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Enhanced genetic algorithms (GA) applied in space-time block coded (STBC) multiuser detection (MUD) systems in Rayleigh flat-
fading channels are reported in this paper. Firstly, an improved objective function, which is designed to help speed up the search
for the optimal solution, is introduced. Secondly, a decorrelating detector (DD) and a minimum mean square error (MMSE)
detector have been added to the GA STBC MUD receiver to create the seed chromosome in the initial population. This operation
has improved the receiver performance further because some signal information has been intentionally embedded in the initial
population. Simulation results show that the receiver employing the improved objective function and the DD or MMSE detector
can converge faster with the same bit error rate (BER) performance than the receiver with the initial population chosen randomly.
The total signal-to-noise ratio (SNR) improvement contributed by these two modifications can reach 4 dB. Hence the proposed
GA receiver is a promising solution of the STBC MUD problem.
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1. INTRODUCTION

In wireless communications, space-time block coding
(STBC) with diversity gains has been widely studied in mul-
tiuser detections (MUDs) [1, 2, 3] because STBC can utilize
the information in the spatial and time domains simulta-
neously [4]. From the coding point of view, the single-user
performance of STBC has been studied in [5, 6] and some
STBC code designs have been established. Generally speak-
ing, STBC is a coding technique designed particularly for the
application with multiple transmit antennas [5, 6]. It intro-
duces temporal and spatial correlation into signals transmit-
ted from different antennas. The signals transmitted from
the different transmit antennas in an STBC transmitter can
be considered and calculated as if they were originated from
different virtual users so that STBC detection in the case of
single user can be regarded simply as a MUD problem.
Conventional detection (CD) of multiuser signals utilizes
a bank of chip-level matched filters to detect each user sig-
nal separately while treating all other user signals as interfer-
ence. However, owing to multiaccess interference (MAI), this
single-user detection method suffers much from the near-
far effect. Consequently, the MUD technique that employs a

combinatorial optimization process to exploit the informa-
tion of all the users in order to detect a target user signal
has been proposed to mitigate the near-far effect [7]. Among
all the MUD techniques, the maximum likelihood (ML) op-
timal detector can achieve satisfactory bit error rate (BER)
performance but the computational complexity varies expo-
nentially with the number of users. Even with the maximum
a posteriori (MAP) method described in [8], the computa-
tional complexity still varies in the order of 2/, where “I” is
the length of the codeword and is a linear function of the
number of users. Therefore, the MUD technique is a non-
deterministic polynomial (NP)-hard problem [9], which re-
quires unforeseeable huge computing power in order to find
a global optimum solution. For such NP-hard problems, it
is necessary to search for good approximation algorithms
that yield solutions close to the optimum, although they do
not guarantee that a global optimum can be obtained for
every instance. Such approximate algorithms are also based
on the ML method but the final decision is reached from a
simpler route at the expense of performance degradation.
Some general approximation algorithms that can achieve
a reasonable balance of system performance and computa-
tional speed have been reported: simulated annealing (SA)


mailto:ygdu@ee.cuhk.edu.hk
mailto:ktchan@ee.cuhk.edu.hk

Improved MUD with Genetic Algorithms in an STBC System

641

STBC |- jr
encoder| - N x 1
f 2y

L bi() [apsk 100
P

- Decoder/
M : demodulator

modulator
User K
| bi(i) [ MPSK | (D) | STBC J; Y
: ?| modulator encoder| N

FIGURE 1: Schematic of an uplink STBC MUD system.

[10], tabu search (TS) [11], and genetic algorithms (GA)
[9, 12, 13, 14, 15, 16]. In the TS method, the move attribute,
which is a set of important parameters stored in the tabu list,
must be chosen in such a way that it is neither too permissive
nor too restrictive. Otherwise, the method will likely con-
verge to a local optimum with higher probabilities. On the
other hand, the GA method, which can be transformed into
the SA method by gradually modifying some GA parameters,
will only lead to a longer convergence time but not a higher
probability of converging to a local optimum even if the GA
parameters have been improperly selected. It is because of
this more tolerable selection of parameters that GA has been
chosen to investigate alternative MUD solutions in this pa-
per.

