vibrating strings. First, a physical model of a transversal vibrat-
ing lossy and dispersive string is derived. Afterwards, this model is solved with the FTM for two cases: the ideally linearly vibrating
string and the string interacting nonlinearly with the frets. It is shown that accurate and stable simulations can be achieved with
the discretization of the continuous solution at audio rate. Both simulations can also be performed with a multirate approach
with only minor degradations of the simulation accuracy but with preservation of stability. This saves almost 80% of the compu-
tational cost for the simulation of a six-string guitar and therefore it is in the range of the computational cost for digital waveguide
simulations.
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1. INTRODUCTION

Digital sound synthesis methods can mainly be categorized
into classical direct synthesis methods and physics-based
methods [1]. The first category includes all kinds of sound
processing algorithms like wavetable, granular and subtrac-
tive synthesis, as well as abstract mathematical models, like
additive or frequency modulation synthesis. What is com-
mon to all these methods is that they are based on the sound
to be (re)produced.

The physics-based methods, also called physical model-
ing methods, start at the physics of the sound production
mechanism rather than at the resulting sound. This approach
has several advantages over the sound-based methods.

(i) The resulting sound and especially transitions be-
tween successive notes always sound acoustically realistic as
far as the underlying model is sufficiently accurate.

(ii) Sound variations of acoustical instruments due to dif-

ferent playing techniques or different instruments within one
instrument family are described in the physics-based meth-
ods with only a few parameters. These parameters can be ad-
justed in advance to simulate a distinct acoustical instrument
or they can be controlled by the musician to morph between
real world instruments to obtain more degrees of freedom in
the expressiveness and variability.

The second item makes physical modeling methods quite
useful for multimedia applications where only a very limited
bandwidth is available for the transmission of music as, for
example, in mobile phones. In these applications, the physi-
cal model has to be transferred only once and afterwards it is
sufficient to transfer only the musical score while keeping the
variability of the resulting sound.

The starting points for the various existing physical mod-
eling methods are always physical models varying for a cer-
tain vibrating object only in the model accuracies. The appli-
cation of the basic laws of physics to an existing or imaginary
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vibrating object results in continuous-time, continuous-
space models. These models are called initial-boundary-
value problems and they contain a partial differential equa-
tion (PDE) and some initial and boundary conditions. The
discretization approaches to the continuous models and the
digital realizations are different for the single physical mod-
eling methods.

One of the first physical modeling algorithm for the sim-
ulation of musical instruments was made by Hiller and Ruiz
1971 in [2] with the finite difference method. It directly dis-
cretizes the temporal and spatial differential operators of the
PDE to finite difference terms. On the one hand, this ap-
proach is computationally very demanding; since temporal
and spatial sampling intervals have to be chosen small for
accurate simulations. Furthermore, stability problems occur
especially in dispersive vibrational objects if the relationship
between temporal and spatial sampling intervals is not cho-
sen properly [3]. On the other hand, the finite difference
method is quite suitable for studies in which the vibration has
to be evaluated in a dense spatial grid. Therefore, the finite
difference method has mainly been used for academic stud-
ies rather than for real-time applications (see, e.g., [4, 5]).
However, the finite difference method has recently become
more popular also for real-time applications in conjunction
with other physical modeling methods [6, 7].

A mathematically similar discretization approach is used
in mass-spring models that are closely related to the finite
element method. In this approach, the vibrating structure
is reduced to a finite number of mass points that are inter-
connected by springs and dampers. One of the first systems
for the simulation of musical instruments was the CORDIS
system which could be realized in real time on a specialized
processor [8]. The finite difference method, as well as the
mass-spring models, can be viewed as direct discretization
approaches of the initial-boundary-value problems. Despite
the stability problems, they are very easy to set up, but they
are computationally demanding.

In modal synthesis, first introduced in [9], the PDE is
spatially discretized at non necessarily equidistant spatial
points, similar to the mass-spring models. The interconnec-
tions between these discretized spatial points reflect the phys-
ical behavior of the structure. This discretization reduces the
degrees of freedom for the vibration to the number of spatial
points which is directly transferred to the same number of
temporal modes the structure can vibrate in. The reduction
does not only allow the calculation of the modes of simple
structures, but it can also handle vibrational measurements
of more complicated structures at a finite number of spatial
points [10]. A commercial product of the modal synthesis,
Modalys, is described, for example, in [11]. For a review of
modal synthesis and a comparison to the functional trans-
formation method (FTM), see also [12].

The commercially and academically most popular phys-
ical modeling method of the last two decades was the digital
waveguide method (DWG) because of its computational ef-
ficiency. It was first introduced in [13] as a physically inter-
preted extension of the Karplus-Strong algorithm [14]. Ex-
tensions of the DWG are described, for example, in [15, 16,

17, 18]. The DWG first simplifies the PDE to the wave equa-
tion which has an analytical solution in the form of a for-
ward and backward traveling wave, called d’Alembert solu-
tion. It can be realized computationally very efficient with
delay lines. The sound effects like damping or dispersion oc-
curring in the vibrating structure are included in the DWG by
low-order digital filters concentrated in one point of the de-
lay line. This procedure ensures the computational efficiency,
but the implementation looses the direct connection to the
physical parameters of the vibrating structure.

The focus of this article is the FTM. It was first intro-
duced in [19] for the heat-flow equation and first used for
digital sound synthesis in [20]. Extensions to the basic model
of a vibrating string and comparisons between the FTM and
the above mentioned physical modeling methods are given,
for example, in [12]. In the FTM, the initial-boundary-value
problem is first solved analytically by appropriate functional
transformations before it is discretized for computer simula-
tions. This ensures a high simulation accuracy as well as an
inherent stability. One of the drawbacks of the FTM is so far
its computational load, which is about five times higher than
the load of the DWG [21].

This article extends the FTM by applying a multirate ap-
proach to the discrete realization of the FT'M, such that the
computational complexity is significantly reduced. The ex-
tension is shown for the linearly vibrating string as well as
for the nonlinear limitation of the string vibration by a fret-
string interaction occurring in slapbass synthesis.

The article is organized as follows. Section 2 derives the
physical model of a transversal vibrating, dispersive, and
lossy string in terms of a scalar PDE and initial and boundary
conditions. Furthermore, a model for a nonlinear fret-string
interaction is given. These models are solved in Section 3
with the FTM in continuous time and continuous space.
Section 4 discretizes these solutions at audio rate and derives
an algorithm to guarantee stability even for the nonlinear
discrete system. A multirate approach is used in Section 5
for the simulation of the continuous solution to save com-
putational cost. It is shown that this multirate approach also
works for nonlinear systems. Section 6 compares the audio
rate and the multirate solutions with respect to the simula-
tion accuracy and the computational complexity.

