
EURASIP Journal on Applied Signal Processing 2004:5, 591–604
c© 2004 Hindawi Publishing Corporation

PhantomNet: Exploring Optimal Multicellular
Multiple Antenna Systems

Syed A. Jafar
Electrical Engineering and Computer Science, University of California, Irvine, Irvine, CA 92697-2625, USA
Email: syed@uci.edu

Gerard J. Foschini
Bell Laboratories, Lucent Technologies, 791 Holmdel-Keyport Road, Holmdel, NJ 07733, USA
Email: gjf@lucent.com

Andrea J. Goldsmith
Wireless Systems Laboratory, Stanford University, Stanford, CA 94305-9505, USA
Email: andrea@ee.stanford.edu

Received 20 December 2002; Revised 11 August 2003

We present a network framework for evaluating the theoretical performance limits of wireless data communication.We address the
problem of providing the best possible service to new users joining the system without affecting existing users. Since, interference-
wise, new users are required to be invisible to existing users, the network is dubbed PhantomNet. The novelty is the generality
obtained in this context. Namely, we can deal with multiple users, multiple antennas, and multiple cells on both the uplink
and the downlink. The solution for the uplink is effectively the same as for a single cell system since all the base stations (BSs)
simply amount to one composite BS with centralized processing. The optimum strategy, following directly from known results, is
successive decoding (SD), where the new user is decoded before the existing users so that the new users’ signal can be subtracted out
to meet its invisibility requirement. Only the BS needs to modify its decoding scheme in the handling of new users, since existing
users continue to transmit their data exactly as they did before the new arrivals. The downlink, even with the BSs operating as
one composite BS, is more problematic. With multiple antennas at each BS site, the optimal coding scheme and the capacity
region for this channel are unsolved problems. SD and dirty paper (DP) are two schemes previously reported to achieve capacity
in special cases. For PhantomNet, we show that DP coding at the BS is equal to or better than SD. The new user is encoded
before the existing users so that the interference caused by his signal to existing users is known to the transmitter. Thus the
BS modifies its encoding scheme to accommodate new users so that existing users continue to operate as before: they achieve
the same rates as before and they decode their signal in precisely the same way as before. The solutions for the uplink and the
downlink are particularly interesting in the way they exhibit a remarkable simplicity and an unmistakable, near-perfect, up-down
symmetry.

Keywords and phrases: channel capacity, dirty paper coding, duality, broadcast channel, successive decoding, multiple-input
multiple-output systems.

1. INTRODUCTION

The rapid growth of cellular networks and the anticipation of
ever increasing demand for higher data rates have expanded
the scope of wireless research from single user, and single
cell, and single antenna systems to multiuser multicellular
systems employing multiple antennas. A traditional way of
handling the multiantenna, multiuser, and multicellular sys-
tem has been to reduce it to a single antenna, single user,
and single cell system by orthogonally splitting the chan-
nel among the users in time/frequency/code/space, employ-

ing the base station antennas for sectoring/beamforming,
and treating cochannel interference from other cells as noise.
Moreover, since early wireless networks have been designed
primarily for voice traffic, rate adaptation was not consid-
ered. This constrained approach may be simpler, but quite
often it leads to suboptimal strategies. In order to estimate
the absolute performance limits of these multidimensional
systems, we need to explicitly account for the presence of
multiple users, multiple antennas, and multiple cells on both
the uplink and the downlink.

In this paper, where wireless data communication is
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highlighted, the focus is on finding the best transmit strategy.
Due to the presence of a multiplicity of contending users, the
best transmit strategy is not as straightforward as for a single-
user system. Assigning limited communication resources to
effect the best transmit strategy is particularly relevant for
handling delay tolerant data traffic since helping some users
typically amounts to slowing others. The best strategy, of
course, depends on the priorities assigned to each user. Given
the prioritization, say, for example, first-come-first-served
(FCFS), we find here the optimum communication means
under different criteria.

Although we will proceed with the FCFS prioritization
in our presentation, our results hold for other means of
prioritizing such as last-come-first-served, random order-
ing, or any scheme that predetermines an ordering among
users.

We consider both the uplink and the downlink of a mul-
tiuser multicellular system using multiple antennas at both
ends. We consider a system that evolves in time with new
users entering the system and old users leaving the system.
Using FCFS, our objective is to provide the best service pos-
sible to the new users as they enter the system, without pe-
nalizing the users already in the system. Thus each user in
the system has a higher priority than the users that come
after him. Subsequent users are served under the require-
ment that the previous ones are not affected: interference-
wise, new users must be invisible to exiting users. Since for
both the uplink and the downlink only earlier entrants inter-
fere while later entrants are invisible, the network is dubbed
PhantomNet. The strategies that affect this invisibility will
be seen to be successive decoding (SD) for the uplink (a
form of multiuser detection) and dirty paper (DP) coding
for the downlink. In our network context, these strategies
are particularly interesting both because of their simplic-
ity as well as the unmistakable symmetry evident between
uplink-downlink operation. Just how resources like base sta-
tions, bandwidth, spatial modes, and power are used is not
preordained. Rather, under the FCFS regime, the network
can self-organize the deployment of these communication
resources.

The FCFS model assigns lower priority to new users.
However, as previous users complete their transmission, the
user moves up on the priority scale. So users that stay in
the system longer tend to experience a better average service.
In other words, shorter messages experience a lower average
rate, while longer messages experience a higher average rate.
It is therefore reasonable to expect that the FCFS scheduling
algorithm would make the time required to transmit to dif-
ferent users’ messages more equal.1

1If one chooses instead a last-come-first-served model, short messages
would see higher average rates, and long messages would see lower average
rates. Thus last-come-first-served scheduling would make the time required
to transmit different users’ messages more disparate. The average number
of simultaneously active users would reflect the average interference seen by
the users. Overall, the choice of the scheduling algorithm for a system will
depend on such criteria.

Our scope here is limited to the presentation of theoret-
ical findings. These findings provide a tractable framework
in which performance of multicellular, multiuser, and mul-
tiantenna wireless networks can be numerically evaluated
through simulation. Information theoretic optimization is at
the core of our approach. Simulation results with DP coding
presented in [1] complement this work.

2. SYSTEMMODEL

Although we are ultimately interested in a multicellular sys-
tem, for simplicity, we start with a single base station. Multi-
ple base stations will be addressed in Section 7.

2.1. Uplink

The uplink is characterized by the following equation:

Y =
K∑
i=1

HiXi +N , (1)

where Y is the received vector at the base station, K is the
number of users currently active in the system, Hi is the flat-
fading matrix channel of user i, and N is the additive white
Gaussian noise (AWGN) vector at the base station.

Without loss of generality, we assume that the users are
indexed by the order in which they arrive. So user 1 is the
first user in the system, while userK is the last user to join the
system. The users are subject to transmit power constraints
given by

trace
[
E
[
XiX

†
i

]] ≤ Pi, 1 ≤ i ≤ K. (2)

Note that there is no data coordination between users, so the
Xi are independent.

