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In the context of multiuser detection for the DS-CDMA uplink, out-of-cell interference is usually treated as Gaussian noise,
possibly mitigated by overlaying a long random cell code on top of symbol spreading. Different cells use statistically independent
long codes, thereby providingmeans for statistical out-of-cell interference suppression.When the total number of (in-cell plus out-
of-cell) users is less than the spreading gain, subspace identification techniques are applicable. If the base station is equipped with
multiple antennas, then completely blind identification is possible via three-dimensional low-rank decomposition. This works
with more users than spreading and antennas, but a purely algebraic solution is missing. In this paper, we develop an algebraic
solution under the premise that the codes of the in-cell users are known. The codes of out-of-cell users and all array steering
vectors are unknown. In this pragmatic scenario, we show that in addition to algebraic solution, better identifiability is possible.
Our approach yields the best known identifiability result for three-dimensional low-rank decomposition when one of the three
component matrices is partially known, albeit noninvertible. Simulations show that the proposed identification algorithm remains
close to the pertinent asymptotic (symbol-independent) Cramér-Rao bound, which is also derived herein.
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1. INTRODUCTION

In the context of uplink reception for cellular DS-CDMA
systems, interference can be classified as either (i) interchip
(ICI) and intersymbol (ISI) self-interference, (ii) in-cell mul-
tiuser access interference (commonly referred to as MUI or
MAI), or (iii) out-of-cell multiuser access interference. The
latter is typically ignored or treated as noise; however, it has
been reported [1] that in IS-95 other cells account for a
large percentage of the interference relative to the interfer-
ence coming fromwithin the cell. MUI is usually a side-effect
of propagation through dispersive multipath channels. The
conceptual difference between in-cell and out-of-cell inter-
ference boils down to what the base station (BS) can assume
about the nature of interfering signals. Typically, the codes of
interfering in-cell users are known to the BS, whereas those
of out-of-cell users are not. Specifically, in the presence of
ICI, the receive-codes of the in-cell users can be estimated
via training or subspace techniques (e.g., cf. [2]), using the
fact that the transmit-codes are known. This is not the case
for out-of-cell users.

Appealing to the central limit theorem, the total inter-
ference from out-of-cell users is usually treated as Gaussian
noise. In IS-95, a long random cell-specific code is overlaid
on top of symbol spreading, and cell despreading is used
at the BS to randomize out-of-cell interference. This helps
mitigate out-of-cell interference in a statistical fashion. To
see how random cell codes work, consider the simplified
synchronous flat-fading baseband-equivalent received data
model

x = DinCinsin +DoutCoutsout + n, (1)

where x holds the received data corresponding to one sym-
bol period, Cin (resp. Cout) is the spreading code matrix, sin
(resp. sout) is the symbol vector,Din (resp.Dout) is a diagonal
matrix that holds a portion of the random cell code for the
in-cell (resp. out-of-cell) users, and n models receiver noise.
For simplicity, assume that the in-cell symbol-periodic codes
are orthogonal of length P, and all codes and symbols are
BPSK (+1 or −1). Let c1 stand for the code of an in-cell user
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of interest. Then

z1 := 1
P
cT1Dinx

= sin(1) +
1
P
cT1DinDoutCoutsout + ñ.

(2)

The interference term is zero-mean; under certain condi-
tions, its variance is O(1/P). This is easy to see for a sin-
gle out-of-cell user. It follows that random cell codes work
reasonably well in relatively underloaded systems with large
spreading gain (e.g., 128 chips/symbol), but performance can
suffer from near-far effects, and cell codes cannot help iden-
tify out-of-cell transmissions. Although the latter may seem
of little concern in commercial applications, it can be impor-
tant for tracking, handoff, and monitoring.

In a way, a structured approach towards the explicit iden-
tification1 of out-of-cell users is the next logical step beyond
in-cell multiuser detection and is motivated by considera-
tions similar to those that stimulated research took from
matched filtering to multiuser detection. Note that, unlike
the case of in-cell interference, out-of-cell interference can-
not be mitigated by power control, simply because the BS
does not have the authority to exercise power control over
out-of-cell users. For a power-controlled in-cell population,
near-far effects may be chiefly due to out-of-cell interference.
Unfortunately, out-of-cell detection is compounded by the
fact that it has to be blind, since the BS has no control and
usually no prior information on out-of-cell users. This places
limitations on the number and nature of out-of-cell trans-
missions that can be identified.

The literature on out-of-cell blind identification is scarce.
Assuming that (i) the codes of the in-cell users are known, (ii)
the total number of (in-cell plus out-of-cell) users is less than
the spreading gain and the combined spreading code matrix
is full column rank, and (iii) given the correlation matrix of
the vector of chip samples taken over a symbol interval, it
is possible to cancel out the effect of out-of-cell users [3],
then adopt linear or nonlinear solutions for in-cell detection.
This approach is appealing, but it has two drawbacks. First,
it can be unrealistic to assume that the total number of users
is less than the spreading gain. This is especially so in loaded
systems and urban areas. Second, in practice one uses sample
estimates of the correlation matrix. This yields cancellation
errors for finite samples, even in the noiseless case.

Recently, a novel code-blind identification approach has
been proposed, exploiting uniqueness of low-rank decom-
position of three-way arrays [4]. This requires the use of a BS
antenna array, but in return allows the identification of both
in-cell and out-of-cell users without requiring knowledge
of the code or steering vector of any user. More users than
spreading and antenna elements can be supported. There are
two drawbacks to this approach. First, a direct algebraic solu-
tion is generally not possible, thus iterative estimation tech-

1Here, by identification we mean explicitly modeling and estimating all
user signals (as opposed to treating certain user signals as unstructured
noise).

niques must be employed. Although these iterative methods
generally work very well, they are computationally intensive.
Second, in-cell code information, which may be available, is
not directly exploited (except numerically, by constraining
certain parameters during the iterations). In this paper, we
develop an algebraic solution that exploits the fact that the
codes of the in-cell users are known. In this scenario, we show
that in addition to algebraic solution, better identifiability is
possible. Our approach yields the best known identifiability
result for three-dimensional low-rank decomposition when
one of the three component matrices is partially known, al-
beit noninvertible.