2. PHYSICAL MODELS

In this Section, a transversal vibrating, dispersive, and lossy
string is analyzed using the basic laws of physics. From this
analysis, a scalar PDE is derived in Section 2.1. Section 2.2
defines the initial states of the vibration, as well as the fixings
of the string at the nut and the bridge end, in terms of ini-
tial and boundary conditions, respectively. In Section 2.3, the
linear model is extended with a deflection-dependent force
simulating the nonlinear interaction between the string and
the frets, well known as slap synthesis [22].

In all these models, the strings are assumed to be homo-
geneous and isotropic. Furthermore, the smoothness of their
surfaces may not permit stress concentrations. The deflec-
tions of the strings are assumed to be small enough to change
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neither the cross section area nor the tension on the string so
that the string itself behaves linearly.

2.1. Linear partial differential equation
derived by basic laws of physics

The string under examination is characterized by its ma-
terial and geometrical parameters. The material parameters
are given by the mass density p, the Young’s modulus E, the
laminar air flow damping coefficient d;, and the viscoelastic
damping coefficient ds. The geometrical parameters consist
of the length [, the cross section area A and the moment of
inertia I. Furthermore, a tension T is applied to the string in
axial direction. Considering only a string segment between
the spatial positions x; and x; + Ax, the forces on this string
segment can be analyzed in detail. They consist of the restor-
ing force fr caused by the tension T, the bending force fg
caused by the stiffness of the string, the laminar air flow force
fa1, the viscoelastic damping force f43 (modeled here without
memory), and the external excitation force f.. They result at
X5 in

fT(x5>t) =T Sin( (xs: )) TS(P(xsa )> (1a)
fs(xs,t) = —EIb' (x, 1), (1b)
far(xs,t) = diAxv(xs, t), (1¢)

(
Jas (x5, 1) ) =
where ¢(x;,t) is the slope angle of the string, b(xs, t) is the
curvature of the string, v(xs, t) is the velocity, and prime de-
notes spatial derivative and dot denotes temporal derivative.
Note that in (1a) and in (1d) it is assumed that the amplitude
of the string vibration is small so that the sine function can
be approximated by its argument. Similar equations can be
found for the forces at the other end of the string segment at
xs + Ax.
All these forces are combined by the equation of motion
to

= dssin (¢(xs, 1)) ~ d3p(xs, 1), (1d)

PAAxY (x5, 1) = fy (x5, 1) + fas (x5, 1) — f (x5 + Ax, 1)

— fas(xs + Ax, t) — far (x5, 1) + fe(xs, ),
(2)

where f, = fr + fg. Setting Ax — 0 and solving (2) for the
excitation force density foi(xs,t) = fo(xs,1)8(x — xs), four
coupled equations are obtained, that are valid not only at the
string segment x; < x < x; + Ax but also at the whole string
0 < x < I. §(x) denotes the impulse function.

fa(x, 1) = pAv(x, 1) + div(x, t) — f},' (x,1) — dsb(x,1), (3a)
fy(x,t) = Tsp(x,t) — EIb' (x, 1), (3b)

b(x1,t) = ¢'(x,1), (3¢)

v (x1,8) = @(x, ). (3d)

An extended version of the derivation of (3) can be found
in [12]. The four coupled equations (3) can be simplified
to one scalar PDE with only one output variable. All the
dependent variables in (3a) can be written in terms of the

string deflection y(x,t) by replacing v(x,¢) with y(x,t) and
o(x,t) = y'(x,t) from (3d) and with (3b) and (3c). Then (3)
can be written in a general notation of scalar PDEs

D{y(x,t)} + L{y(x, )} + W{y(x, 1)}

(4a)
= fa(x,t), x€[0,1], t€[0,00),

with
D{y(x,t)} = pAj(x,t) + dyj(x, 1),
L{y(x,t)} = =Tsy" (x,t) + EIgy"" (x, 1), (4b)
WiyG, )} = Wp{Wi{y(x, )} = —=dsj" (x, 1).

As it can be seen in (4), the operator D{} contains only tem-
poral derivatives, the operator L{} has only spatial deriva-
tives, and the operator W{} consists of mixed temporal and
spatial derivatives. The PDE is valid only on the string be-
tween x = 0 and x = [ and for all positive times. Equation
(4) forms a continuous-time, continuous-space PDE. For a
unique solution, initial and boundary conditions must be
given as specified in the next section.

2.2. |Initial and boundary conditions

Initial conditions define the initial state of the string at time
t = 0. This definition is written in the general operator nota-
tion with

y(x,0)
7(x,0)

£ {y(x 0} = [ } =0, xe<[0,],t=0. (5

Since the scalar PDE (4) is of second order with respect to
time, only two initial conditions are needed. They are chosen
arbitrarily by the initial deflection and the initial velocity of
the string as seen in (5). For musical applications, it is a rea-
sonable assumption that the initial states of the strings vanish
at time t = 0 as given in (5). Note that this does not prevent
the interaction between successively played notes since the
time is not set to zero for each note. Thus, this kind of initial
condition is only used for, for example, the beginning of a
piece of music.

In addition to the initial conditions, also the fixings of
the string at both ends must be defined in terms of bound-
ary conditions. In most stringed instruments, the strings are
nearly fixed at the nut end (x = xp = 0) and transfer energy
at the other end (x = x; = [) via the bridge to the resonant
body [2]. For some instruments (e.g., the piano) it is also a
justified assumption, that the bridge fixing can be modeled
to be ideally rigid [23]. Then the boundary conditions are
given by

y(xirt)

rr :0) IEO,I,tE 0,00, 6
)’ (xi;t)j| [ ) ()

fl{y(x )} = [

It can be seen from (6) that the string is assumed to be fixed,
allowed to pivot at both ends, such that the deflection y and
the curvature b = " must vanish. These are boundary con-
ditions of first kind. For simplicity, there is no energy fed
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FIGURE 1: Procedure of the FTM solving initial boundary value problems defined in form of PDEs, IC, and BC.

into the system via the boundary, resulting in homogeneous
boundary conditions.

The PDE (4), in conjunction with the initial (5) and
boundary conditions (6), forms the linear continuous-
time continuous-space initial-boundary-value problem to be
solved and simulated.

2.3. Nonlinear extension to the linear model
for slap synthesis

Nonlinearities are an important part in the sound produc-
tion mechanisms of musical instruments [23]. One example
is the nonlinear interaction of the string with the frets, well
known as slap synthesis. This effect was modeled first for the
DWG in [22] as a nonlinear amplitude limitation. For the
FTM, the effect was already applied to vibrating strings in
[24].