2.2. Downlink

Finding the optimal transmit strategy for the downlink with
multiple antennas is a hard problem. This is because the
multiple antenna downlink channel is a nondegraded broad-
cast channel and its capacity region is a long standing un-
solved problem in information theory [2]. The optimal cod-
ing strategy for the multiple antenna downlink is therefore
unknown. The special cases of the AWGN broadcast chan-
nel where the optimal coding strategy is known include the
degraded broadcast channel (single transmit antenna at the
BS), and the recently solved sum rate capacity of multiple
user vector broadcast channel with multiple transmit anten-
nas at the BS and at each of the mobiles [3, 4, 5, 6, 7]. While
SD achieves capacity in the first case, DP coding based on
the results of [8] achieves capacity in the latter. DP cod-
ing can also be shown to achieve capacity for the degraded
AWGN broadcast channel. Note that for all these cases where
the capacity is known, it is achieved with SD or DP coding
and with Gaussian codebooks. For this reason, in this pa-
per, we will restrict our downlink transmit strategies to these
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two coding schemes and we will assume that Gaussian code-
books are used. These assumptions may not be restrictive
at all in case the conjectures about the optimality of Gaus-
sian codebooks on the downlink can be established [9, 10].
Thus, our downlink model is given by the following equa-
tion:

Yi = Hi

K∑
j=1

Xj +Ni, (3)

where Yi, Xi, Hi, and Ni are the output vector, the input vec-
tor, the channel matrix, and the AWGN vector for user i. For
both SD and DP coding strategies, the input vectors corre-
sponding to different users are independent. As in the uplink
model described earlier, the downlink model also assumes
that the users are indexed by the order in which they ar-
rive. Further, the power in each user’s input vector is given
by

trace
[
E
[
XiX

†
i

]] ≤ Pi, 1 ≤ i ≤ K. (4)

We would also like to point out that a “ranked known
interference” scheme based on the results of [3] was used in
[11] to minimize the delay in a multiuser multicellular sys-
tem with multiple antennas at the base station and a single
receive antenna at each mobile. While the scheme itself is
suboptimal and limited in scope to a single receive antenna
at each mobile, it is another example of a simple way to per-
form resource allocation on the downlink. The results of [11]
are interesting and complement this work.

Unlike the uplink where users have individual power con-
straints, on the downlink, it is possible to redistribute trans-
mit powers across users without changing the total transmit-
ted power from the base station. Thus the downlink is typi-
cally characterized by a sum power constraint.

For both the uplink and the downlink, the channel is as-
sumed to experience slow and flat fading. Note that, with
a sufficiently refined partition of the frequency band, a
frequency-selective fading channel can be viewed as a num-
ber of parallel spectrally disjoint noninterfering essentially
flat subchannels. It follows that, for any desired accuracy, the
resulting channel matrix is equivalent to a block-diagonal
flat-fading channel matrix. Hence the flat channel analy-
sis presented here extends to frequency-selective fading in a
straightforward manner. We assume that the channel matri-
ces are perfectly known to the BS. The users are assumed to
know their own channel and the spatial covariance structure
of the sum of the noise and the relevant interference seen at
the receiver.

Lastly, since the notion of substreams comes up in later
sections, we elaborate what we mean by it. Note that a user’s
input vector Xi may further be composed of several indepen-
dent vectors Xi1,Xi2, . . . . This amounts to splitting the to-
tal rate for that user among several substreams. For a single
user, it can be shown that rate splitting does not decrease ca-
pacity. For a single-antenna multiple access AWGN channel,
rate splitting allows all points in the capacity region to be

achieved without time-sharing [12]. For our purpose, split-
ting a users’ power into substreams allows the substreams
from different users to be interleaved in any manner with re-
spect to the encoding/decoding order.

3. PROBLEMDEFINITION

Based on the FCFS model, our primary objective is to ac-
commodate new users only to the extent that the users that
are already active in the system are not affected. While this
constitutes the general idea, to be precise, we need to distin-
guish between the following two cases.

Existing users are unaffected (preserving rates)

This would mean that the existing users continue to have the
same rates as before. However, this leaves open the possibil-
ity that the existing users may adjust their transmit strategy
on the uplink or their receive strategy on the downlink in
some way to accommodate the new user. For example, on
the downlink, it is conceivable that if superposition coding
was used, then the existing users may need to decode and
subtract out the new users signal before detecting their own
signal. If this allows the existing users to achieve the same
rates as before, we say that the existing users are not affected,
or the rates are preserved.

Existing users are strictly unaffected
(making the accommodation of new users invisible)

We could be more strict in our problem statement. We could
demand that the new users be accommodated in such a way
that not only do the existing users continue to achieve the
same rates as before but also they are completely oblivious to
the presence of new users. That is, the existing users’ trans-
mitters/receivers on the uplink/downlink continue to pro-
cess the input data stream/received signal exactly as before to
generate the transmitted signal/output data stream. Thus the
only changes needed to accommodate the new user are made
at the base stations. To distinguish this case from the previ-
ous one, we say that the existing users are strictly unaffected,
or the new users are invisible.

Within each of the cases mentioned above, there are sev-
eral, more or less equally significant, problems that one can
pose. We list these problems in Sections 3.1 and 3.2 for the
uplink and the downlink, respectively. We will see later that
all the uplink problems really amount to the same problem—
basically the same solution procedure covers all of the up-
link variations. Among the downlink problems, we will en-
counter some substantive differences.

3.1. Uplink

On the uplink, the user’s transmit power is the limiting fac-
tor. So, for the uplink, the first set of problems UP1a and
UP1b (uplink problems 1a and 1b) that we wish to solve are
as follows.

UP1a (preserving rates). Allocate the maximum possible
rate to user K (new user) with transmit power PK such
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that the existing users’ rates are not affected. Note that
this allows the existing users to modify their transmit
strategy to accommodate the new user so long as their
rates are unaffected.

UP1b (making the new user invisible). Allocate the maxi-
mum possible rate to user K (new user) with transmit
power PK such that the existing users are strictly unaf-
fected. Note that now, we require that the new user be
invisible to the existing users, that is, the existing users
must not modify their transmit strategy or their rates.
Thus, the existing users are, in effect, oblivious to the
presence of the new user.

We also briefly address the alternate problem where users
have certain rate requirements and wish to achieve those
rates with the minimum possible transmit power as follows.

UP2a (preserving powers). Determine the minimum possi-
ble transmit power for a new user K with rate require-
ment RK such that the existing users’ transmit powers
are not affected.

UP2b (making the new user invisible). Determine the mini-
mum possible transmit power for a new user K with
rate requirement RK such that the existing users are
strictly unaffected.

3.2. Downlink

On the downlink, each base station distributes the total
transmit power among the users it serves. Thus, unlike the
uplink where each user has an individual power constraint,
the downlink is characterized by a sum power constraint in-
stead. The coding schemes we consider for the downlink are
SD and DP. A brief description of these schemes is presented
later. In particular, we wish to determine the following.