Note that the group-blind multiuser detection approach
of [3] can be easily extended to handle multiple BS antennas,
but this requires that the array steering vectors, in addition
to the spreading codes2 of all the in-cell users, are known.
Estimating steering vectors is more difficult than estimating
codes, partly because they are generally unstructured, but
also due to mobility-induced fast fading. Note that the ap-
proach developed herein (see also [4]) does not assume any
parameterization of the manifold vectors.

For clarity of exposition, we will begin our analysis
by assuming that both in-cell and out-of-cell user trans-
missions are synchronized at the BS. In practice, this can
be approximately true in synchronous CDMA systems, like
CDMA2000.3 Quasisynchronism (i.e., timing offsets in the
order of a few chips) can be handled by dropping a short
chip prefix at the receiver. We will refer to both cases as
synchronous CDMA for brevity. Synchronization is usually
achieved via pilot tones emitted from the BS, or a GPS-
derived timing reference for synchronous networks involving
multiple cells. Out-of-cell transmissions will typically not be
synchronized with in-cell transmissions. Notable exceptions
include synchronous microcellular networks for “hotspot”
coverage, and calls undergoing hand-off at cell boundaries
(hence approximately equidistant from the two base sta-
tions). As we will see, when delay spread is small relative to
the symbol duration, this can be handled by treating each
out-of-cell user as two virtual users. Hence our analysis gen-
eralizes to the interesting case of a quasisynchronous in-cell
population plus asynchronous out-of-cell interference, as in
Wideband CDMA (WCDMA). We will refer to this situation
as asynchronous CDMA.

The rest of the paper is organized as follows. The main
ideas and concepts are exposed in Section 2.1, which treats
the idealized case of a synchronous DS-CDMA uplink sub-
ject to flat fading. This is then extended to frequency-
selective multipath and quasisynchronous transmissions in
Section 3, which also discusses a suitable admission protocol

2In the literature, it is common to use the term “(spreading) codes”
for the transmit codes, and “signatures” for the effective receive codes. For
brevity and to avoid confusion with spatial signatures, we adopt the term
“spreading codes” throughout, with the understanding that in the presence
of ICI/ISI, the term “codes” means the receive codes.

3CDMA2000 uses (universal coordinated time UTC) system time refer-
ence, derived from GPS. Mobile stations use the same system time, offset by
the propagation delay from the BS to the mobile station.
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that avoids explicit code estimation for the in-cell users.
Note that in the presence of strong out-of-cell interference
and frequency selectivity, estimating the codes of the in-
cell users is a difficult task in itself. Section 4 discusses is-
sues related to our choice of a pertinent symbol-independent
asymptotic Cramér-Rao Bound (CRB) to benchmark perfor-
mance of steering vector and spreading code estimation. As-
sociated derivations are deferred to the appendix. Section 5
provides analytical and simulated performance comparisons,
and Section 6 summarizes our conclusions.

Notation

(·)T and (·)H denote transpose and Hermitian transpose, re-
spectively; δ(·) stands for Kronecker’s delta. rA stands for the
rank of matrix A, while kA stands for the k-rank (Kruskal-
rank) of matrix A: the maximum k ∈ Z+ such that every
k columns of A are linearly independent (kA ≤ rA). ‖ · ‖F
stands for Frobenius norm; (·)−1 and (·)† stand for the ma-
trix inverse and pseudoinverse, respectively.Di(A) stands for
the diagonal matrix constructed out of the ith row of A. In
stands for the n× n identity matrix. E(·) denotes the expec-
tation operator. 〈 f , g〉 denotes the L2 inner product between
functions f and g.

2. MULTIUSER DETECTION FOR BLIND
IDENTIFICATION OF OUT-OF-CELL USERS

2.1. Datamodel

Consider a DS-CDMA uplink withM users (in-cell plus out-
of-cell), normalized chip waveform ψ of duration Tc, and
spreading gain P (chips per symbol). The mth user is as-
signed a binary chip sequence (cm(1), . . . , cm(P)). The result-
ing signature waveform for themth user is

φm(t) =
P∑
i=1

cm(i)ψ
(
t − iTc

)
, 0 ≤ t ≤ Ts, (3)

where Ts = PTc is the symbol duration. All spreading codes
are assumed short (symbol periodic).

The baseband-equivalent signal received at the BS for a
burst of L transmitted symbols can be written as

x(t) =
M∑

m=1

L∑
l=1

αm
√
Emsm(l)φm

(
t − lTs − τm

)
+w(t), (4)

where M is the total number of active users, αm is the com-
plex path gain, Em is the incident power for the mth user
loaded at the transmitter, sm(l) is the lth transmitted symbol
associated with themth user, τm is the delay of themth user’s
signal, and w(·) is additive white Gaussian noise (AWGN).
Since in-cell users are synchronized with the BS, the delays
τm for all in-cell users are taken to be zero. For out-of-cell
users, the associated delays can be assumed to lie in [0,Ts],
without loss of generality.

If K receive antennas are employed at the BS, the base-
band signal at the output of the chip-matched filter of the

kth antenna for the pth chip in the nth symbol interval can
be written as

xk,n,p =
〈
x(t),βkψ

(
t − nTs − pTc

)〉
=

Min∑
m=1

αk,mβk
√
Emsm(n)cm(p)

+
M∑

m=Min+1

L∑
l=1

αk,mβk
√
Emsm(l)νpm(n, l) +w(k,n, p)

=
Min∑
m=1

αk,mβk
√
Emsm(n)cm(p)

+
M∑

m=Min+1

αk,mβk
√
Em
[
sm(n)νpm(n,n)

+ sm(n− 1)νpm(n,n− 1)
]

+w(k,n, p),
(5)

where Min (≤ P) denotes the number of in-cell users and
Mout the number of out-of-cell users (M =Min +Mout); βk is
the antenna gain associated with the kth antenna; νpm(n, l) =∑P

i=1 cm(i)
∫ Tc

0 ψ(t + (n − l)Ts + (p − i)Tc − τm)ψH(t)dt;

w(k,n, p) = ∫ Tc

0 w(t + nTs + pTc)ψH(t)dt.
Note that, due to asynchronism, each out-of-cell user is

viewed by the BS as two synchronous users, whose symbol
sequences are time-shifted versions of one another. The as-
sociated spreading codes are given by νpm(·, ·).