The GA comes originally from the schemata theory [12].
It was inspired by the observations of the natural process of
evolution of plant and animal species. These living species
constantly explore new possibilities in building new living
organisms as well as skillfully exploit the “knowledge” ac-
cumulated in the current living organisms to create new
species that are as capable of surviving as their ancestors [9].
These remarkable characteristics of the process of creating
new forms of life have caught the interest of computer sci-
ence researchers and led to the creation of the GA in 1975
[12].

It has been shown in [13, 14, 15, 16] that the application
of GA in MUD systems can significantly reduce the com-
putation complexity with comparable BER performance in
Rayleigh flat-fading channels. In particular, the application
of GA in an STBC MUD system is proposed for the first time
in [13], where all the chromosomes in the initial population
are randomly chosen. However, the results shown in [13] in-
dicate that the number of generations needed for the output
to converge to a satisfactory performance is still fairly large,
which makes the computation too long even though it is al-
ready much shorter than the ML method.

In this paper, a modified objective function is first in-
troduced to shorten the GA computation. Furthermore,
a decorrelating multiuser detector (DD) and a minimum
mean square error (MMSE) detector [17] are also proposed
to provide the seed chromosome of the initial population in

the STBC MUD receiver in a wireless uplink transmission
system. The DD decouples the received signal and the lin-
ear MMSE detector maximizes the receiver output signal-to-
noise ratio (SNR). The seed chromosome provided by the
DD or MMSE detector is perturbed randomly to generate all
the chromosomes of the initial population. Hence some sig-
nal information has been embedded in the initial population.
Consequently, we expect this algorithm to converge more
quickly and the computation burden should be reduced. The
only cost of this technique is the time consumed to obtain the
seed chromosome, which is small compared with the benefit
it brings. The simulation results have confirmed the validity
of the proposed receiver.

Notations

Superscripts (-)*, ()7, and (-)¥ denote the complex con-
jugate, transpose, and Hermit operation respectively; ()~}
refers to the matrix inverse operation; || - || is for the ma-
trix/vector Frobenius norm; and - X - represents the dimen-
sion of a complex matrix.

2. SYSTEM MODEL

The schematic of a multiuser STBC system is shown in
Figure 1. Just to simplify the analysis, we cut the descrip-
tion of the outer code and the channel estimation with the
assumption that the channel state information (CSI) is per-
fectly known and remains constant during an entire block
period. In real cases, it is not difficult to include such tech-
nologies in STBC MUD systems. There are K users in the
uplink channel. For each user, the bit stream is MPSK mod-
ulated and STBC encoded before being transmitted from
N antennas. The size of the PSK modulation set is Q. All
users are assumed to be synchronous and mutually indepen-
dent. The signals from all users reach the M receive antennas
through a Rayleigh flat-fading channel.

Without loss of generality, the STBC 4, code described
in [5, 6] is selected in this study. The §, code represents one
category of orthogonal STBC, where the subscript “2” refers
to N, the number of transmit antennas. It is straightforward
to extend this study to the case of more transmit antennas at
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other transmission rates, no matter whether the STBC design
is orthogonal or not. §, is given as

_ [ X’f x’z‘} _ [Ci,k C%,k:| (1)
where the superscript “k” represents the kth user. x¥ and x5
are the symbols to be transmitted per block (i.e., the num-
ber of symbols per block is Ky = 2). The symbol ¢}, (where
i=1...,Nand t = 1,...,P) in the ith column for the
kth user w1th P =2 tlme slots per block is transmitted
by the ith transmit antenna. The transmission rate of §, is
R = Ky/P = 1, which is the highest in all STBC designs. In all
of the other cases, R is always less than 1.