DP1. Is DP or SD a better scheme for the downlink in gen-
eral?

For FCFS scheduling, the corresponding problems on the
downlink would be as follows.

DP2a (preserving rates). Determine the maximum possible
rate for user K subject to a total transmit power P1 +
P2 + · · · + PK such that existing users’ rates are not
affected.

DP2b (making the new user invisible). Determine the maxi-
mum possible rate for a user K subject to a total trans-
mit power P1 + P2 + · · · + PK such that existing users
are strictly not affected.

Note that in problems DP2a and DP2b, the BS adds a power
PK to the total power to accommodate a new user (user K)
into the system. The powers P1,P2, . . . ,PK determine how the
rates are allocated to the users and need not be the actual
transmitted powers in each user’s input signal.

Note that as the channel changes, the users’ rates/powers
may change. So for each channel realization, we solve the
FCFS scheduling problems listed above. The assumption that
the channel varies slowly is important in this respect.

4. MIMO CAPACITY REVIEW

Before proceeding with the solutions to the problem defined
in Section 3, we briefly visit the MIMO capacity expression.
Consider the MIMO channel

Y = HX +
I∑

i=1
HiXi +N. (5)

Here, X is the desired signal and X1,X2, . . . ,XI represent
I independent interference signals. All input signals are
assumed to be Gaussian with input covariance matrices
Q,Q�1 ,Q

�
2 , . . . ,Q

�
I , respectively. Recall that the input covari-

ance matrices identify the optimal spatial eigenmodes and
the optimal power allocation across those eigenmodes. The
input covariancematrices of the interfering signalsQ�i are al-
ready fixed.We are interested in the optimal input covariance
matrixQ� for the desired signalX subject to total power con-
straint trace(Q) ≤ P. TheH matrices represent the channels.
The noise is assumed to be AWGN with covariance matrix
normalized to identity. Note that this could apply to either
the downlink or the uplink.

Since the interference is independent of the signal, the
capacity of this channel is

C = max
Q

I(X ;Y)

= max
Q

h(Y)− h(Y | X)

= max
Q

h

(
HX+

I∑
i=1

HiXi+N

)
−h
(
HX +

I∑
i=1

HiXi +N|X
)

= max
Q

h

(
HX +

I∑
i=1

HiXi +N

)
− h

( I∑
i=1

HiXi +N

)

= max
Q

log

∣∣∣∣∣I +HQH† +
I∑

i=1
HiQ

�
i H

†
i

∣∣∣∣∣
− log

∣∣∣∣∣I +
I∑

i=1
HiQ

�
i H

†
i

∣∣∣∣∣
= max

Q
log

∣∣∣∣∣I +
(
I +

I∑
i=1

HiQ
�
i H

†
i

)−1
HQH†

∣∣∣∣∣.
(6)

Thus the capacity of this channel can be expressed as C =
log |I + (I +

∑I
i=1HiQ

�
i H

†
i )
−1HQ�H†|. The optimal Q� is

determined as follows.
Since log |I +AB| = log |I + BA|, we can also express the

capacity as

C = max
Q

log

∣∣∣∣∣∣∣I +
(
I +

I∑
i=1

HiQ
�
i H

†
i

)−1/2

×HQ�H†
(
I +

I∑
i=1

HiQ
�
i H

†
i

)−1/2†∣∣∣∣∣∣∣
(7)

= max
Q

log
∣∣I + H̃QH̃†∣∣, (8)
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where

H̃ =
(
I +

I∑
i=1

HiQ
�
i H

†
i

)−1/2
H. (9)

But (8) is the familiar MIMO capacity expression for a sin-
gle user with channel H̃ in the presence of AWGN and with-
out interference. The optimal input covariance matrix Q is
obtained by the well-known waterfilling algorithm over the
eigenmodes of H̃ [13].

Thus, in summary, the capacity for the channel (5) is
given by

C = log

∣∣∣∣∣I +
(
I +

I∑
i=1

HiQ
�
i H

†
i

)−1
HQ�H†

∣∣∣∣∣, (10)

whereQ� is the optimal input covariance matrix obtained by
waterfilling over the effective channel (9). Similar expressions
appear quite frequently in later sections. To avoid repetition,
instances of the same expressions presented later may be less
descriptive. We advise the reader to refer back to this section
and the references for details.

5. UPLINK SOLUTION

The uplink presents a relatively simple problem since the
capacity region and the optimal coding strategy are known
even with multiple antennas at the BS and the mobiles [14].
The desired solution is easily seen to be the well-recognized
points on the capacity region corresponding to SD of users
in a particular order. However, for the sake of completeness,
and to strike a parallel with the downlink solutions presented
later, we provide the solution and a self-contained proof as
follows.

The solution to the first uplink problem UP1a (preserv-
ing rates) is given by the following theorem.

Theorem 1. The optimal set of rates R�i on the uplink is

R�i = log

∣∣∣∣∣I +
(
I +

i−1∑
j=1

HjQ
�
j H

†
j

)−1
HiQ

�
i H

†
i

∣∣∣∣∣, (11)

where Q�i is the optimal input covariance matrix obtained by
waterfilling over the eigenmodes of the effective channel ma-
trix (I +

∑i−1
j=1HjQ

�
j H

†
j )
−1/2Hi subject to the power constraint

trace(Qi) = Pi.

In other words, an optimal strategy for the uplink is to
use SD (multiuser detection with successive interference can-
cellation) at the base station in the inverse order of the user’s
indices. The new user gets decoded first and his signal is sub-
tracted out so that the existing users do not see him as in-
terference. The highest rate that the new user can support
without affecting existing users is simply given by the single-
user waterfilling solution treating the existing users’ signal as
colored Gaussian noise.

Proof. We start with user 1. Ignoring the rest of the users, the
highest rate he can support with power P1 is

R�1 = max
p1(·)

I
(
X1;H1X1 +N

)
, (12)

where the maximization is over all distributions p1(X1) that
satisfy the power constraint (2). The optimal p�1 (·) is the well
known zero-mean vector Gaussian distribution with covari-
ance matrix Q�1 determined by waterfilling over the eigen-
modes of H1. Let X�1 ∼ p�1 . Note that the users’ channels Hi

are known and thereforeH1 is not a random variable in (12).
Now for the user 2, ignoring all but the user 1, from the

multiple access capacity region, we have

R1 + R2 ≤ max
p1(·),p2(·)

I
(
X1,X2;H1X1 +H2X2 +N

)
. (13)

But R1 and p1 are already determined by the user 1. So we
have

R�2 = max
p2(·)

I
(
X�1 ,X2;H1X

�
1 +H2X2 +N

)− R�1 , (14)

R�2 = max
p2(·)

I
(
X�1 ,X2;H1X

�
1 +H2X2 +N

)
− I
(
X�1 ;H1X

�
1 +N

)
,

(15)

R�2 = max
p2(·)

I
(
X2;H1X

�
1 +H2X2 +N

)
+ I
(
X�1 ;H1X

�
1 +H2X2 +N|X2

)
− I
(
X�1 ;H1X

�
1 +N

)
,

(16)

R�2 = max
p2(·)

I
(
X2;H1X

�
1 +H2X2 +N

)
+ I
(
X�1 ;H1X

�
1 +N

)− I
(
X�1 ;H1X

�
1 +N

)
,

(17)

R�2 = max
p2(·)

I
(
X2;H1X

�
1 +H2X2 +N

)
, (18)

where (16) follows from the chain rule of mutual informa-
tion and (17) follows from the independence of X�1 and X2.
Note that this corresponds to decoding user 2 while treating
user 1 as noise. Thus, at the base station, user 2 is decoded
first and his signal is subtracted to obtain a clean channel for
user 1. The optimal input distribution for user 2 is the water-
fill distribution over the eigenmodes of (I+H1Q

�
1 H

†
1 )
−1/2H2.