From (5), in a frequency-flat block-fading scenario, the
baseband-equivalent chip-rate sampled data model for a
synchronous DS-CDMA system with short symbol-periodic
spreading codes andK receive antennas at the BS can be writ-
ten as

xk,n,p =
M∑

m=1
am(k)cm(p)sm(n) +wk,n,p, (6)

for k = 1, . . . ,K , n = 1, . . . ,N , p = 1, . . . ,P, where N is
the number of symbol snapshots, xk,n,p denotes the baseband
output of the kth antenna element for symbol (time) n and
chip p, am(k) is the compound flat fading/antenna gain asso-
ciated with the response of the kth antenna to themth user.

It is useful to recast this model in matrix form. We de-
fine P received data matrices Xp ∈ CK×N with (k,n)-element
given by xk,n,p, and AWGN matrices Wp ∈ CK×N with
(k,n)-element given by wk,n,p. We also define the steering
matrix A ∈ CK×M with mth column [am(1) · · · am(K)]T ,
the spreading code matrix C ∈ CP×M with mth column
[cm(1) · · · cm(P)]T , and the signal matrix S ∈ CN×M with
mth column [sm(1) · · · sm(N)]T . Without loss of generality,
we assume that the submatrices Ain ∈ CK×Min , Cin ∈ CP×Min ,
Sin ∈ CN×Min , consisting of the first Min columns of A, C,
S, respectively, correspond to the in-cell users; and simi-
larly for Aout, Cout, and Sout. Thus, we have A = [Ain Aout],
C = [Cin Cout], S = [Sin Sout].
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Xp admits the factorization

Xp = ADp(C)ST +Wp

= AinDp
(
Cin

)
STin + AoutDp

(
Cout

)
STout +Wp

= Xin
p +Xout

p +Wp,

(7)

for p = 1, 2, . . . ,P.
It is also worth mentioning that we can write the above

set of matrix equations into more compact form if we intro-
duce the so-called Khatri-Rao product � (column-wise Kro-
necker product, see [4] and references therein). Stacking the
matrices in (7), we obtain

XKP×N :=


X1

X2
...

XP



=


AD1(C)

AD2(C)
...

ADP(C)

 ST +


W1

W2
...

WP


= (C� A)ST +WKP×N

= (
Cin � Ain

)
STin +

(
Cout � Aout

)
STout +WKP×N .

(8)

Due to the symmetry of the model (6), wemay also recast
(8) in the following form

X̃PN×K = (S� C)AT + W̃PN×K , (9)

where W̃PN×K is a reshuffled AWGNmatrix (see [4]).
In what follows, we consider detecting the signal matrix S

transmitted from all active users given only knowledge of Cin

andM. As a byproduct, we will be able to recover the steering
matrix A and the unknown spreading code matrix Cout from
the received data X as well.

2.2. Preliminaries

In the sequel, we will need to invoke certain preliminary
results in order to prove our main identifiability result in
Theorem 1. Identifiability means that, in the absence of noise,
it is possible to recover the sought signals (model parame-
ters) without error; that is, it is possible to pin down the
sought parameters exactly. For this reason, we drop noise
terms in the discussion that follows. The basic ideas behind
preliminary results leading to Theorem 1 are due to Harsh-
man [5]. We begin by recalling the definition of k-rank.

2.2.1. Definition

Definition 1. The k-rank [6] of A is equal to kA if every kA
columns drawn from A are linearly independent, and either
there exists a collection of kA +1 linearly dependent columns
in A or A has exactly kA columns. Note that kA ≤ rank(A),
for all A.

2.2.2. Eigenanalysis

Consider two matrices X1 = AD1(C)ST , X2 = AD2(C)ST ,
where both A ∈ CK×M and S ∈ CN×M are full column rank
(M), C ∈ C2×M contains no zero entry, and all elements
on the diagonal of D := D2(C)D−11 (C) are assumed4 dis-
tinct. Consider the singular value decomposition (SVD) of
the stacked data matrix

[
X1

X2

]
=
[
A
AD

]
D1(C)ST = UΣVH. (10)

The linear space spanned by the columns of U is the same as

the space spanned by the columns of
[

A
AD

]
since SD1(C) has

full column rank; hence there exists a nonsingular matrix P
such that

UP =
[
U1

U2

]
P =

[
A
AD

]
. (11)

Next, construct the auto- and cross-product matrices

R0 = UH
1 U1 = P−HAHAP−1 := QP−1,

R1 = UH
1 U2 = P−HAHADP−1 := QDP−1.

(12)

Note that since both A and S are assumed full column rank,5

the matrices R0, R1, Q, P, and D in (12) areM ×M full rank
matrices. Solving the first equation in (12) for Q, then sub-
stituting the result into the second, it follows that

(
R−10 R1

)
P = PD, (13)

which is a standard eigenvalue problem with distinct eigen-
values. P can therefore be determined up to permutation and
scaling of columns based on the matrices X1 and X2. After
that, A can be obtained as A = U1P, CD−11 (C) can be re-
trieved with all ones in the first row, and the entire second
row taken from the diagonal of D, and finally SD1(C) can be

4Note that the columns of C correspond to chip-rate samples of the re-
ceived codes (or signatures) of the users, that is, the convolution of the trans-
mit codes and the respective multipath channels. Without such multipath,
BPSK or other finite-alphabet codes would violate the condition that the
diagonal elements of D2(C)D−11 (C) are distinct. However, note that we do
not advocate using this result for actual separation—it is merely listed here
as background needed in the proof of our main result in Theorem 1. Due
to the use of the left pseudoinverse of Cin employed to bring C in canon-
ical form, the Cout in Theorem 1 holds code cross-correlations, rather than
actual codes. For some binary codes, for example, Gold and Kasami codes,
the conditions in Theorem 1 hold with high probability. With randommul-
tipath taps, the condition can be shown to hold almost surely. Furthermore,
the condition can also be sustained with real- or complex-valued spreading
codes.