A simplified model for this interaction interprets the fret
as a spring with a high stiffness coefficient Sg. acting at one
position xr as a force fr on the string at time instances where
the string is in contact with the fret. Since this force depends
on the string deflection, it is nonlinear, defined with

ﬁ(xfr L, Vs )/f)

_ | St (y (36, 2) = yi(xr, 1)), for y (e 1) = ye (i, £) > 0,
0, for y(x¢, t) — ye(xp,t) < 0.
(7)

The deflection of the fret from the string rest position is de-
noted with y¢. The PDE (4) becomes nonlinear by adding the
slap force f; to the excitation function fe;(x, t). Thus, a linear
and a nonlinear system for the simulation of the vibrating
string is derived. Both systems are solved in the next sections
with the FTM.

3. CONTINUOUS SOLUTIONS USING THE FTM

To obtain a model that can be implemented in the computer,
the continuous initial-boundary-value problem has to be
discretized. Instead of using a direct discretization approach
as described in Section 1, the continuous analytical solution
is derived first, which is discretized subsequently. This proce-
dure is well known from the simulation of one-dimensional
systems like electrical networks. It has several advantages in-
cluding simulation accuracy and guaranteed stability.

The outline of the FTM is given in Figure 1. First, the
PDE with initial conditions (IC) and boundary conditions

(BC) is Laplace transformed («L{-}) with respect to time
to derive a boundary-value problem (ODE, BC). Then a
so-called Sturm-Liouville transformation (7 {-}) is used for
the spatial variable to obtain an algebraic equation. Solving
for the output variable results in a multidimensional (MD)
transfer function model (TFM). It is discretized and by ap-
plying the inverse Sturm-Liouville transformation 7 ~!{-}
and the inverse z-transformation z7!{-} it results in the dis-
cretized solution in the time and space domain.

The impulse-invariant transformation is used for the dis-
cretization shown in Figure 1. It is equivalent to the calcu-
lation of the continuous solution by inverse transformation
into the continuous time and space domain with subsequent
sampling. The calculation of the continuous solution is pre-
sented in Sections 3.1 to 3.5, the discretization is shown in
Sections 4 and 5.

For the nonlinear system, the transformations cannot ob-
viously result in a TFM. Therefore, the procedure has to be
modified slightly, resulting in an MD implicit equation, de-
scribed in Section 3.6.

3.1. Laplace transformation

As known from linear electrical network theory, the Laplace
transformation removes the temporal derivatives in linear
and time-invariant (LTI) systems and includes, due to the
differentiation theorem, the initial conditions as additive
terms (see, e.g., [25]). Since first- and second-order time
derivatives occur in (4) and the initial conditions (5) are ho-
mogeneous, the application of the Laplace transformation to
the initial boundary value problem derived in Section 2 re-
sults in

dp(s)Y (x,8) + L{Y (x,8)} + wp(s)Wr{Y(x,5)}
= el(x35)> X € [0> l])
f&Y(x, s) =0,

(8a)
i€0,1. (8b)

The Laplace transformed functions are written with capital
letters and the complex temporal frequency variable is de-
noted by s = 0 + jw. It can be seen in (8a) that the temporal
derivatives of (4a) are replaced with scalar multiplication of
the functions

dp(s) = pAs® + dis, wp(s) = —dss. (8¢)
Thus, the initial boundary value problem (4), (5), and (6) is
replaced with the boundary-value problem (8) after Laplace
transformation.
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3.2. Sturm-Liouville transformation

The transformation of the spatial variable should have the
same properties as the Laplace transformation has for the
time variable. It should remove the spatial derivatives and it
should include the boundary conditions as additive terms.
Unfortunately, there is no unique transformation available
for this task due to the finite spatial definition range in con-
trast to the infinite time axis. That calls for a determination
of the spatial transformation at hand, depending on the spa-
tial differential operator and the boundary conditions. Since
it leads to an eigenvalue problem first solved for simplified
problems by Sturm and Liouville between 1836 and 1838,
this transformation is called a Sturm-Liouville transforma-
tion (SLT) [26]. Mathematical details of the SLT applied to
scalar PDEs can be found in [12].
The SLT is defined by

1
T{Y(x,9)] = P(ws) = LK(/,t,x)Y(x,s)dx. 9)

Note that there is a finite integration range in (9) in contrast
to the Laplace transformation. The transformation kernels
K(u, x) of the SLT are obtained as the set of eigenfunctions of
the spatial operator Ly = L + W, with respect to the bound-
ary conditions (8b). The corresponding eigenvalues are de-
noted by ﬁ;ﬁ(s) where B,(s) is the discrete spatial frequency
variable (see, e.g., [12] for details).

For the boundary-value problem defined in (8) with the
operators given in (4b), the transformation kernels and the
discrete spatial frequency variables result in

K(u,x) = sin (ﬂx>, peEN,

] (10a)

B(s) =El<¥)4f (Ts+d35)<¥>2. (10b)

Thus, the SLT can be interpreted as an extended Fourier se-

ries decomposition.

3.3. Multidimensional transfer function model

Applying the SLT (9) to the boundary-value problem (8) and
solving for the transformed output variable Y (u, s) results in
the MD TFM

Y(u,s) = (11)

1 _
do(s) + i) <)

Hence, the transformed input forces F (@, s) are related via
the MD transfer function given in (11) to the transformed
output variable Y (y,s). The denominator of the MD TFM
depends quadratically on the temporal frequency variable s
and to the power of four on the spatial frequency variable f3,,.
This is based on the second-order temporal and fourth-order
spatial derivatives occurring in the scalar PDE (4). Thus, the
transfer function is a two-pole system with respect to time
for each discrete spatial eigenvalue f3,,.

3.4. Inverse transformations

As explained at the beginning of Section 3, the continuous
solution in the time and space domain is now calculated by
using inverse transformations.

Inverse SLT

The inverse SLT is defined by an infinite sum over all discrete
eigenvalues 3, with

Y(x,8) =T Y (w9} = > NLY(y,s)K(y,x). (12)
u u

The inverse transformation kernel K(p,x) and the inverse
spatial frequency variable 3, are the same eigenfunctions and
eigenvalues as for the forward transformation due to the self-
adjointness of the spatial operators L and Wy, (see [12] for de-
tails). Thus, the inverse SLT can be evaluated at each spatial
position by evaluating the infinite sum. Since only quadratic
terms of y occur in the denominator, it is sufficient to sum
over positive values of 4 and double the result to account for
the negative values. The norm factor results in that case in
N, = l/4.

Inverse Laplace transformation

It can be seen from (11) and (8c), (10b) that the transfer
functions consist of two-pole systems with conjugate com-
plex pole pairs for each discrete spatial eigenvalue f3,,. There-
fore the inverse Laplace transformation results for each spa-
tial frequency variable in a damped sinusoidal term, called
mode.