Proceeding in this fashion, we obtain the result of
Theorem 1.

It is interesting to note the simplicity of the solution.
Note that the SD scheme requires only the BS to make some
changes in the way it decodes the received signal. Specifically,
the BS needs to decode the new user and subtract his signal
before proceeding to decode the existing users’ signals. How-
ever, the existing users themselves do not need to do anything
different because of the new user. Thus the new user is com-
pletely invisible to existing users. Thus, we conclude that on
the uplink, an optimal strategy that leaves the existing users’
rates unaffected also leaves the existing users unaffected. In
particular an optimal solution to UP1a (preserving rates) is
also the optimal solution to UP1b (making the new user in-
visible).
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The second pair of uplink problems UP2a (preserving
powers, while using minimum additional power to meet a
new user’s rate) and UP2b (making the new user invisible,
while meeting his rate with minimum additional power) are
also very similar to UP1a and UP1b. Clearly for the user 1,
the required transmit power is the one that achieves a ca-
pacity equal to his required rate R1 with optimal waterfilling
over his channel. In order for user 1’s transmit power to be
unaffected by user 2, the BSmust decode user 2 before user 1.
This also ensures that user 1 is not affected by user 2. There-
fore, user 2 must see user 1 as noise. The required transmit
power for user 2 is the one that achieves a capacity equal to
his required rate R2 with optimal waterfilling over his chan-
nel in the presence of colored noise due to the interference
from user 1’s signal. Thus, except that we know the rates and
we need to solve for the transmit powers, the solution is the
same as given by Theorem 1. Again UP2a and UP2b have the
same solution.

6. DOWNLINK

6.1. Successive decoding and dirty paper

We begin this section with a brief summary of the key fea-
tures of the SD and DP schemes. The details can be found in
references.

SD is the well-known strategy, where several substreams
are encoded directly on the channel input alphabet and in-
dependent of each other. Figure 1 shows an SD encoder. If a
user has access to all codebooks, then he can decode any sub-
stream that is encoded at a rate lower than the capacity of
his channel for that substream’s input covariance matrix and
treat other simultaneously transmitted codewords as noise.
This allows him to reconstruct the transmitted codeword for
the decoded substream and subtract its effect from the re-
ceived signal, thus obtaining a cleaner channel for detecting
other substreams.

With this strategy, a user may need to decode several
codewords carrying other users’ data and subtract their ef-
fect before he achieves a channel good enough to decode
the codeword carrying his own data. Notice from Figure 1
that each encoder operates independent of all the other en-
coders.

Now, without loss of generality, we can assume that the
substreams are encoded in some order, one after the other.
This means that while choosing the codeword Cn

i for the
ith substream, the transmitter has precise, noncausal in-
formation about the interference caused by all the i − 1
substreams that have already been encoded. This brings us
into the realm of DP coding. Figure 2 shows a DP encoder.
Notice that unlike the SD scheme illustrated in Figure 1,
where each encoder operates independent of the rest, in
the DP scheme, there is a definite order such that the out-
put of each encoder depends not only on the input sub-
stream data but also on the outputs of the encoders be-
fore it. This is possible because the encoders are collocated
at the base station which allows them to cooperate per-
fectly.

To channel

Cn
L

Cn
1

Cn
2

Encoder L

Encoder 2

Encoder 1

Substream L

Substream 2

Substream 1

...

+

Figure 1: Encoding of L substreams in a successive decoding
scheme.

To channel
Cn
1 + Cn

2 + · · · + Cn
L

Cn
1 + Cn

2 + · · · + Cn
L−1

Cn
1

Cn
1 + Cn

2

Encoder L

Encoder 2

Encoder 1

Substream L

Substream 1

Substream 2

...
...

Figure 2: Encoding of L substreams in a dirty paper scheme.

The most powerful aspect of the DP scheme comes from
the interesting work of Costa [8]. This paper presented the
following result.

Costa’s dirty paper result

Consider the scalar channel

Yi = Xi + Si +Ni, (19)

where at each instant i ∈ Z+, Yi is the output symbol, Ni is
AWGNwith power PN , Xi is the input symbol constrained so
that E[X2

i ] ≤ PX , and Si is the interference symbol generated
according to a Gaussian distribution. Now suppose the entire
realization of the interference sequence S1, S2, . . . is known
to the transmitter noncausally, that is, before the beginning
of the transmission. This information is not available at the
receiver. Then the capacity of the channel is given by

C = log
(
1 +

PX
PN

)
, (20)

irrespective of the power in the interference signal. In other
words, if the interference is known to the transmitter before-
hand, the capacity is the same as if the interference was not
present. The capacity-achieving input distribution is X ∼
N (0,PX). Further, the channel input X and the interference
S are independent.

Costa’s result assumed a Gaussian distribution for the in-
terference. The coding scheme described in [8] requires a
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knowledge of the distribution of the interference for design-
ing the codebooks. Thus, if the statistics of the interference
changed from one codeword to another, the receiver would
have to be informed and it would have to switch to a dif-
ferent codebook. Thus, with Costa’s scheme, even though
the capacity of a channel with interference known only to
the transmitter would be the same as without it, the receiver
would have to be informed about any change in the interfer-
ence statistics so it can use the correct codebook.

Recent work by Erez et al. [15] showed that lattice strate-
gies can be used to extend the Costa’s result to arbitrarily
varying interference. Their scheme is able to handle arbitrar-
ily varying interference by communicating modulo a funda-
mental lattice cell and using dithering techniques. It is this
lattice strategy that we imply by the term DP coding in this
paper. For a detailed exposition of the scheme and the re-
quired background, see [15, 16, 17, 18].

Although Costa’s work in [8] and the recent work of Erez
et al. in [15] assume a scalar channel, the extension to the
complex matrix channel is straightforward. A MIMO system
with the channel matrix H known to both the transmitter
and the receiver can be transformed into several parallel non-
interfering scalar channels by a singular value decomposition
[19] of the channel. Thus, it is easily verified that Costa’s re-
sult carries through to the MIMO system with arbitrary in-
terference and we have the following.