5This implies that K ≥ M and N ≥ M, but note again that we do not
advocate using this argument as is for separation; we rather present it as a
building block to be used later in Theorem 1.
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recovered as SD1(C) = (A†X1)
T
, all under the same permu-

tation and scaling of columns, which carries over from the
solution of the eigenvalue problem in (13).

Repeated values along the diagonal of D2(C)D−11 (C) give
rise to eigenvalues of multiplicity higher than one. In this
case, the span of eigenvectors corresponding to each distinct
eigenvalue can still be uniquely determined. This will be im-
portant when we discuss the case of asynchronous out-of-cell
users later in Section 3.

More generally, we have the following claim.

Claim 1. Given matrices Xp = ADp(C)ST for p = 1, . . . ,P ≥
2, A, C, and S can be found up to permutation and scaling of
columns provided that both A and S are full column rank, and
kC ≥ 2.

Since kC ≥ 2, we know that the spreading code matrix C
does not contain any zero columns. Note that kC ≥ 2 does
not necessarily imply that there always exists a submatrix of
C which comprises two rows of C such that the k-rank of this
submatrix is 2. For instance, consider

C =
1 1 1
1 2 2
1 2 1

 . (14)

It can be seen that rC = kC = 3, whereas none of the 2×3
submatrices of C has k-rank greater than 1. From this exam-
ple, it is evident that one cannot prove Claim 1 by eigende-
composition applied to a pair of Xp’s. For this, we will need
the following claim.

Claim 2. Given C ∈ CP×M with kC ≥ 2, there always exists a
2× P matrix G such that the k-rank of GC is two.

For a proof of Claim 2, note that the objective can be eas-
ily shown equivalent to proving that there exists a 2× P ma-
trix G such that the determinants of all 2× 2 submatrices of
GC are not zero. G is determined by its 2P complex entries.
The determinant of each 2× 2 submatrix of GC is a polyno-
mial in those 2P variables, and hence analytic. Since kC ≥ 2,
for each specific 2×2 submatrix ofGC, for instance, the sub-
matrix comprising the first two columns ofGC, it is not hard
to show that there always exists a G0 such that the determi-
nant of the corresponding submatrix of G0C is not zero. In-
voking [7, Lemma 2], we conclude that the set of G’s which
yield zero determinant for any specific submatrix of GC con-
stitutes ameasure zero set inC2P . The number of all 2×2 sub-
matrices of GC is finite, and any finite union of measure zero
sets is of measure zero. The existence of the desired G thus
follows. Not only does such a G exist, but in fact a random G
drawn from, for example, a Gaussian product distribution,
will do with probability one. This establishes Claim 2.

The existence of such G implies that the elements on the
diagonal of D2(GC)D−11 (GC) will be distinct. Therefore, the
eigenanalysis steps can be carried through to solve for A and
S from the two mixed slabs AD1(GC)ST and AD2(GC)ST .
With the recovered A and S, C can be computed from Xp.
Therefore Claim 1 follows.

2.2.3. Lemma

In the proof of our main theorem, we will need the following
lemma.

Lemma 1. Given[
1 0 ∗ · · · ∗
0 1 ∗ · · · ∗

]
∈ C2×M , (15)

where ∗ stands for a nonzero entry, it holds that for almost
every (µ1,µ2) ∈ R2 (i.e., except for a set of Lebesgue measure
zero), the matrix

E :=
[
1 1
µ1 µ2

][
1 0 ∗ · · · ∗
0 1 ∗ · · · ∗

]

=
[
1 1 • · · · •
µ1 µ2 ∗ · · · ∗

] (16)

contains no zero entry in the second row; and the first two ele-
ments on the diagonal ofD1(E)D−12 (E) are distinct and distinct
from the remaining elements.

Proof. Having a zero entry in the second row occurs when
(µ1,µ2) lies on the union of M lines. Since a finite union of
lines cannot cover the plane, zeros in the second row are ex-
cluded almost surely. The second claim can be proven in the
same manner.

2.3. Main theorem on identifiability

Without loss of generality, we assume that Cin is in canonical
form. The general case can be reduced to canonical form as
explained in the following section.

Theorem 1. Given Xp = ADp(C)ST , p = 1, . . . ,P, 2 ≤Min ≤
P, where A ∈ CK×M , C ∈ CP×M , S ∈ CN×M , and C in canoni-
cal form

C =
[
IP
(
1 :Min

)
Cout

]
, (17)

where IP(1 : Min) denotes the first Min columns of IP , if
the first Min rows of Cout contain no zero entries, and kC ≥
2,min{kA, kS} ≥ Mout + 2, then the matrices A, C, and S are
unique up to permutation and scaling of columns.

Proof. We will show that we can first recover Ain and Sin up
to permutation and scaling of columns from the given Xp,
and then obtain Aout, Cout, and Sout afterwards.

We begin by recovering the first two columns of Ain and
Sin. Start from

X1 = AD1(C)ST

= Adiag

[
1 0

Min−2︷ ︸︸ ︷
0 · · · 0

Mout︷ ︸︸ ︷∗· · ·∗
]
ST

= Ādiag
[
1 0 ∗ · · · ∗

]
S̄T ,

X2 = AD2(C)ST

= Adiag
[
0 1 0 · · · 0 ∗ · · · ∗

]
ST

= Ādiag
[
0 1 ∗ · · · ∗

]
S̄T .

(18)
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Recall that ∗ stands for a nonzero entry; Ā (S̄) is a column-
reduced submatrix of A (S). Invoking Lemma 1, we always
can pick a pair (µ1,µ2) ∈ R2 such that

E :=
[
1 1
µ1 µ2

][
1 0 ∗ · · · ∗
0 1 ∗ · · · ∗

]

=
[
1 1 • · · · •
µ1 µ2 ∗ · · · ∗

] (19)

contains no zero entry in the second row; and the first two
elements on the diagonal of D1(E)D−12 (E) are distinct and
distinct from the remaining elements. We also note that both
Ā and S̄ haveMout + 2 columns from the original A and S; by
definition of k-rank, it follows that

kĀ ≥ min
(
kA,Mout + 2

)
,

kS̄ ≥ min
(
kS,Mout + 2

)
.