3.5. Continuous solution

After applying the inverse transformations to the MD TFM,
the continuous solution results in

4 (1 . z
y(x,t) = /W; (w—#e"#‘sm (wut) * felx, t))K(y,x)(S_](t).

(13)
The step function, denoted by §_,(¢), is used since the solu-
tion is only valid for positive time instances; * means tem-
poral convolution. f.(x,t) is the spatially transformed exci-
tation force, derived by inserting f.; into (9). The angular
frequencies wy, as well as their corresponding damping co-
efficients o, can be calculated from the poles of the transfer
function model (11). They directly depend on the physical
parameters of the string and can be expressed by

(U‘M=

(e () e )

dl d3 ([UT)Z

Ou 2pA  2pA

[
(14)

Thus, an analytical continuous solution (13), (14) of the ini-
tial boundary value problem (4), (5), (6) is derived without
temporal or spatial derivatives.
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3.6. Implicit equation for slap synthesis

The PDE (4) becomes nonlinear by adding the solution-
dependent slap force fr(xf,t, y, y¢) in (7) to the right-hand
side of the linear PDE. Obviously, the application of the
Laplace transformation and the SLT to the nonlinear initial-
boundary-value problem cannot lead to an MD TFM, since
a TFM always requires linearity. However, assuming that the
nonlinearity can be represented as a finite power series and
that the nonlinearity does not contain spatial derivatives,
both transformations can be applied to the system [12]. With
(7), both premises are given such that the slap force can also
be transformed into the frequency domains. The Y (x,s)-
dependency of Fr can be expressed with (12) in terms of
Y(7,5) to be consistently in the spatial frequency domain.
Then an MD implicit equation is derived in the temporal and
spatial frequency domain

Y(u,s) = (Fe(tys) + Fe (5, Y(1,9))).  (15)

1
dp(s) + Bi(s)
Note that the different argument v in the output dependence
of Fe(p,s, Y(,s)) denotes an interaction between all modes
caused by the nonlinear slap force. Details can be found in
[12].

Since the transfer functions in (11) and (15) are the same,
also the spatial transformation kernels and frequency vari-
ables stay the same as in the linear case. Thus, also the tem-
poral poles of (15) are the same as in the MD TFM (11) and
the continuous solution results in the implicit equation

4 S (1 :
y(x,t) = m% (wye”f‘tsm (wut)
_ _ (16)
* (f;?(x? t) + ff(l’l’ t’ )_/('V, t))))

X K(p, x)0-1(1),

with w, and oy, given in (14). It is shown in the next sections
that this implicit equation is turned into explicit ones by ap-
plying different discretization schemes.

4. DISCRETIZATION AT AUDIO RATE

This section describes the discretization of the continuous
solutions for the linear and the nonlinear cases. It is per-
formed at audio rate, for example with sampling frequency
fs = I/T = 44.1 kHz, where T denotes the sampling interval.
The discrete realization is shown as it can be implemented
in the computer. For the nonlinear slap synthesis, some ex-
tensions of the discrete realization are required and, further-
more, the stability of the entire system must be controlled.

4.1. Discretization of the linear MD model

The discrete realization of the MD TFM (11) consists of a
three-step procedure performed below:

(1) discretization with respect to time,
(2) discretization with respect to space,
(3) inverse transformations.

Discretization with respect to time

Discretizing the time variable with t = kT, k € N and assum-
ing an impulse-invariant system, an s-to-z mapping is ap-
plied to the MD TFM (11) with z = e~*T. This procedure di-
rectly leads to an MD TFM with the discrete-time frequency
variable z:

T(1/pAw,)ze’" sin (w,T)

vd _
Y (H) Z) - zz _ ZZeJ“T cos (w‘uT) + eZUMT

Fduz). (17)

Superscript d denotes discretized variables. The angular fre-
quency variables and the damping coefficients are given in
(14). Pole-zero diagrams of the continuous and the discrete
system are shown in [27].

Discretization with respect to space

For the spatial frequency domain, there is no need for dis-
cretization, since the spatial frequency variable is already dis-
crete. However, a discretization has to be applied to the spa-
tial variable x. This spatial discretization consists of simply
evaluating the analytical solution (13) at a limited number
of arbitrary spatial positions x, on the string. They can be
chosen to be the pickup positions or the fret positions, re-
spectively.

Inverse transformations

The inverse SLT cannot be performed any longer for an infi-
nite number of y due to the temporal discretization. To avoid
temporal aliasing the number must be limited to yr such that
|wy, T| < 7, which also ensures realizable computer imple-
mentations. Effects of this truncation are described in [12].
The most important conclusion is that the sound quality is
not effected since only modes beyond the audible range are
neglected.

By applying the shifting theorem, the inverse z-trans-
formation results in yr second-order recursive systems in
parallel, each one realizing one vibrational mode of the
string. The structure is shown with solid lines in Figure 2.

This linear structure can be implemented directly in the
computer since it only includes delay elements z~!, adders,
and multipliers. Due to (14), the coefficients of the second-
order recursive systems in Figure 2 only depend on the phys-
ical parameters of the vibrating string.

4.2. Extensions for slap synthesis

The discretization procedure for the nonlinear slap synthe-
sis can be performed with the same three steps described in
Section 4.1. Here, the discretized MD TFM is extended with
the output-dependent slap force F&(u,z, Y4(v,2)) and thus
stays implicit. However, after discretization with respect to
space as described above, and inverse z-transformation with
application of the shifting theorem, the resulting recursive
systems are explicit. This is caused by the time shift of the ex-
citation function due to the multiplication with z in the nu-
merator of (17). Therefore, the linear system given with solid
lines in Figure 2 is extended with feedback paths denoted by
dashed lines from the output to additional inputs between
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fak)

y4(xa, k)

FIGURE 2: Basic structure of the FTM simulations derived from the linear initial boundary value problem (4), (5), and (6) with several
second-order resonators in parallel. Solid lines represent basic linear system, while dashed lines represent extensions for the nonlinear slap

force.
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FIGURE 3: Recursive system realization of one mode of the transversal vibrating string.

the unit delays of all recursive systems. The feedback paths
are weighted with the nonlinear (NL) function (7).

4.3. Guaranteeing stability

The discretized LTI systems derived in Section 4.1 are inher-
ently stable as long as the underlying continuous physical
model is stable due to the use of the impulse-invariant trans-
formation [25]. However, for the nonlinear system derived in
Section 4.2 this stability consideration is not valid any more.
It might happen that the passive slap force of the continu-
ous system becomes active with the direct discretization ap-
proach [24]. To preserve the passivity of the system, and thus
the inherent stability, the slap force must be limited such that
the discrete impulses correspond to their continuous coun-
terparts.