Extension to complex MIMO systems
with arbitrarily varying interference

Consider the MIMO channel

Yi = HXi + Si +Ni, (21)

whereH is the channel matrix known to both the transmitter
and the receiver and at each instant i ∈ Z+, Yi is the output
vector, Ni is AWGN vector with covariance matrix QN , Xi is
the input vector constrained so that QX = trace(E[XiX

†
i ]) ≤

PX , and Si is an arbitrarily varying interference vector. All
symbols are complex. Now suppose the entire realization of
the interference sequence S1, S2, . . . is known to the transmit-
ter non-causally. Then the capacity of the channel is given by

C = max
QX :trace(QX )≤PX

log

∣∣HQXH† +QN

∣∣∣∣QN

∣∣ , (22)

irrespective of the power in the interference signal. In other
words, if the interference is known to the transmitter before-
hand, the capacity is the same as if the interference was not
present. It is worth mentioning that this does assume that
both the transmitter and receiver have access to a common
source of randomness to allow the dithering operation. The
capacity-achieving input distribution is X ∼ N (0,QX). Fur-
ther, the channel input X and the interference S are indepen-
dent.

Unlike Costa’s scheme, the DP scheme works for arbi-
trarily varying interference. Therefore, no knowledge of in-
terference statistics is required at the receiver. Thus, even if
the interference statistics change from one codeword to an-

other, the receiver continues to operate exactly the same way.
This property in particular is crucial for our FCFS scheduling
problem.

An important feature of the DP scheme is that the
capacity-achieving codes are not the channel input symbols
Cn
i but the functions used to map the data and the transmit-

ter side information to the channel input alphabet. Since the
coding is not performed on the channel input alphabet itself,
even if one decodes the data carried by a substream, it is not
possible to subtract the effect of the transmitted symbols of
the substream and obtain a cleaner channel. For example, re-
fer to Figure 2. Decoding the ith substream does not allow a
user to reconstruct the transmitted symbolsCn

i and therefore
the user cannot subtract out Cn

i to obtain a cleaner channel.
In Figure 2, before encoding substream i, the transmitter

knows the interference from substreams 1, 2, . . . , i − 1. Thus
the capacity achieved by substream i is the same as if sub-
streams 1, 2, . . . , i−1 were not present. The interference from
substreams i + 1, i + 2, . . . ,L is not known and so it must be
treated as noise.

To highlight the distinction between SD and DP, consider
the following example of a broadcast system with two en-
coded substreams: substream 1 and substream 2. With SD,
especially on a nondegraded broadcast channel, it is possi-
ble that one user can decode and cancel substream 2 before
decoding substream 1, and at the same time another user
with a different channel can decode and cancel substream 1
before decoding substream 2. Thus the decoding order may
vary from user to user. On the other hand, with DP, there is
a fixed encoding order such that the substreams encoded later
achieve the same capacity as if the substreams encoded before
them were not present. Moreover, the substreams encoded
earlier can achieve a capacity no higher than that achiev-
able by treating all substreams encoded after them as noise.
In a nutshell, in SD, the encoding order is irrelevant and
the optimal decoding order may vary from one user to an-
other. In DP, there is no notion of decoding order. Instead,
there is only one encoding order, where each substream has
a unique position relative to every other substream. For each
receiver, this unique order decides which substreams have to
be treated as noise and which substreams do not impact the
capacity of its own substream.

6.2. Solution to DP1 (DP versus SD)

The first problem we address on the downlink is to deter-
mine whether SD or DP is a better scheme in general. Be-
fore stating the solution, we see why it is not trivial. Con-
sider two substreams intended for two different users. With
DP, one of the users (the one encoded second) can achieve
the same capacity as if the other user was not present. How-
ever, the other user (who was encoded first) must treat this
user as noise and his capacity is reduced. With SD on the
other hand, depending on the users’ channels and the input
covariance matrices, several situations are possible. It could
be that the channels are such that each user can decode the
other user’s substream and subtract it before decoding his
own substream. This seems to be better than DP. However, it
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could also happen that the channels are such that neither user
can decode the other user’s substream. In that case, SDwould
be worse than DP. Since it is the downlink, one can also opti-
mize the transmit power across users while keeping the same
total transmit power. Further, the rate regions may not be
convex. In such a case, we can make the rate region convex
by including rate vectors achievable with time-sharing. With
all these possibilities, the question as to whether SD or DP is
the better strategy on the downlink does not seem to have an
obvious answer.

With the following theorem, we show that DP is the bet-
ter downlink strategy in general.

Theorem 2. Subject to a sum power constraint, the set of rate
vectors achievable with SD and time-sharing is also achievable
with DP and time-sharing.

In other words, the convex hull of the achievable rate re-
gion with SD is completely contained within the convex hull
of the achievable rate region with DP.

Proof. We prove this by showing that the boundary of the
achievable rate region with SD and time division is contained
within the boundary of the achievable rate region with DP
and time-sharing. Note that in either scheme, the points in
the interior can always be attained by throwing away some
codewords.

The boundary points of the rate region are obtained by
maximizing

K∑
i=1

µiRi (23)

for all �µ such that �µ ≥ �0 and∑K
i=1 µi = 1.

Let RSD and RDP denote the sets of rate vectors achiev-
able with SD and DP, respectively. Note that in order to
prove the result of Theorem 2, it suffices to prove that for all
�µ,

max
�R∈RDP

K∑
i=1

µiRi ≥ max
�R∈RSD

K∑
i=1

µiRi. (24)

In order to prove (24), we assume without loss of gen-
erality that the users’ priorities are arranged as µ1 ≥ µ2 ≥
· · · ≥ µK . We start with the SD scheme and show that DP

can achieve at least the same value of �µ·�R. Let �RSD be the rate

vector that maximizes �µ ·�R with SD. Without loss of general-

ity, we can assume that �RSD does not use time-sharing. This
is because simple linear programming tells us that a rate vec-
tor corresponding to time-sharing between several different
rate vectors is a convex combination of those rate vectors and
therefore cannot achieve a higher value of �µ · �RSD than the
best of those rate vectors.

Let the total number of substreams being transmitted be
L. Further, and again without loss of generality, we label the
substreams from 1 to L such that if i < j and substream i

carries data for user u(i) and substream j carries data for
user u( j), then µu(i) ≥ µu( j). That is, the substreams are ar-
ranged in decreasing order of the priority of the user whose
data they are carrying. For multiple substreams carrying the
same user’s data, we label them in the order in which they are
decoded by that user.

Now note that no user can decode a substream carrying
data for a user with a lower priority. This is easily proved by
contradiction as follows. Suppose that user A can decode a
substream that carries user B’s data at a rate r. Now if user
A has a higher priority than user B, that is, if µA > µB, then

we can increase �µ · �RSD by simply having the substream carry
user A’s data instead of user B’s data at the same rate, r so
that,

�µ · �R(new) = �µ · �RSD − µBr + µAr > �µ · �RSD. (25)

But this is a contradiction since we assumed that the rate vec-
tor �RSD maximizes �µ·�R over all rate vectors �R achievable with
SD and without time-sharing.