(20)

Due to the fact that min{kA, kS} ≥ Mout + 2, both Ā and S̄
are full column rank. Therefore, eigendecomposition as in
Section 2.2.2 can be applied to the following mixed slabs,

Y1 = X1 +X2 = Ādiag[1 1 • · · · •]S̄T ,
Y2 = µ1X1 + µ2X2 = Ādiag[µ1 µ2 • · · · •]S̄T ,

(21)

to recover the first two columns of A and ST up to permu-
tation and scaling. We can repeat this procedure with Xi and
Xi+1 to recover the ith and the (i + 1)th columns of Ain and
Sin for i = 2, . . . ,Min− 1 until both Ain and Sin are recovered.
The matrices Xin

p := AinDp(IP(1 : Min))STin corresponding to
the in-cell users can be constructed, and we thus obtain the
matrices Xout

p by subtracting Xin
p from Xp for p = 1, . . . ,P.

Xout
p is nothing but AoutDp(Cout)Sout. Since Aout, Cout,

and Sout are all Mout-column submatrices of A, C, and S, re-
spectively, we have

kAout ≥ min
(
kA,Mout

) =Mout,

kSout ≥ min
(
kS,Mout

) =Mout,

kCout ≥ min
(
kC,Mout

) = min
(
2,Mout

)
.

(22)

The first two inequalities hold due to the condition that
min{kA, kS} ≥ Mout + 2, and imply that both Aout and Sout
are full column rank matrices.

If Mout ≥ 2, we know that kCout ≥ 2; therefore Claim 1
can be invoked, and eigenanalysis of two mixed slabs can be
carried out to recover Aout, Cout, and Sout, up to permutation
and scaling of columns.

When Mout = 1, it is known that rank-one matrix de-
composition is unique up to scaling.

Remark 1. Note that C in Theorem 1 can be a fat matrix. A
similar result can be derived forMin = 1, with slightly differ-
ent conditions on Cout.

Remark 2. The assumption that the first Min rows of Cout

contain no zero entries is posedmainly for simplicity of proof

of Theorem 1. Theorem 1 holds, provided that none of the
columns of the submatrix comprising the first Min rows of
Cout is proportional to a column of IMin . We chose to prove
the slightly restricted Theorem 1 due to space considerations.

Remark 3. The model identifiability conditions of Theorem
1 are usually met in practice deterministically or statistically
with proper system parameters. For instance, if we assume
that A and C are drawn from a continuous distribution, and
S drawn from an i.i.d. BPSK source, it can be shown that kA ≥
Mout + 2, kC ≥ 2 holds almost surely, provided K ≥Mout + 2,
P ≥ 2, while kS ≥ Mout + 2 occurs with high probability
provided that N is moderately higher thanM.

2.4. Algorithms

The proof of Theorem 1 is constructive; it directly yields a se-
quential eigenvalue-based solution that recovers everything
exactly in the noiseless case, under only the model identifi-
ability condition in the theorem. In the noisy scenario, this
eigenvalue approach can be coupled with an iterative LS-
based refinement algorithm that yields good estimation per-
formance for moderate signal-to-noise ratio (SNR) and be-
yond.

Assuming that Cin is known, the two major steps of our
algorithm are summarized next.

(1) Algebraic initialization

Arrange the received noisy data xk,n,p into a set of matrices,

X̃k ∈ CP×N , for k = 1, . . . ,K . The (p,n) entry of X̃k is xk,n,p.
It can be shown that

X̃k = CDk(A)ST + W̃k, (23)

where W̃k is the AWGNmatrix. Left multiply by the pseudo-
inverse of Cin to get Z̃k ∈ CMin×N :

Z̃k = C†inX̃k. (24)

Form another set of matricesXm ∈ CK×N , form = 1, . . . ,Min

such that the (k,n) entry of Xm is equal to the (m,n) entry of
Z̃k. It can be shown that

Xm = ADm
(
C†inC

)
ST +Wm, (25)

whereWm is the rearranged Gaussian noise matrix. Note that
C†inC is in canonical form, and thus we may apply the ap-
proach described in the proof of Theorem 1 to estimate A,
C†inCout, and S. C can also be estimated as

C =



AD1(S)

...

ADN (S)


† 

X1
...

XN



T

, (26)

where the (k, p) element of Xn ∈ CK×P is given by xk,n,p (cf.
[4] for details).
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(2) Joint constrained Least Squares refinement

Use the A, Cout, and S obtained in the first step and the
known Cin as initialization for constrained trilinear alternat-
ing least squares (CTALS) regression applied to the original
data xk,n,p. The basic idea behind TALS is to compute a con-
ditional LS update of A given C, S, then repeat for S, and so
forth in a circular fashion until convergence [4]. For CTALS,
the Cin part of C is fixed, and only Cout is updated in the iter-
ations.

3. EXTENSION TOQUASISYNCHRONOUS SYSTEMS
ANDMULTIPATH CHANNELS

There are two issues that must be addressed in order to es-
tablish the usefulness of our algorithm in a realistic cellu-
lar CDMA environment. One is synchronization; the other
is frequency selectivity.

In so-called quasisynchronous CDMA (QS-CDMA) the
symbol timing of the in-cell users may be off by as much
as a few chips. This causes ISI, but, as already mentioned, it
can be circumvented by dropping a short chip-prefix for each
symbol at the receiver—the associated performance degra-
dation is negligible when the prefix is short relative to the
spreading gain.

Quasisynchronism is a reasonable assumption for the
in-cell user population in the context of 3G systems (e.g.,
CDMA2000), but much less so for out-of-cell users, who ac-
tually attempt to synchronize with a different BS. The key
here is (5) asynchronous out-of-cell users appear as two vir-
tual synchronous users, with “split” code pieces, and symbol
sequences that are offset by one symbol. Note that splitting
and offset generally preserve linear independence; however,
the steering vectors (spatial responses) will be colinear for
each such pair of virtual users. Fortunately, by exchanging
the roles of A and C and invoking the remark on repeated
eigenvalues in Section 2.2.2, it can be shown that the parame-
ters of all in-cell users can still be uniquely determined, along
with the span of each pair of virtual out-of-cell users.