The detected signal from all the users in the jth (j =
1,2,...,M) receive antenna (in the base station) in the tth
time slot is

K
t] = Z (Zatjctk) +’1t) (2)

where oc i is the path gain between the ith transmit antenna

and the ]th recelve antenna for the kth user and 17, is the
noise. As usual, af ,j 1s taken as an independent complex
Gaussian random variable with zero mean and a variance of
0.5 per dimension.

For the kth user, the path gain matrix for the jth receive
antenna is (the superscript k is dropped till (9) to simplify
the notation)

ﬁj = [061,j aj v (XN,j]T. (3)

The signal symbols per block can be denoted as

X
[Re (x1) Re (x2) - - - Re (xx,) Im (x1) Im (x2) - - - Im (xg, )]".
(4)
The signal in the jth receive antenna is
, o AT
= [r{ Mo TIJJ] (5)
and the noise in the jth receive antenna is
. P T
w=[nl W uh] (6)

Using STBC encoding, the detected signal in the jth antenna
can be obtained from the following general matrix transfor-
mation which is applicable to any STBC design:

= Gohj+ 1) = H +1p), (7)

where H/ for the §, design is defined as

; Ay 0 a1 K
H o= | o et | (8)
“2,] 051,] 052,1 051,]

The purpose of introducing the redundant vector x in (4)
with the conjugation of the signal symbols is to enable it to
treat the generalized STBC design. When a nonredundant
signal vector [x1,x2,... ,xxo]T is used, the cost of conjugat-
ing half of the received signals and CSI has to be taken into
account as well [3]. For example, instead of the transforma-
tion in (7), the received signal for the Alamouti design $ [6]
will be represented as [3] follows:

j
r _ OC]’]' 062’]' X1 j
[rﬁ*] B [“ik,j —“TJ ["2} e ©)
However, it is impossible to apply (9) for the following STBC
design:

X1 X2 X3 0

S - xf 0 —x3 (10)
X 0 —xf —x
0 —xF x5 —xf

The #54 design in [5] is similar to S. In this situation, the
redundant form given by (4) and the transformation shown
in (7) have to be adopted, which then eliminates the need to
conjugate the received signals and the CSI [18]. Hence the
combined received signal of the M receive antennas can be
written as

T T
r= [ll r?

MP x 1

T
T
_rM]

(11)

where MP X 1 and similar notations in the following equa-
tions refer to the dimensions of the matrices. Therefore, in-
cluding all of the K users, the signal in the jth receive antenna
should be

K
k=1

ji=1,2...,M. (12)

Hence the received signal vector is

1

r X '
2 72 1
r= . :[H1 H, "'HK]X . + .
i N ax| L] 03
B —_— ——
x 1
MP x 1 MP X 2KyK 2KpK X1 MP x 1
where
1 g2 M1t
Hy = [H} H} - HY| MPx2K, (14)
In matrix form, the received signal is
r=Hx+17. (15)
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In the conventional receiver, each user is separately de-
tected [14]. Therefore, the detection rule [6] for single user
can also be applied to the MUD with matched filtering. The

estimation of rt],k(r}],k) for the kth user based on (7) is ob-
tained after the matched filter from the received signal r. For
example, the decisions based on the estimation in [6] for two
receive antennas with the §, design are

ok al koal* ka2 K op2*
Xkl = QP T 00 00, T X577 + 65075 s

ok al K al* k* 52 K p2*
X2 = 0Tk — Qo + 07  — Ky 75 k.