In light of this observation, it is clear that while decoding
substream l, the intended user must treat substreams l + 1
to L as noise. The substreams 1 to l − 1 may or may not be
treated as noise depending upon whether it is possible to de-
code and subtract those substreams or not. So with SD, the
rate achieved on the lth substream is no greater (could be
smaller) than rl, where rl is the achievable rate when the sub-
streams l + 1 to L are treated as noise while substreams 1 to
l−1 are not present. Next, we show that DP can achieve rl on
each of these substreams.

Suppose we use DP to encode the L substreams in the or-
der in which they are labeled. Then the lth substream sees
substreams l + 1 to L as noise since these substreams are en-
coded after substream l and therefore the interference caused
by them is not known. However, since substreams 1 to l − 1
have already been encoded, they present known interference
to substream l and therefore do not affect the data rate that
substream l is capable of supporting. Thus DP allows sub-
stream l a rate rl that is at least as large as the maximum al-
lowed rate for that substream in the optimum SD rate vec-

tor that maximizes �µ · �R. This proves (24) and completes the
proof of Theorem 2.

We can also easily extend this theorem to show that the
achievable rate region of the pure DP scheme includes the
achievable rate region of not only the pure SD scheme but
also any hybrid scheme where some users use SD while oth-
ers use DP. Lastly, we need time-sharing for this result be-
cause the achievable rate region for SD andDPwithout time-
sharing may not be convex.

6.3. Downlink solutions for DP2a (preserving rates)
and DP2b (making the accommodation of new
users invisible)

In DP2a, we are only requiring rate conservation in dealing
with the Kth user. This leaves open the possibility that, in
meeting the earlier rates, if the earlier users are handled in a
different way than before, we can actually achieve a strictly
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greater rate for the Kth user. Indeed, in some instances, a
greater rate is possible. This DP2a problem is exceptional
in that we encounter the most difficult of the optimization
problems in this paper and a solution is only presented for a
special case. In the general case, based on the conjecture in [9],
a solution can, in theory, be obtained by solving a number of
convex programming problems to obtain the achievable rate
region with DP coding [20]. However, the complexity of this
is exponential in the number of users.

In problem DP2b, we insist that earlier users be treated
exactly as before. Later users must be invisible (phantoms)
to earlier ones. It turns out that, with this added constraint,
we can obtain a complete solution. Moreover, as we will see
in Section 7, a solution is possible for the full multiple base
station setup.

6.3.1. Solution to DP2a (preserving rates)

Next, we address the problem of assigning the maximum rate
to new user K subject to total power P1 + P2 + · · ·+ PK such
that the existing users’ rates are not affected. So we wish to
allocate the maximum possible rates to each user such that

(i) user 1 gets R�1 , the maximum rate possible with power
P1 as if no other user was present,

(ii) user 2 gets R�2 , the maximum rate possible with total
power P1 + P2 such that user 1 still gets R�1 and as if
users 3, . . . ,K were not present,

(iii) user K gets R�K , the maximum rate possible with total
power P1 + P2 + · · · + PK such that users 1 through
K − 1 still get rates R�1 through R�K−1.

While the overall optimization seems hard for the gen-
eral multiple antenna broadcast system, limiting the number
of transmit antennas at the base station to one does lead to a
simple solution. A single transmit antenna at the base station
makes the channel degraded and the optimality of Gaussian
inputs is established from Bergman’s proof in [21]. Note that
although Bergman’s proof is for scalar broadcast channels,
that is, broadcast channels with a single transmit antenna at
the base station and a single receive antenna at each user, the
vector broadcast channel with a single antenna at the base
station and multiple receive antennas at each user is easily
seen to be equivalent to the scalar broadcast channel [22].
Thus, in this case, the capacity region is well known and we
do not need the conjecture of [9]. Next, we present this solu-
tion to gain some insight.

With a single transmit antenna at the base station, the
downlink is a degraded broadcast channel. Even with multi-
ple receive antennas, each user can perform spatial matched
filtering to yield a scalar AWGN channel for himself [22]. For
this channel, the broadcast capacity is well known and ei-
ther SD or DP can be used to achieve any point in the capac-
ity region. In particular, all the rate points can be achieved
with SD/DP with the same encoding/decoding order [23].
The user with the weakest channel is decoded/encoded first
so that he sees everyone else as noise. The decoding/encoding
proceeds in the order of the users’ channel strengths so that
weaker users who cannot decode the stronger users are forced

to treat their signal as noise while the stronger users can
decode the weaker users’ data, and are therefore unaffected
by the presence of weaker users. Thus, in this case, the en-
coding/decoding order is decided by the users’ channels and
not by the order of users’ arrivals or their relative priori-
ties.

For each channel state, we calculate the optimal rates
and powers in an iterative fashion as follows. We start with
only user 1 in the system with total power P1 and find R�1 .
Then we incrementally add users to the system, in the order
2, 3, . . . ,K , each time finding the optimal rates for the set of
users in the system with total power given by the sums of the
powers of those users. The ith user is added as follows.

(1) Arrange the users in the order of their channel
strengths.

(2) The users with a stronger channel than user i are not
affected. That is, they continue to use the same power
and rates as before.

(3) The users with a weaker channel than user i have to
treat user i as noise. So the additional power Pi avail-
able to the system is distributed among user i and the
weaker users so that the weaker users can sustain the
same rates as before.

The optimal distribution of the additional power among
the new user and the weaker users requires only a one-
dimensional optimization and is easily obtained. Proceeding
in this fashion, after the Kth user has been added, we obtain
the optimal rate and power allocation for all the users in the
system. Note that this is the optimal allocation because the
rate vector obtained in this fashion lies on the boundary of
the capacity region.

While this solution does not affect the existing users’
rates, it does affect the existing users in that they may have
to decode the new user before decoding their own signals if
SD is used. If DP is used, then the existing users may have to
see the new user as spatially colored noise. They are still able
to achieve the same rates as before because they have a higher
power. Thus, the solution does not allow the existing users to
continue operating as before.

Next, we present a solution that gives the new user K the
maximum rate possible with total transmit power P1 + P2 +
· · · + PK without affecting existing users.

6.3.2. Solution to DP2b (making the accommodation
of new users invisible)

Theorem 3. The optimal set of rates R�i on the downlink such
that existing users are oblivious to the presence of the new users
is given by

R�i = log

∣∣∣∣∣I +
(
I +

i−1∑
j=1

HiQ
�
j H

†
i

)−1
HiQ

�
i H

†
i

∣∣∣∣∣, (26)

where Q�i is the optimal input covariance matrix obtained by
waterfilling over the eigenmodes of the effective channel ma-
trix (I +

∑i−1
j=1HiQ

�
j H

†
i )
−1/2Hi subject to the power constraint

trace(Qi) = Pi.
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In other words, an optimal strategy for the downlink that
does not allow new users to affect existing users is to use
DP encoding at the base station in the inverse order of the
user’s indices. The new user gets encoded first so his signal
is a known interference and the existing users’ rates do not
get affected. The highest rate that the new user can support
without affecting existing users is simply given by the single-
user waterfilling solution treating the existing users’ signal as
colored Gaussian noise. A simple example to illustrate the
optimal downlink scheme is presented after the proof.