Frequency selectivity is realistically modeled by convolu-
tion with a relatively short chip-rate FIR filter that models
the discrete-time baseband-equivalent channel impulse re-
sponse, including transmit chip pulse-shaping and receive
chip-matched filtering. The effective spreading codes seen at
the receiver are the convolution of the transmit codes with
the corresponding multipath channels. This means that the
in-cell receive codes must be estimated before our basic ap-
proach developed in the above section can be applied. This
estimation is compounded by the cochannel out-of-cell in-
terference, which is not under the control of the BS. In or-
der to deal with the problem of receive-code estimation for
the in-cell users, we propose the following admission proto-
col “as new in-cell users come into the system, they are ini-
tially treated as out-of-cell: their receive-codes are thereby es-
timated blindly, and they are subsequently added to the list
of in-cell users. Initially, the process is started by solving a
blind problem,” as in [4]. In this way, the problem of receive-
code estimation for the in-cell users is never explicitly solved.

Once the in-cell receive-codes have been estimated at the BS,
the proposed algorithm can be carried over to the quasisyn-
chronous frequency-selective DS-CDMA systems.

4. ASYMPTOTIC CRAMÉR-RAO BOUND

In order to benchmark the performance of our estimation al-
gorithm, it is useful to derive pertinent bounds.While low bit
error rate (BER) is of primary concern, accurate estimates of
the out-of-cell user’s receive-codes and both in-cell and out-
of-cell steering vectors are also of interest. CRBs can be de-
veloped for the latter, owing to the fact that unlike symbols,
steering vectors and receive-codes are continuous parame-
ters.

The conditional CRB for low-rank decomposition of
multidimensional arrays has been derived in [8], assuming
all matrices are fixed unknowns. In our present context, how-
ever, we are more interested in bounds that are independent
of the symbol matrix S. Towards this end, we can aim for one
of two options: computing an averaged (or modified) CRB,
or an asymptotic CRB. The former turns out to be far more
complicated to derive in closed form; we therefore opt for the
latter.

In the appendix, wherein the detailed CRB derivations
can be found, we begin by developing a compact form of
the conditional CRB in [8]. The new compact form is much
simpler to compute than the expression given in [8]. Then,
following the approach developed in [9], we work out the
asymptotic CRB as the number of symbols, N , goes to in-
finity. The key to this computation is that the limit and the
CRB operator can be exchanged, since the latter is continu-
ous; and when N tends to infinity, the sample estimate of the
correlation matrix of S approaches the exact correlation ma-
trix of S. For the sake of brevity, in what follows, we assume
that the entries of S are drawn from an i.i.d. BPSK source.
This implies that

E
(
sm1

(
n1
)
sm2

(
n2
)) = δm1,m2δn1,n2 . (27)

Note that the asymptotic CRB derived in the appendix
is valid for arbitrary C—it is not necessary to have Cin in
canonical form. The main limitation of the asymptotic CRB
is that it is valid for large enough N , but for small N there
will be some mismatch.

5. SIMULATION RESULTS

In this section, we provide computer simulation results to
demonstrate the performance of the proposed algorithm.

As per Theorem 1, scaling ambiguity for all active users
and the permutation ambiguity among out-of-cell users is
inherent to this blind separation problem. We remove the
column scaling ambiguity among the estimated symbol ma-
trix S via differential encoding, and assume differentially en-
coded user signals throughout the simulations. For the pur-
pose of performance evaluation only, the permutation ambi-
guity among the out-of-cell users is resolved using a greedy
least square matching algorithm [4]. This permutation
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Figure 1: No out-of-cell user interference.

ambiguity among the out-of-cell users cannot be solved at
the BS without additional side information, but this indeter-
minacy is irrelevant in practice.

Let Xp = ADp(C)ST +Wp be the received noisy data, for
p = 1, . . . ,P, where Wp are the AWGN matrices. We define
the sample SNR at the input of the multiuser receiver as

SNR := 10 log10

∑P
p=1

∥∥ADp(C)ST
∥∥2
F∑P

p=1
∥∥Wp

∥∥2
F

dB. (28)

We first show that the proposed algebraic initialization
significantly accelerates the convergence of least square re-
finement and improves the performance. In order to have
a benchmark, we consider cases wherein the TALS-based
COMFAC algorithm [4] is also applicable, but note that the
approach developed herein can work well when COMFAC
fails. When both methods are applicable, our simulations
show that the new approach yields better performance.

Figure 1 plots BER versus average SNR, without out-of-
cell interference and forMin = 4, DE-BPSK, K = 2, N = 50,
and P = 4. Results are averaged over 102 i.i.d. Rayleigh
channels (A—no power control is assumed), and 106 real-
izations per each Rayleigh channel. Note that total averag-
ing is O(108). The spreading codes are randomly drawn from
a continuous distribution and fixed throughout the simula-
tions. Figure 2 depicts average BER for the in-cell users for
Min = 4,Mout = 2, K = 4, N = 50, P = 4, and otherwise the
same simulation setup. Note that in the second experiment,
both the number of antennas and spreading gain are less than
the number of total active users. It is seen from those fig-
ures that, as expected, the proposed algorithm has provided
better BER performance than COMFAC; in particular, such

COMFAC
Algebraic approach
Constrained LS refinement
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Figure 2: More active users than spreading gain.

improvement is significant in the high SNR regime. In addi-
tion, the proposed algorithm has been observed to converge
at least 70 percent faster (in terms of time) than the gen-
eral TALS with random initialization, and comparably with
respect to the computation-efficient TALS-based COMFAC,
especially in the high SNR regime.