(16)
In this paper, if we let % be the estimation of the origi-
nal signal x, the estimation error can be obtained assuming
perfect CSI:
fi = lie — 1P (17)
As mentioned earlier, a DD or MMSE detector is ap-
plied at the receiver side in the MUD so as to create the seed
chromosomes for the subsequent GA operations in order to
improve the receiver performance. Firstly, the estimation of
the original signal is to be calculated by either the DD or
the MMSE detector and designated as the seed chromosome.
Then this seed chromosome is perturbed randomly to form
the initial population, which will undergo further GA opera-
tions. The DD estimation of the original signal is

%pp = (HAH) ™'

Hr, (18)
where H is assumed to be full column rank. The correspond-
ing MMSE detector estimation is

A -1 H

fvmse = (R H) ', (19)
where R,, is the self-correlation of the received signals from
all the receive antennas. The inversion operations in (18) and
(19) only appear once and the subsequent operations do not
require such inversions so that the total computation time
is little affected if the number of evaluations of (17) is fairly
large.

3. THE GENETIC ALGORITHM
In general, a GA is composed of the following steps.

(1) Initial population generation: all initial chromosomes
are encoded in bit level to simplify the following GA
recombination operations. They are either generated
randomly or derived from the DD decision or the
MMSE decision. Each chromosome is a combination
of the probable solution for all users. Normally, the
population size is taken as the product between K, the
number of users, and QX, the number of all possible
solutions of each user.

(2) Fitness value calculation: the MSE shown in (17) can
act as the objective function to evaluate the fitness
of each chromosome. The optimal solution of (17)
should yield a minimum value. In fact, the ML method

(3)

(4)

(5)

(6)

(7)

evaluates every possible combination of bits so the
computation time varies exponentially with the num-
ber of users. As explained before, the use of GA in an
STBC MUD system can reduce the computation times
of (17) significantly. To make the search more effective,
an improved version of the objective function over that
defined by (17) is proposed here:

r Hx |

el [HZ]

. (20)

i

The expression calculates the phase difference between
r and Hx and should therefore be more sensitive to the
changes of either or both vectors. The best chromo-
some in a generation should have the least value of the
objective function. If the value of the best chromosome
in the present generation is larger than its counterpart
in the previous generation, the chromosome with the
largest value of the objective function in the present
generation will be replaced by the best chromosome of
the previous generation. This operation ensures that at
least the useful information contained in the present
generation is passed on to the next. A chromosome is
usually considered to be better if it has a larger fitness
value. Hence a fitness value can be defined with the
help of (17) or (20) as follows:

f=hh-f

where fy is a sufficiently large constant and can be
taken as the largest value of f; or f, within the whole
population. Obviously, the larger the fitness value, the
better the chromosome is.

If the optimal criterion is satisfied, that is, when any
one of all f; in the population is less than a pre-
determined threshold, or if the generation number has
exceeded a predefined value, which is also commonly
taken as the product between K and QXv, then go to
Step (9). Otherwise, go to Step (4).

Selection: this operation is based on the Roulette-
wheel rule [9] and the probability of each chromosome
being selected is calculated using the fitness value ob-
tained with (21) in Step (2). It serves to provide the
chromosomes for the subsequent recombination op-
erations.

Reproduction: this step is intended to replace the chro-
mosome of the largest objective function by the best
chromosome of the same generation.

Crossover: this operation exchanges some parts of the
chromosomes to provide a chance for a chromosome
to include more signal information. Since the objective
function is calculated in symbol (8 PSK) level and nor-
mally erroneous symbols are detected adjacent to the
correct symbols, the crossover operation is carried in
symbol level. In this paper, a single-point crossover is
adopted.

Mutation: this operation can enhance the convergence
of the GA in case the original signal information has

i=1,2, (21)
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TasBLE 1: The time needed for different detectors.

Receiver RR-fi RR- f» RDD-f;

RDD- f,

RMD-fi RMD-f, ML(K=1) ML(K =4)

Time needed per block(s) | 3.287 3.259 1.124

1.092

1.123 1.090 6.479 998.559

not been included in the initial population. For exam-
ple, if the second bit of all chromosomes is “0” whereas
the real signal bit is “1,” then the only way leading to
the right solution is by mutation. The mutation opera-
tion is also carried out in symbol level, where a symbol
may be mutated to its adjacent symbol in the constel-
lation according to a certain selected mutation proba-
bility. Generally, the crossover probability p. is close to
1 and the mutation probability p,, is close to 0.