Proof. DP’s ability to handle arbitrarily varying interference
makes it the obvious choice in this case. Using SD would
require existing users to decode the new user, thus acknowl-
edging the new user’s presence. However, since DP is able to
handle arbitrary interference, it does not matter if the inter-
ference known to the ith user’s encoder comes from users
i, i + 1, . . . ,K − 1 or from users i, i + 1, . . . ,K . The rate and
decoding strategy for user i depend only on the interference
from users 1, 2, . . . , i−1 that came before him and whose sig-
nals must be treated as noise for user i.

Note that time-sharing and rate-splitting are not re-
quired. This is easily seen as follows. With only user 1 in
the system, time-sharing between different rates at differ-
ent powers would decrease his overall rate since capacity is
strictly concave in transmit power (Jensen’s inequality). Rate
splitting is not needed either. Thus user 1 does not use time-
sharing when he is the only user in the system. Since user 1
is oblivious to the presence of new users, the BS cannot use
time-sharing or split user 1’s data into substreams and rear-
range the encoding order of these substreamswhen new users
appear. The same logic applies to all users.

Thus, no time-sharing or rate-splitting is required and
the optimal DP vector is the one where users are encoded in
the inverse order of their indices.

To better illustrate the downlink strategy, we present a
detailed example for a system with 3 users. The base station
follows the following sequence of steps in this order.

(1) Determine the rate R�1 and the input covariance ma-
trixQ�1 for user 1 according to equation (26). Note that these
are simply the single-user capacity of user 1’s channel and the
waterfilling distribution that achieves that capacity when no
other user is present.

(2) Determine the rate R�2 and the input covariance ma-
trix Q�2 for user 2 according to equation (26). These are
the single-user capacity and the waterfilling distribution that
achieves that capacity for user 2’s channel treating the inter-
ference from user 1 at the output of user 2’s channel as col-
ored Gaussian noise.

(3) Determine the rate R�3 and the input covariance ma-
trix Q�3 for user 3 according to equation (26). These are the
single-user capacity for user 3’s channel and the waterfilling
distribution that achieves that capacity treating the interfer-
ence from users 1 and 2 as colored Gaussian noise.

(4) Encode user 3’s data. That is, generate Cn
3 .

(5) Using the knowledge of the interference caused by Cn
3

at the output of user 2’s channel, encode user 2’s data. That

is, generate Cn
2 . Thus, user 3 presents known interference to

user 2 and does not affect user 2’s capacity.
(6) Using the knowledge of the interference caused by

Cn
3 + Cn

3 at the output of user 1’s channel, encode user 1’s
data. That is, generateCn

1 . Thus, users 2 and 3 present known
interference to user 1 and do not affect user 1’s capacity.

Note that in order to determine the users’ optimal rates
and input distributions, we need to proceed in the order
1, 2, . . . ,K . However, after that the actual codes are generated
in the order K ,K − 1, . . . , 1.

The solution for the downlink is interesting for its sim-
plicity and also for its striking symmetry with the uplink so-
lution.

7. MULTIPLE BASE STATIONS

In this section, we incorporate multiple base stations to
model a multicell environment. We assume that all the base
stations are connected through a high-speed reliable net-
work. It allows perfect coordination and information ex-
change between base stations. Cooperation between base sta-
tions has also been considered previously for the uplink by
Wyner in [24] and for the downlink by Shamai and Zaidel in
[25].

7.1. Uplink

On the uplink, the received signal at the bth base station is
characterized by the following equation:

Y [b] =
K∑
i=1

H[b]
i Xi +N [b], (27)

where Y [b] is the received vector at the bth base station, K
is the number of users currently active in the system, H[b]

i

is the flat-fading Bb × Ui matrix channel between user i and
base station b, Bb and Ui are the numbers of antennas at the
bth base station and the ith user, respectively, and Nb is the
AWGN vector at the bth base station.

However, since we allow perfect coordination and infor-
mation exchange between base stations, note that we can
treat all the base stations together as one big base station with
all the antennas. The equivalent description of the received
signal at this base station is given by (1).

Y =
K∑
i=1

HiXi +N. (28)

Here Y , Hi, and N are obtained by stacking up on top of

each other the corresponding Y [b], H[b]
i , and N [b] for all the

base stations. But this brings us back to the single-cell model.
Thus, for the uplink, the optimal solutions for the single cell
simply carry through to the multicell environment.

7.2. Downlink

We extend the downlink solution to DP2b (existing users
oblivious to the presence of new users) with multiple cells.



PhantomNet 601

The downlink with B base stations is described as

Yi =
B∑

b=1
H[b]

i

K∑
j=1

X [b]
j +Ni, 1 ≤ i ≤ K , 1 ≤ b ≤ B, (29)

where Yi is the output vector, X
[b]
i and Hi[b] are the input

vector and the channel matrix from base station b, and Ni is
the AWGN vector for user i. Further, the additional power for
each new user is limited per base station so that

trace
[
E
[
X [b]
i X [b]†

i

]] ≤ P[b]
i , 1 ≤ i ≤ K , 1 ≤ b ≤ B. (30)

Note that a system where each user is assigned to only one
base station is included as a special case by setting the appro-
priate power constraints to zero.

Again, since we allow perfect coordination between base
stations, we can represent the B base stations as one big base
station. Defining

Hi =
[
H[1]

i H[2]
i · · · H[B]

i

]
, 1 ≤ i ≤ K , (31)

and Xi as the vector obtained by stacking all the X [b]
i into

a single column, we obtain an equivalent representation for
the downlink as (3). Now this looks similar to the single-
cell downlink model we had earlier. However, note that the
components of the input vector Xi come from different base
stations. There is a different input power constraint on each
base station. Thus, the solution presented earlier does not ap-
ply in the exact same form. However, a natural extension of
the single-cell downlink solution to multiple base stations is ob-
tained as follows.

Although rate splitting is not necessary, recall that it does
not reduce capacity. We explain the multicell extension of
the single-cell downlink solution in terms of rate splitting
for clarity. Specifically, we split each user’s rate into B sub-
streams. The idea is to perform the waterfill in B stages. At
each stage, we waterfill until a base station meets its power
constraint. Then we null out the antenna gains from that
base station so that no more power is allocated to it and
proceed with the waterfill. This gives us B layers or B sub-
streams that can be encoded using DP. Consider the ith user.
As shown in Theorem 3, this user sees the interference from
users 1, 2, . . . , i − 1 as colored noise and is unaffected by the
interference from users i+1, i+2, . . . ,K . Therefore, the max-
imum rate he can achieve is given by

R�i = max
Qi

log

∣∣∣∣∣I +
(
I +

i−1∑
j=1

HjQ
�
j H

†
j

)−1
HiQiH

†
i

∣∣∣∣∣, (32)

where the maximization is over all input covariance matrices
that satisfy the power constraints per base station. We split
the user’s rate into B substreams to be encoded in the order
B,B− 1, . . . , 1 using DP encoding. So the Bth substream sees
all the other substreams as noise, while the first substream’s
rate is unaffected by substreams B,B − 1, . . . , 2. Let the rates

on these substreams be R[b]�
i , and the corresponding input

covariance matrices be Q[b]�
i . Then we have

R�i = R[1]�
i + R[2]�

i + · · · + R[B]�
i ,

Q�i = Q[1]�
i +Q[2]�

i + · · · +Q[B]�
i .