The instantaneous energy of the string vibration can be
calculated by monitoring the internal states of the modal de-
flections [12]. The slap force limitation can then be obtained
directly from the available internal states. For an illustration
of these internal states, the recursive system of one mode pyr
is given in Figure 3.

The variables ¢; ¢(pr) and c;s(pr), denoting the weight-
ings of the linear excitation force f4(k) at x. and of the slap
force ffd(k) at xg, respectively, result with (9), (10a) and (17)

in

. ) Vs
Cl(es) (pr) = sin (wy, T') sin (‘uTTx(e,S)) (18)

PAW;

The total instantaneous energy of the string vibration with-
out slap force density can be calculated with [12, 28] (time
step k and mode number yr dependencies are omitted for
concise notation)

Eyine (k) = A > (OﬁT + wﬁr)

o I = 271750 T cos (@, T) — jyeror

eZch. T

sin (wu, T)
(19)

In (19), the instantaneous energy is calculated without appli-
cation of the slap force since the internal states 7 (ur, k) are
used (see Figure 3). For calculating the instantaneous energy
E, (k) after applying the slap force, & (ur, k) must be replaced
with j/f)s(yT,k) in (19). To meet the condition of passivity
of the elastic slap collision, both energies must be related by
Eyibr(k) = Es(k). Here, only the worst-case scenario with
regard to the instability problem is discussed, where both
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energies are the same. By inserting into this energy equal-
ity the corresponding expressions of (19) and solving for the
slap force ffd(k) results in

fék)
= > es(pr) (26717 cos (wu T) 75 (ur, k) = 28 (ur, k) ),
ur
(20a)
with
cs (pr)

crs(ur) (oﬁT + wﬁr) | P 21T sin? (w,, T)

S (A 60) 8,08 Ty 7 (0, 7))
(20b)

The force limitation discussed here can be implemented
very efficiently. Only one additional multiplication, one
summation, and one binary shift are needed for each vibra-
tional mode (see (20a)), since the more complicated con-
stants ¢s(pr) have to be calculated only once and the weight-
ing of 7§ (ur, k) has to be performed within the recursive sys-
tem anyway (compare Figure 3).

Discrete realizations of the analytical solutions of the MD
initial boundary value problems have been derived in this
section. For the linear and nonlinear systems, they resulted
in stable and accurate simulations of the transversal vibrat-
ing string. The drawback of these straight forward discretiza-
tion approaches of the MD systems in the frequency domains
is the high computational complexity of the resulting real-
izations. Assuming a typical nylon guitar string with 247 Hz
pitch frequency, 59 eigenmodes have to be calculated up to
the Nyquist frequency at 22.050 kHz. With an average of 3.1
and 4.2 multiplications per output sample (MPOS) per re-
cursive system for the linear and the nonlinear systems, re-
spectively, the total computational cost results for the whole
string in 183 MPOS and 248 MPOS. Note that the fractions
of the average MPOS result from the assumption that there
are only few time instances where an excitation force acts on
the string, such that the input weightings of the recursive sys-
tems do not have to be calculated at each sample step. Since
this is also assumed for the nonlinear slap force, the fractional
part in the nonlinear system is higher than in the linear sys-
tem.

These computational costs are approximately five times
higher than those of the most efficient physical modeling
method, the DWG [21]. The next section shows that this dis-
advantage of the FTM can be fixed by using a multirate ap-
proach for the simulation of the recursive systems.

5. DISCRETIZATION WITH A MULTIRATE APPROACH

The basic idea using a multirate approach to the FTM realiza-
tion is that the single modes have a very limited bandwidth
as long as the damping coefficients o, are small. Subdivid-

ing the temporal spectrum into different bands that are pro-
cessed independently of each other, the modes within these
bands can be calculated with a sampling rate that is a frac-
tion of the audio rate. Thus, the computational complexity
can be reduced with this method. The sidebands generated
by this procedure at audio rate are suppressed with a syn-
thesis filter bank when all bands are added up to the output
signal. The input signals of the subsampled modes also have
to be subsampled. To avoid aliasing, the respective input sig-
nals for the modes are obtained by processing the excitation
signal £4(k) through an analysis filter bank. This general pro-
cedure is shown with solid lines in Figure 4. It shows several
modes (RS # i), each one running at its respective downsam-
pled rate.

This filter bank approach is discussed in detail in the next
two sections for the linear as well as for the nonlinear model
of the FTM.

5.1. Discretization of the linear MD model

For the realization of the structure shown in Figure 4, two
major tasks have to be fulfilled [29]:

(1) designing an analysis and a synthesis filter bank that
can be realized efficiently,

(2) developing an algorithm that can simulate band
changes of single sinusoids to keep the flexibility of the
FTM.

Filter bank design

There are numerous design procedures for filter banks that
are mainly specialized to perfect or nearly perfect reconstruc-
tion requirements [30]. In the structure shown in Figure 4
there is no need for a perfect reconstruction as in sound-
processing applications, since the sound production mecha-
nism is performed within the single downsampled frequency
bands. Therefore, inaccuracies of the interpolation filters can
be corrected by additional weightings of the subsampled re-
cursive systems. Linear phase filters with finite impulse re-
sponses (FIR) are used for the filter bank due to the vari-
ability of the single sinusoids over time. Furthermore, a real-
valued generation of the sinusoids in the form of second-
order recursive systems as shown in Figure 2 is preferred to
complex-valued first-order recursive systems. This approach
avoids on one hand additional real-valued multiplications of
complex numbers. On the other hand, the nonlinear slap
implementation can be performed in a similar way for the
multirate approach, as explained for the audio-rate realiza-
tion in Section 4.2. A multirate realization of the FTM with
complex-valued first-order systems is described in [31].

To fulfill these prerequisites and the requirement of low-
order filters for computational efficiency with necessarily flat
filter edges, a filter bank with different downsampling factors
for different bands has to be designed. A first step is to de-
sign a basic filter bank with Pgp equidistant filters, all using
the same downsampling factor rgp = Pgp. Due to the flat fil-
ter edges, there will be Pgp — 1 frequency gaps between the
single filters that have neither a sufficient passband amplifi-
cation nor a sufficient stopband attenuation. These gaps are
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Analysis filter bank

y4(xa k)
SN

Synthesis filter bank

FIGURE 4: Structure of the multirate FTM. Solid lines represent the basic linear system, while dashed and dotted lines represent the extensions
for the nonlinear slap force. RS means recursive system. The arrow between RS # 3 and RS # 4 indicates a band change.

filled with low-order FIR filters that realize the interpolation
of different downsampling factors than rgp. The combina-
tion of all filters forms the filter bank. It is used for the anal-
ysis and the synthesis filter bank as shown in Figure 4.