Next, the performance of the proposed algorithm and
that of the linear group-blind decorrelating detector [3] with
two different sample sizes is shown in Figure 3. The orig-
inal group-blind multiuser detector is designed for uplink
CDMA with a single receive antenna, but the approach of
[3] can be easily extended to handle multiple BS antennas,
provided that the array steering vectors, in addition to the
spreading codes, of all the in-cell users are known. Estimat-
ing steering vectors is more difficult than estimating codes,
because the former vary faster due to mobility-induced fast
fading. In our simulation, in contrast to the proposed algo-
rithm, the linear group-blind decorrelating detector assumes
perfect knowledge of in-cell user’s steering matrix Ain, that
is, we provide the linear group-blind decorrelating detector
with perfect knowledge of (Cin � Ain) in (8). Figure 3 de-
picts the performance of the two competing detectors for
two different sample sizes, N = 25, N = 50. It is observed
that the linear group-blind decorrelating detector exhibits
an error floor in the high SNR regime due to using sam-
ple estimates of the correlation matrix. This yields cancel-
lation errors which persist for any number of finite samples,
even in the noiseless case. However, such error floor is ac-
ceptable when we use large sample sizes. With 50 snapshots,
the linear group-blind decorrelating detector provides bet-
ter BER performance than the proposed detector in the high
SNR regime even though the error floor surfaces at about
24 dB. With a small sample size of N = 25, the proposed
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Figure 3: Small sample performance compared to the group-blind
approach with known in-cell steering (K = 4,P = 8,Min = 4,M =
6).

detector clearly outperforms the linear group-blind decor-
relating detector, despite the fact that it uses less side infor-
mation. In both cases, the proposed detector outperforms
the linear group-blind decorrelating detector in the low SNR
regime. We emphasize that the proposed algorithm performs
well even for very small sample sizes (e.g., N = 10) in the
high SNR regime, whereas the group-blind approach hits the
error floor at very low SNR in this case.

Our proposed detector is also robust to strong out-of-
cell interference. We have compared the user 1’s BER per-
formance of proposed approach against the usual minimum
mean squared error (MMSE) receiver, which assumes ex-
act knowledge of the in-cell user codes and steering vectors,
but treats out-of-cell users as Gaussian interference. The soft
MMSE solution for S is

ŜTin =
((

Cin � Ain
)H(

Cin � Ain
)

+
1

SNR
I
)−1(

Cin � Ain
)H

XKP×N .
(29)

Figure 4 shows that as the power of out-of-cell users in-
creases, the performance of the MMSE receiver deteriorates
significantly whereas the degradation of the proposed detec-
tor is marginal.

The proposed algorithm is capable of accurately estimat-
ing the steering matrix of all active users and the code matrix
of out-of-cell users. In order to illustrate this, we compare the
(mean squared error MSE) performance of the proposed ap-
proach against the associated asymptotic CRB. Throughout,

MMSE: no out-of-cell info
Proposed algorithm
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Figure 4: Robustness to strong out-of-cell interference (SNR1 =
8dB,K = 4,N = 25,P = 8,Min = 3,M = 4).

the asymptotic CRB is first normalized in an elementwise
fashion, that is, each unknown parameter’s CRB is weighed
with weight proportional to the inverse modulus square of
respective parameter. The average weighted CRB of all the
unknown parameters is then used as a single performance
metric. The average MSE for all free model parameters is cal-
culated in the same fashion. The SNR is defined as

SNR := 10 log10
‖C� A‖2F
KPσ2

dB, (30)

which can be shown consistent with the definition (28) when
we take the expectation of (28) with respect to S.

Figure 5 depicts simulation results comparing TALS per-
formance to this asymptotic CRB for two different snapshots.
In this simulation, K = 4, P = 4, M = 6, and the true
parameters were used to initialize TALS. The point here is
to measure how tight the asymptotic CRB is for various N ;
for this reason, we use the sought parameters as initializa-
tion in order to ensure the best possible scenario for TALS.
It can be seen that TALS with good initialization remains
very close to the CRB from medium to high SNR and rela-
tively large sample size, N = 64. Note that N = 64 is a rea-
sonable number of symbol snapshots in practice. When the
sample size is relatively small, the MSE performance of TALS
is naturally worse than what is predicted by the asymptotic
CRB.

Figure 6 presents the averageMSE performance of COM-
FAC and the proposed algorithm against the CRB bound.
We note that the performance of the proposed algorithm ex-
ceeds that of COMFAC considerably once SNR goes beyond
the low SNR regime. This is because the new algebraic ap-
proach can provide fairly accurate initializations for CTALS,
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Figure 5: TALS versus asymptotic CRB.
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Figure 6: MSE performance of COMFAC and the proposed algo-
rithm versus asymptotic CRB (K = 4,P = 4,Min = 4,M = 6,N =
64).

whereas the COMFAC is forced to use random initializations
in this case, wherein no two modes are full column rank. The
average MSE of the proposed algorithm deviates from CRB
about two to three dB. This is mainly because the initializa-
tions the algebraic approach provides are still not perfect,
and the pre-specified tolerance threshold used to terminate
the iterative refinement algorithm is set higher than in previ-
ous simulations, due to complexity considerations.

6. CONCLUSIONS

Out-of-cell interference in DS-CDMA systems is usually
treated as noise, possibly mitigated using random cell codes.
If the total number of in-cell plus out-of-cell users is smaller
than the spreading gain, subspace-based suppression of out-
of-cell users is possible. The assumption of more spreading
than the total number of users can be quite unrealistic, even
for moderately loaded cells. Completely blind reception is
feasible under certain conditions (even with more users than
spreading) with BS antenna arrays. We have proposed a new
blind identification procedure that is capable of recovering
both in-cell and out-of-cell transmissions, with sole knowl-
edge of the in-cell user codes. The codes of the out-of-cell
users and the steering vectors of all users are also recovered.
The new procedure remains operational even when com-
pletely blind or subspace-based procedures fail. Interestingly,
if the in-cell codes are known, then algebraic solution is pos-
sible.