(33)

The optimal Q�i is obtained as follows.
(1) Perform a singular value decomposition of the effec-

tive composite channel (I +
∑i−1

j=1HjQ
�
j H

†
j )
−1/2Hi as

(
I +

i−1∑
j=1

HjQ
�
j H

†
j

)−1/2
Hi = FiΛiMi. (34)

Start water-pouring over the eigenmodes of this channel.
Continue adding power until one of the base stations meets

its power constraint for the ith user P[b]
i . Without loss of gen-

erality, we assume base station 1 runs out of power for user i.
This corresponds to the first rate split, that is, call this the first
substream for user i. The input covariancematrix obtained in
this way is Q[1]�

i . Among the B substreams corresponding to
user i, this substream will be encoded last, so it is unaffected
by the interference from the remaining B−1 substreams. The
rate on this substream is

R[1]�
i = log

∣∣∣∣∣I +
(
I +

i−1∑
j=1

HjQ
�
j H

†
j

)−1
HiQ

[1]�
i H†

i

∣∣∣∣∣. (35)

(2) Since base station 1 already used up its power for user

i, we null out the contribution from H[1]
i to the compound

channel matrix by setting it to zero. Define a new composite
channel

H[−1]
i =

[
0 H[2]

i H[3]
i · · · H[B]

i

]
. (36)

Again, perform a singular value decomposition on the new
composite effective channel

(
I +

i−1∑
j=1

HjQ
�
j H

†
j +HiQ

[1]�
i H†

i

)−1/2
H[−1]

i

= F[−1]
i Λ[−1]

i M[−1]
i .

(37)

Note that this treats the interference from the first substream
as noise. Again, start water-pouring over the eigenmodes of
this new channel until another base station meets its power
constraint. Without loss of generality, we call this base sta-

tion 2. This gives us the input covariance matrixQ[2]�
i on the

second substream. The rate for the second substream is

R[2]�
i = log

∣∣∣∣∣I +
(
I +

i−1∑
j=1

HjQ
�
j H

†
j +HiQ

[1]�
i H†

i

)−1

×H[−1]
i Q[2]�

i H[−1]†
i

∣∣∣∣∣.
(38)
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Proceeding in this fashion, we obtain the input covariance
matrices on all the substreams and the corresponding rates
as well. Combining the substreams, we get the overall rate
and input covariance matrix for each user from equations
(33).

Thus we find that multiple base stations only affect the
downlink solution to the extent that the waterfilling algo-
rithm needs some modification in order to accommodate
the different power constraints per base station. Otherwise,
the solution does not change. In particular, we still use DP
coding, and the ordering of users is the same as before. Also
note that while we used rate splitting to derive the opti-
mal input covariance matrix, it is not necessary to split the
rates into substreams. The same overall input covariance ma-
trix can be used without rate-splitting to achieve the same
capacity.

8. CONCLUSIONS ANDDISCUSSION

We addressed the problem of providing best possible rates
to new users as they enter a wireless data network, without
penalizing the existing users. We have dubbed the network a
PhantomNet. This is because of the design theme, that when
a user enters, all subsequent entrants must, to him, be phan-
toms, that is, interference-wise, they must be invisible. For
both the uplink and the downlink, only earlier entrants can
interfere with an entering user. PhantomNet operation in-
volves treating all bases as a single composite base, so that
the actual bases simply serve as multiple antenna sites which
are networked, say with fibers, to and from a single central
processor.

For the uplink we found that, to achieve the phantom re-
quirement, we could make a straightforward application of
the well-established SD strategy where the new user is de-
coded before the existing users. For the downlink, achieving
the invisibility requirement is more problematic. The opti-
mal downlink strategy is to use DP coding, where the new
user is encoded before the existing users. This makes use of
the fact that the bases have knowledge of all signals that are to
be transmitted. This enables simultaneous communication
to the users despite arbitrarily varying interference by sig-
nallingmodulo a fundamental lattice cell and using dithering
techniques.

The striking feature of the uplink and the downlink
strategies is their simplicity, and even more than that, their
similarity. In both cases, the new users are forced to see the
existing users as noise while the existing users are not af-
fected by the presence of the users who joined the system
after them. That is, they can continue to operate exactly as
before. The only changes need to be made at the BS. For
the uplink, the base station is the decoder and thus the so-
lution hinges on the optimal decoding order, whereas for the
downlink, the base station is the encoder and the solution is
based on the encoding order. Note that as users leave the sys-
tem, the same structure is maintained. As a user exits, it does
not affect the rates of the users who joined the system be-
fore him. It does help the users who joined the system after

him since they no longer have to face interference from his
signal.

With multiple cells, we found that the uplink was effec-
tively the same as a single-cell system since all the base sta-
tions are treated as one composite base station. Thus the
single-cell strategy extends to multiple cells without loss of
optimality. In contrast to the uplink, while the downlink is
also viewed as a single virtual base station, there is a refine-
ment since each of the actual base stations has a separate total
power constraint. Consequently, the multiple cell downlink
solution is different in that the distinct total transmit power
constraints require a multistage waterfilling solution in de-
termining the optimal input covariance matrix for each user.
At each stage, waterfilling is performed until each base sta-
tion meets its total power constraint. Those base stations that
have already met their power constraints are not considered
in the successive waterfilling stages.

While we drew heavily on published results, the novelty
of our finding is the generality achieved in our setting: mul-
tiple base stations and multiple users with multiple antennas
accommodated at both the transmit and receive sites.We also
proved a general result that extends beyond our framework.
We showed that the achievable rate region with SD and time-
sharing is contained within the achievable rate region with
DP coding and time-sharing.

We stress that PhantomNet uses information theoretic
means for self-organizing the allocation of communication
resources. There is allowance of extreme flexibility in allo-
cating resources to a user. For example, which bases, which
antennas at the bases, (which sectors) and which frequency
bands are made available to a user need not be imposed over
the network area. Instead, resource allocations can be left to
develop, dynamically as needed (on the fly), in a fine-grained
manner as expressed by the information theory formulas
that we have presented. Dynamic choices would emerge as
users come and go. Whenever and wherever and to what ex-
tent such amorphous allocations result in a superior network
compared to imprinting a rigid regular structure from the
outset is a topic for future study. Through constraints, one
is free to impose structure when it looks advisable. A sim-
ulation testbed could be used to study PhantomNet opera-
tion to learn which beneficial features should first be moved
into practice. Such a testbed could also be used to quan-
tify the value of more antennas, more sectorization, and so
forth.
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