An example of this procedure is shown in Figure 5 with
Pgp = 4. The total number of bands is P = 7. The frequency
regions where the single filters are used as passbands in the
filter bank are separated by vertical dashed lines. The filters
are designed by a weighted least-squares method such that
they meet the desired passband bandwidths and stopband at-
tenuations. Note that there are several frequency regions for
each filter where the frequency response is not specified ex-
plicitly. These so-called “don’t care bands” occur since only
a part of the Nyquist bandwidth in the downsampled do-
main is used for the simulation of the modes. Thus, there can
only be images of these sinusoids in the upsampled version
in distinct regions. All other parts of the spectrum are “don’t
care bands,” for the lowpass filter they are shown as gray ar-
eas in Figure 5. Magnitude ripples of +3 dB are allowed in
the passband which can be compensated by a correction of
the weighting factors of the single sinusoids. The stopbands
are attenuated by at least —60 dB, which is sufficient for most
hearing conditions. Merely in studio-like hearing conditions
larger stopband attenuations must be used such that artifacts
produced by using the filter bank cannot be heard.

Due to the different specifications of the filters, concern-
ing bandwidths and edge steepnesses, they have different or-
ders and thus different group delays. To compensate for the
different group delays, delay-lines of length (Mmax — M,)/2
are used in conjunction with the filters. The number of coef-

—60F- 1 e

e
—90 k :'>'~<;->'~;€\.f7u~[i'ﬁ'-"

Magnitude response (dB)

w, T/m

FiGure 5: Top: frequency responses of the equidistant filters (with
downsampling factor four in this example). Center: frequency re-
sponses of the filters with other downsampling factors. Bottom: fre-
quency response of the filter bank. The downsampling factors r are
given within the corresponding passbands. The FIR filter orders are
between Mpyin = 34 and M. = 72 in this example. They realize a
stopband attenuation of at least —60 dB and allow passband ripples
of +3dB.

ficients of the interpolation filters are denoted by M,,, where
Mmax is the maximum order of all filters. The delay lines con-
sume some memory space but no additional computational
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cost [32]. Realizing the filter bank in a polyphase structure,
each filter bank results in a computational cost of

P

M
Chiterbank = ., —~ MPOS, (21)
p=1 rP

with the downsampling factors r, of each band. For the ex-
ample given above, each filter bank needs 73 MPOS. In (21)
it is assumed that each band contains at least one mode to
be reproduced, so that it is a worst-case scenario. As long as
the excitation signal is known in advance, the excitations for
each band can be precalculated such that only the synthesis
filter bank must be implemented in real time. The case that
the excitation signals are known and stored as wavetables in
advance is quite frequent in physical modeling algorithms,
although the pure physicality of the model is lost by this ap-
proach. For example, for string simulations, typical plucking
or striking situations can be described by appropriate excita-
tion signals which are determined in advance.

The practical realization of the multirate approach starts
with the calculation of the modal frequencies w,, and their
corresponding damping coefficients oy,. The frequency de-
notes in which band the mode is synthesized. The coefficients
of the recursive systems, as shown in Figure 2 for the audio
rate realization, have to be modified in the downsampled do-
main since the sampling interval T is replaced by

T =T = T, (22)

Superscript (r) denotes the downsampled simulation with
factor r. The downsampling factors of the different bands r,,
are given in the top and center plot of Figure 5. No further
adjustments have to be performed for the coefficients of the
recursive systems in the multirate approach, since modes can
be realized in the downsampled baseband or each of the cor-
responding images.

Band changes of single modes

One advantage of the FTM is that the physical parameters
of a vibrating object can be varied while playing. This is not
only valid for successively played notes but also within one
note, as it occurs, for example, in vibrato playing. As far as
one or several modes are at the edges of the filter bank bands,
these variations can cause the modes to change the bands
while they are active. This is shown with an arrow in Figure 4.
In such a case, the reproduction cannot be performed by just
adjusting the coefficients of the recursive systems with (22)
to the new downsampling rate and using the other interpo-
lation filter. This procedure would result in strong transients
and in a modification of the modal amplitudes and phases.
Therefore, a three-step procedure has to be applied to the
band changing modes:

(1) adjusting the internal states of the recursive systems
such that no phase shift and no amplitude difference
occurs in the upsampled output signal from this mode,

(2) canceling the filter output of the band changing mode,

(3) training of the new interpolation filter to avoid tran-
sient behavior.

Similar to the calculation of the instantaneous energy for slap
synthesis, also the instantaneous amplitude and phase can be
calculated from the internal states of a second-order recursive
system, y; and j,. They can be calculated for the old band
with downsampling factor 7|, as well as for the new band
with factor r,. Demanding the equality of both amplitudes
and phases, the internal states of the new band are calculated
from the internal states of the old band to

= (r2)

)y Sin (w2 T)
N1 :)’5 e

sin (wur T)

sin (w,, T
+}7§H)EUMIT(COS (w[,,rzT) _ ( u'2 )>’ (23)

tan (wyr T)
)—/g‘z) — )—/éfl)ea#(rl —rz)T.

The second item of the three-step procedure means that
the output of the synthesis interpolation filter must not con-
tain those modes that are leaving that band at time instance
ke T for time steps kT > kg, T Since the filter bank is a causal
system of length M, T, the information of the band change
must either be given in advance at (ke, — M) T or a turbo fil-
tering procedure has to be applied. In the turbo filtering, the
calculations of several sample steps are performed within one
sampling interval at the cost of a higher peak computational
complexity. In this case, the turbo filtering must calculate the
previous outputs of the modes, leaving the band and sub-
tract their contribution to the interpolated output for time
instances kT > kg, T. Due to the higher peak computational
complexity of the turbo filtering and the low orders of the
interpolation filters, the additional delay of M, T is preferred
here.

In the same way, as the band changing mode must not
have an effect on the leaving band from k4T on, it must
also be included in the interpolation filter of the new band
from this time instance on. In other words, the new interpo-
lation filter must be trained to correctly produce the desired
mode without transients, as addressed in the third item of the
three-step procedure above. It can also be performed with the
turbo processing procedure with a higher computational cost
or with the delay of M, T between the information of band
change and its effect in the output signal.

Now, the linear solution (13) of the transversal vibrating
string derived with the FTM is realized also with a multirate
approach. Since the single modes are produced at a lower rate
than the audio rate, this procedure saves computational cost
in comparison to the direct discretization procedure derived
in Section 4.1. The amount of computational savings with
this procedure is discussed in more detail in Section 6.

5.2. Extensions for slap synthesis

In the discretization approach described in Section 4.2 the
output y4(x,, k) is fed back to the recursive systems via the
path of the external force fd(k) (compare Figure 2). Using
the same path in the multirate system shown in Figure 4
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would result in a long delay within the feedback path due
to the delays in the interpolation filters of the analysis and
the synthesis filter bank. Furthermore, the analysis filter bank
should not be realized in real time as long as the excitation
signal is known in advance.