(8) Go to Step (2) for the next generation.

(9) End and output the decisions.

Sometimes the bit inversion operation is performed in
the GA but it can be regarded as a special kind of crossover
so that it is not considered here. The operations of Step (6)
and Step (7) may also lead to chromosomes with less infor-
mation but the operation in Step (5) can reverse this degener-
ative effect. For given predefined number of generations and
population size, the computation times of (17) vary linearly
with (KQK0)2, which is much smaller than the factor of QXKo
in the ML detection. The improvement is clearly significant.

The significant features of the GA proposed in this paper
are the introduction of an improved objective function and
the preparation of an initial population that already contains
some signal information from the output of a DD or MMSE
detector given by (18) or (19) instead of a blind and random
selection of the initial population as suggested in [13].

4. SIMULATIONS

In the following simulations, 8 PSK modulation and $,
STBC of rate 1 have been adopted and the number of users
is K = 4. Hence Q = 8, N = 2, and the signal vector length,
that is, the chromosome length, is L = K*K{ log, Q = 24.
The number of receive antennas is M = 2. The predefined
number of generations and the population size are both 256
since the number of all possible solutions for each user is
QK = 64. The improvement of the computation time in the
GA STBC MUD is therefore 256 times over the ML detec-
tion. The recombination operation parameters are p,, = 0.05
and p, = 0.95. The Roulette-wheel selection rule and the
single-point crossover are adopted. The channel is Rayleigh
flat fading and is maintained constant during the whole block
period. The path gain is taken as an independent complex
Gaussian random variable with zero mean and a variance of
0.5 per dimension.

The computation times for each block averaged from
1000 times of Monte Carlo simulations in Matlab are given
in Table 1 for various simulation schemes. In the table, “f,”
and “f,” represent the receiver based on the objective func-
tion given by (17) and (20) respectively. “RR” refers to the re-
ceiver with the seed chromosome chosen randomly. “RDD”

refers to the receiver with its seed chromosome created from
the DD detector. “RMD?” refers to the receiver with its seed
chromosome created from an MMSE detector. “ML (K = 1)”
represents the ML detector for the single-user case. The time
per block needed for “ML (K = 4)” is so large that only sev-
eral blocks are simulated for reference and therefore the BER
performance of this case is not shown in the following fig-
ures. The same notations are also used in the following fig-
ures. The criterion for terminating the algorithm is when the
objective function from (17) or (20) is less than a predefined
threshold. This threshold is selected from the smallest value
of (17) or (20), where the training signal is obtained by set-
ting % to x. The resulting threshold is 0.5 for f; or 0.1 for f,
in this paper. The table shows clearly that the time needed for
our proposed GA STBC MUD is only about 1/5 of that of the
single-user receiver with ML detection, and the improvement
over the MUD is more than 256 times since some block de-
tection may have the GA operations terminated before the
last generation. The computation time required when the
seed chromosome is prepared from either the DD detector
or the MMSE detector is a few times further smaller than
that when the initial chromosomes are randomly chosen. The
computation time for the modified objective function f, is
about 10% less than that for the original function f; because
of its quicker convergence.

The BER performance versus the number of generations
for the various detection schemes employing the objective
function f; or f, is shown in Figure 2 at SNR = 6dB. For
comparison, the BER curves for the iterative MAP method
suggested in [3] after the 6th iteration (6th iter. of IMAP in
the figure) for the CD, DD, MMSE, and ML detectors are
also given. By comparing Figure 2a with Figure 2b, it can be
observed that the improvement of RDD and RMD over RR
is more significant with f, than with f;. Besides, the perfor-
mance of RDD is comparable to that of RMD. All proposed
GA receivers outperform the CD after 30 or 10 generations
with f; or f, respectively. RDD or RMD detector initially
performs the same as DD or MMSE detector but gradually
achieves a better BER performance after GA operations.