Fortunately, the recursive systems calculate directly the
instantaneous deflection of the single modes, but in the
downsampled domain. Considering a system where only
modes are simulated in baseband, the signal can be fed back
in between the down- and upsampled boxes in Figure 4 and
thus directly in the downsampled domain. In comparison to
the full-rate system, the observation of the penetration of the
string into the fret might be delayed by up to (r, — 1)T sec-
onds. This delay results in a different slap force, but applying
the stabilization procedure described in Section 4.3 the sta-
bility is guaranteed.

However, in realistic simulations there are also modes in
the higher frequency bands than just in the baseband. This
modifies the simulations described above in two ways:

(i) the deflection of the string and thus the penetration
into the fret depends on the modes of all bands,

(ii) there is an interaction due to nonlinear slap force be-
tween all modes in all bands.

The calculation of the instantaneous string deflection in the
downsampled rates is rarely possible, since there are various
downsampling rates as shown in Figure 4. Thus, there are
only a few time instances k,; T, where the modal deflections
are updated in all bands at the same time. Since in almost all
bands one sample value of the recursive systems represents
more than half the period of the mode, it is not reasonable
to use the previously calculated sample value for the calcu-
lation of the deflection at time instances kT # k1. How-
ever, all the equidistant bands of the filter bank as shown
on top of Figure 5 have the same downsampling factor and
can thus represent the same time instances for the calcula-
tion of the deflection. Furthermore, most of the energy of
guitar string vibrations is in the lower modes [28], such that
the deflection is mostly defined by the modes simulated in
the lowest bands. Therefore, the string deflection is deter-
mined here at each rith audio sample from all equidistant
bands and each (kmodr; = 0) A (kmodr, = 0)th audio
sample from all equidistant bands and bands with the down-
sampling rate of the lowest band-pass. This is shown in the
right dashed and dotted paths in Figure 4. In the example
of Figure 5, in each twelfth audio sample the deflection is
calculated from the four equidistant bands and each twelfth
audio sample it is calculated also from the second and sixth
bands.

In the same way the string deflection is calculated with
varying participation of the different bands, also the slap
force is only applied to modes in these bands as shown in the
left dashed and dotted paths in Figure 4. This procedure has
two effects: firstly, there is no interaction between all modes
at all (downsampled) time instances from the slap force. Sec-
ondly, the slap force itself, being an impulse-like signal with a
bright spectrum, is filtered by the filter bank. The first effect is
not that important since the procedure ensures interactions

between most modes but it only restricts them to few time
instances, in the example above every fourth or twelfth audio
sample. These low delays of the interaction are not notice-
able. The second effect can be handled by adding impulses
directly to the interpolation filters of the synthesis filter bank.
The weights of the impulses in each band are determined by
the difference between the sum of all slap force impulses in
all bands and the applied slap force impulses in that band. In
that way, a slap force, only applied to baseband modes, pro-
duces a nearly white noise slap signal at audio rate.

The stabilization procedure described in Section 4.3 can
be also applied to the multirate realization of the nonlinear
slap force. The only differences to the audio rate simulations
are that T is replaced by r, T as given in (22) and the sum-

mation for the calculation of the stable slap force f(k) as
given in (20a) is only performed over the modes realized in
the participating bands. Thus, there are time instances where
the slap force is only applied to the modes in the equidistant
bands and time instances where it is applied also to bands
with another downsampling factor. This is shown with the
dotted lines in Figure 4. Due to the different cases of partici-
pating bands, also two versions of the constants ¢s(ur) have
to be calculated, since the products and sums in (20b) de-
pend only on the participating modes.

Now, a stable and realistic simulation of the nonlinear
slap force is also obtained in the multirate realization. In the
nonlinear case, the simulation accuracy obviously decreases
with higher downsampling factors and thus with an increas-
ing number of bands. This effect is discussed in more detail
in the next section.

6. SIMULATION ACCURACY AND COMPUTATIONAL
COMPLEXITY

In the previous sections, stable, linear and nonlinear, discrete
FTM models have been derived. In the next sections, the sim-
ulation accuracies of these models and their corresponding
computational complexities are discussed.

6.1. Simulation accuracies

For the linearly vibrating string, the discrete realization of
the single modes at full rate is an exactly sampled version of
the continuous modes. This is true as long as the input force
can be modeled with discrete impulses, since the impulse-
invariant transformation is used as explained in Section 4.1.
However, the exactness of the complete system is lost with
the truncation of the summation of partials in (12) to avoid
aliasing effects. Therefore, the results are only accurate as
long as the excitation signal has only low energy in the trun-
cated high frequency range. This is true for the guitar and
most other musical instruments [28] and, furthermore, the
neglected higher partials cannot be received by the human
auditory system as long as the sampling interval T is cho-
sen small enough. Since the audible modes are simulated ex-
actly and the simulation error is out of the audible range, the
FTM is used here as an optimized discretization approach for
sound synthesis applications.
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In multirate simulations of linear systems as described
in Section 5.1, the single modes are produced exactly within
the downsampled domain. But due to the imperfectness of
the analysis filter bank, modes are not only excited by the
correct frequency components of the excitation force, but
also by aliasing terms that occur with downsampling. In the
same way, the images, produced by upsampling the outputs
of the recursive systems, are not suppressed perfectly with
the synthesis filter bank. However, the filter banks have been
designed such that the stopband suppressions are at least
—60 dB. This is sufficient for most listening conditions as de-
fined in Section 5.1. Furthermore, the filters are designed in
a least-mean-squares sense such that the energy of the side
lobes in the stopbands is minimized. Further filter bank op-
timizations with respect to the human auditory system are
difficult since the filter banks are designed only once for all
kinds of mode configurations concerning their positions and
amplitude relations in the simulated spectrum.

In the audio rate string model excited nonlinearly with
the slap force as described in Section 4.2, the truncation of
the infinite sum in (16) also effects the accuracy of the lower
modes through the nonlinearity. The simulations are accu-
rate only as long as the external excitation and the nonlinear-
ity have low contributions to the higher modes. Although the
external excitation contributes rarely to the higher modes,
there is an interaction between all modes due to the slap
force. This interaction grows with the modal frequencies. It
can be directly seen in the coefficients c5(yr) in (20b), since
they have larger absolute values for higher frequencies. How-
ever, the force contributions of the omitted modes are dis-
tributed to the simulated modes since the denominator of
(20b) decreases for less simulated partials. Furthermore, the
sign of ¢s(ur) changes with yr due to (18) as well as the ex-
pression in parenthesis of (20a) does with time. Thus, there is
a bidirectional interaction between low and high modes and
not only an energy shift from low to high frequencies. Ne-
glecting modes out of the audible range results in less energy
fluctuations of the audible modes. But since the neglected en-
ergy fluctuations have high frequencies, they are also out of
the audible range.