Figure 3 gives a comparison between the two objective
functions when SNR = 6 dB for RR, RDD, and RMD, respec-
tively. The receiver with the objective function f, converges
to a BER of 1072 about 80 generations sooner than that with
fi for both RDD and RMD, which is also the reason why
the computation time for the final decision is smaller with
f> than with f;. A similar behavior is observed with RR but
the improvement is not so significant. It is also obvious that
the performance of the receivers with f, approaches to that
of the single-user ML detection much faster and nearer than
those with f;.

Figure 4 shows the BER versus SNR performance of
the final GA output of various receivers with the objective
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FIGURE 2: Performance comparison of various receivers at SNR =
6 dB with the objective function (a) f; and (b) f.

function f; or f, respectively. Figure 4a shows that RDD and
RMD with the objective function f; outperform RR by about
2dB at the BER of 1072, Here the comparison is referenced
at the BER of 1072 instead of 107> just because the results
cannot approach 1073, Figure 4b shows that RDD and RMD
with the objective function f, outperform RR by about 3 dB
at the BER of 1072 and can outperform 6th iteration results of
the iterative MAP detection. The SNR degradation compared
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FIGURE 3: Performance comparison at SNR = 6 dB of different ob-
jective functions for receiver with the seed chromosome (a) ran-
domly chosen, (b) created by a DD detector, and (c) created by an
MMSE detector.
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FIGURE 4: BER versus SNR performance of various receivers with
the objective function (a) f; and (b) f.

with the single-user ML performance is about 2 dB for RMD
and RDD at the BER of 1072, Furthermore, RMD outper-
forms RDD by a very small amount with both objective func-
tions. The improvement of all the proposed receivers over
the CD, DD, and MMSE is significant. However, Figure 4
also shows that there may be a bound for those detectors
with f;, which will limit any further application of such
detectors.
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F1Gure 5: BER performance comparison of different objective func-
tions for receiver with the seed chromosome (a) randomly chosen;
(b) created by a DD detector, and (c) created by an MMSE detector.



Improved MUD with Genetic Algorithms in an STBC System

647

Figure 5 shows the detailed performance comparison be-
tween f; and f, for RR, RDD, and RMD, respectively. Clearly
the receivers with f, outperform those with f;. The SNR im-
provement at the BER of 1072 is about 1.3dB or 1dB for
RDD or RMD, respectively.

5. CONCLUSIONS

The GA has previously been shown to be a feasible technique
to solve the STBC MUD problem requiring less computing
resources. To further improve its performance, two modifi-
cations have been proposed in this paper. Firstly, a new ob-
jective function is introduced which includes the phase in-
formation of the relevant signal vectors in order to make
the decision more accurate. It contributes to about 10% re-
duction of detection time and about 1.3 or 1dB SNR im-
provement at the BER of 1072 for the GA receiver with
DD or MMSE detector, respectively. It also requires fewer
generations to converge. Secondly, the DD and MMSE de-
tectors have been embedded into the GA STBC MUD sys-
tem to generate the seed chromosome and thus provide
some signal information to the first generation. The result-
ing simulations confirm that the receivers thus designed can
converge faster than that with the initial population ran-
domly chosen. The improvement in SNR is about 2-3 dB
at the BER of 1072. Therefore, the total SNR improvement
of the best receiver proposed here can reach 3—4 dB at the
BER of 1072 when compared with the previous reported
GA STBC MUD receiver. This receiver performance is also
better than the DD, MMSE, or MAP detector. The degra-
dation in SNR when compared with a single-user ML de-
tector is limited to about 2dB at the BER of 1073, All the
above results suggest that the proposed improved GA receiver
is a promising solution of the STBC MUD problem with
reasonable computation complexity and fairly good perfor-
mance.
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