In the multirate implementation of the nonlinear model
as described in Section 5.2, the interactions between al-
most all modes are retained. It is more critical here that
the observation of the fret-string penetration might be
delayed by several audio samples. This circumvents not
only the strict limitation of the string deflection by the
fret, but is also changes the modal interactions because
the nonlinear system is not time-invariant. However, the
audible slap effect stays similar to the full-rate simula-
tions and sounds realistic. Audio examples can be found at
http://www.LNT.de/~traut/JASP04/sounds.html.

It has been shown that the FTM realizes the continuous
solutions of the physical models of the vibrating string ac-
curately. With the multirate approach, the FTM looses the
exactness of the linear audio rate model, but the inaccura-
cies cannot be heard. For the nonlinear model, the multirate
approach leads to audible differences compared to the audio
rate simulations, but the characteristics of the slap sounds

are preserved. Thus, simplifications and computational sav-
ings due to the filter bank approach are performed here with
respect to the human auditory system.

6.2. Computational complexities

The computational complexities of the FTM are explained
with two typical examples, a single bass guitar string sim-
ulated in different qualities and a six-string acoustic gui-
tar. The first example simulates the vibration of one bass
guitar string with fundamental frequency of 41 Hz. The cor-
responding physical parameters can be found, for example,
n [12]. This string is simulated in different sound quali-
ties by varying the number of simulated modes from 1 to
117, which corresponds to the simulation of all modes up
to the Nyquist frequency with a sampling frequency of f; =
44.1kHz.

Figure 6 shows the dependency of the computational
complexities on the number of simulated modes and thus
the simulation accuracy or sound quality. The procedure
used here to enhance the sound quality consists of sim-
ulating more and more modes in consecutive order from
the lowest mode on. Thus, the enhancement of the sound
quality sounds like opening the lowpass in subtractive syn-
thesis. The upper plot shows the computational complexi-
ties for the linear system, simulated at audio rate and with
the multirate approach using filter banks with P = 7 and
P = 15. The bottom plot shows the corresponding graphs
for the nonlinear systems. It is assumed that the exter-
nal forces only act on the string at one tenth of the out-
put samples such that the weighting of the inputs do not
have to be performed at each time instance. Thus, each lin-
ear recursive system needs 3.1 MPOS for the calculation of
one output sample, whereas the nonlinear system needs 4.2
MPOS.

It can be seen that the multirate implementations are
much more efficient than the audio-rate simulations, except
for simulations with very few modes. With all 117 simulated
modes, the relation between audio rate and multirate sim-
ulations (P = 7) is 363 MPOS to 157 MPOS for the linear
system and 492 MPOS to 187 MPOS for the nonlinear sys-
tem. This is a reduction of the computational complexity of
more than 60%.

The steps in the multirate graphs denote the offset of the
filter bank realization and that the interpolations of the fil-
ter bank bands are only calculated as long as there is at least
one mode simulated in those bands. On the one hand, the
regions between the steps are steeper in the filter bank with
P = 7 than in that with P = 15 due to the higher downsam-
pling factors in filter banks with more bands. On the other
hand, the steps are higher for filter banks with more bands
due to the higher interpolation filter orders. In this example,
the multirate approach with P = 7 is superior to the filter
bank with P = 15 for high qualities, since there are only a
few modes simulated in the higher bands of P = 15, but the
filter bank offset is higher. For other configurations with a
higher number of simulated modes, this situation is different
as shown in the next example.
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FiGure 6: Computational complexities of the FTM simulations dependent on the number of simulated modes at audio rate (dotted line),
and with multirate approaches with P = 7 (dashed line) and P = 15 (solid line). (a): Linearly vibrating string, (b): vibrating string with

nonlinear slap forces.

The second example shows the computational complex-
ities of the simultaneous simulations of six independent
strings as they occur in an acoustic guitar. Obviously, there is
only one interpolation filter bank needed for all strings. The
average number of simulated modes for each guitar string
is assumed to be 60. In contrast to the first example, it is
assumed that the modes are equally distributed in the fre-
quency domain, such that at least one mode is simulated in
each band.

Figure 7 shows that the computational complexities de-
pend on the choice of the used filter bank. On the one hand,
each filter bank needs a fixed amount of computational cost
which grows with the number of used bands. On the other
hand, filter banks with more bands provide higher down-
sampling factors for the production of the sinusoids which
saves computational cost. Thus, the choice of the optimal
filter bank depends on the number of simultaneously sim-
ulated modes. For practical implementations this has to be
estimated in advance.

It can be seen that for the linear case (solid line) the
minimum computational cost is 272 MPOS using the filter
bank with P = 11. In the nonlinear case, the filter bank
with P = 15 has the minimum computational cost with 319
MPOS for the simulation of all six strings. Compared to the
audio-rate simulations with 1116 MPOS and 1512 MPOS for
the linear and nonlinear case, respectively, the multirate sim-
ulations allow computational savings up to 79%. Thus, the
multirate simulations have a computational complexity of
approximately 45 MPOS (53 MPOS) for each linearly (non-
linearly) simulated string.
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Figure 7: Computational complexities of the FTM simulations of a
six-string guitar dependent on the number of bands for the multi-
rate approach. Solid line: linearly vibrating string. Dashed line: vi-
brating string with nonlinear slap forces.

Compared to high quality DWG simulations, the com-
putational complexities of the multirate FTM approach are
nearly the same. Linear DWG simulations need up to 40
MPOS for the realization of the reflection filters [21] and
the nonlinear limitation of the string by the fret additionally
needs 3 MPOS per fret position [22].
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7. CONCLUSIONS

The complete procedure of the FTM has been described from
the basic physical analysis of a vibrating structure resulting in
an initial boundary value problem via its analytical solution
to efficient digital multirate implementations. The transver-
sal vibrating dispersive and lossy string with a nonlinear slap
force served as an example. The novel contribution is a thor-
ough investigation of the implementation and the properties
of a multirate realization.

It has been shown that the differences between audio-
rate and multirate simulations for linearly vibrating string
simulations are not audible. The differences of the nonlin-
ear simulations were audible but the multirate approach pre-
serves the sound characteristics of the slap sound. The ap-
plication of the multirate approach saves almost 80% of the
computational cost at audio rate. Thus, it is nearly as efficient
as the most popular physical modeling method, the DWG.

The multirate FTM is by far not limited to the example of
vibrating strings. It can be used in a similar way to spatially
multidimensional systems, like membranes or plates, or even
to other physical problems like heat flow or diffusion.
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