APPENDIX

ASYMPTOTIC CRB ASN TENDS TO INFINITY

To derive a meaningful CRB, following what has been done
in [8], we assume that the first row of A and S is fixed (or
normalized) to [1 · · · 1]1×F (this takes care of scale ambigu-
ity), the first row of Cout is known and consists of distinct
elements (which subsequently resolves the permutation am-
biguity) and Cin is in canonical form. In turn, the number of
unknown complex parameters is (N+K−2)M+(P−1)Mout.
Let

θ := [
aT2 ; . . . ; a

T
K ; cout

T
2 ; . . . ; cout

T
P ; s

T
2 ; . . . ; s

T
N ; a

H
2 ; . . . ; s

H
N

]
∈ C(N+K−2)M+(P−1)Mout×1,

(A.1)

where ak denotes the kth row of A, cout p denotes the ith row
of Cout, and sn denotes the nth row of S.

It has been shown in [8] that the Fisher information ma-
trix (FIM) is given by

Ω(θ) = E
{(

∂ f (θ)
∂θ

)H(∂ f (θ)
∂θ

)}
=
[
Ψ 0
0 Ψ∗

]
, (A.2)

where f (θ) is the log-likelihood function and

Ψ =


Ψaa Ψac Ψas

ΨH
ac Ψcc Ψcs

ΨH
as ΨH

cs Ψss

 (A.3)

with obvious notation. In addition,[
CRBaa CRBac

CRBH
ac CRBcc

]

=
([

Ψaa Ψac

ΨH
ac Ψcc

]
−
[
Ψas

Ψcs

]
Ψ−1

ss

[
ΨH

asΨ
H
cs

])−1
.

(A.4)
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The elements ofΨ can be given6 as follows

E

{
∂ f (θ)
∂a∗k1,m1

∂ f (θ)
∂ak2,m2

}

= 1
σ2

eHm1

( N∑
n=1

(
sn � C

)H(
sn � C

))
em2δk1,k2

= 1
σ2

eHm1

( N∑
n=1

sHn sn

)
	 (CHC

)
em2δk1,k2 ,

k1, k2 = 2, . . . ,K , m1,m2 = 1, . . . ,M,

(A.5)

where we have used the identity

(
CHC

)	 (DHD
) = (C�D)H(C�D), (A.6)

and 	 stands for the Hadamard product. Similarly, we have

E

{
∂ f (θ)
∂c∗p1,m1

∂ f (θ)
∂cp2,m2

}
= 1

σ2
eHm1

(
AHA

)	 ( N∑
n=1

sHn sn

)
em2δp1,p2

p1, p2 = 2, . . . ,P; m1,m2 =Min + 1, . . . ,M.
(A.7)

In addition, we have

E

{
∂ f (θ)
∂s∗n1,m1

∂ f (θ)
∂sn2,m2

}
= 1

σ2
eHm1

(C� A)H(C� A)em2δn1,n2

= 1
σ2

eHm1

(
CHC

)	 (AHA
)
em2δn1,n2 ,

n1,n2 = 2, . . . ,N ; m1,m2 = 1, . . . ,M,

E

{
∂ f (θ)
∂a∗k,m1

∂ f (θ)
∂cp,m2

}

= 1
σ2

( N∑
n=1

s∗n
(
m1
)
sn
(
m2
))

c∗p
(
m1
)
ak
(
m2
)
,

E

{
∂ f (θ)
∂a∗k,m1

∂ f (θ)
∂sn,m2

}

= 1
σ2

s∗n
(
m1
)( P∑

p=1
c∗p
(
m1
)
cp
(
m2
))

ak
(
m2
)
,

E

{
∂ f (θ)
∂c∗p,m1

∂ f (θ)
∂sn,m2

}

= 1
σ2

s∗n
(
m1
)( K∑

k=1
a∗k
(
m1
)
ak
(
m2
))

cp
(
m2
)
.

(A.8)

Since we have assumed that

E
(
s∗n1
(
m1
)
sn2
(
m2
)) = δn1,n2δm1,m2 , (A.9)

6The forms given here can be shown to be mathematically equivalent to
those in [8]. The new forms are computationally much simpler.

it follows that

lim
N→∞

1
N
E

{
∂ f (θ)
∂a∗k1,m1

∂ f (θ)
∂ak2,m2

}

= 1
σ2

eHm1

(
lim
N→∞

1
N

N∑
n=1

sHn sn

)
	 (CHC

)
em2δk1,k2

= 1
σ2

eHm1
IM 	

(
CHC

)
em2δk1,k2 ,

lim
N→∞

1
N
E

{
∂ f (θ)
∂c∗p1,m1

∂ f (θ)
∂cp2,m2

}
= 1

σ2
eHm1

(
AHA

)	 IMem2δp1,p2

lim
N→∞

1
N
E

{
∂ f (θ)
∂a∗k,m1

∂ f (θ)
∂cp,m2

}

= 1
σ2

(
lim
N→∞

1
N

N∑
n=1

s∗n
(
m1
)
sn
(
m2
))

c∗p
(
m1
)
ak
(
m2
)

= 1
σ2

c∗p
(
m1
)
ak
(
m2
)
δm1,m2 ,

(A.10)

hence

lim
N→∞

1
N

[
Ψaa Ψac

ΨH
ac Ψcc

]
= 1

σ2

[
Ψaalimit Ψaclimit

ΨH
aclimit

Ψcclimit

]
(A.11)

with obvious notation.
From (A.8), we know that

Ψss = 1
σ2

×



(
CHC

)	(AHA
)

0 · · · 0

0
(
CHC

)	(AHA
) · · · 0

...
...

. . .
...

0 0 · · · (CHC
)	(AHA

)


∈ C(N−1)M×(N−1)M.

(A.12)

LetH := ((CHC)	 (AHA))−1, then

Ψ−1
ss = σ2


H 0 · · · 0

0 H · · · 0
...

...
. . .

...

0 0 · · · H

 ∈ C(N−1)M×(N−1)M. (A.13)

Recall

E

{
∂ f (θ)
∂a∗k,m1

∂ f (θ)
∂sn,m2

}
= 1
σ2

s∗n
(
m1
)( P∑

p=1
c∗p
(
m1
)
cp
(
m2
))

ak
(
m2
)
,

E

{
∂ f (θ)
∂c∗p,m1

∂ f (θ)
∂sn,m2

}
= 1
σ2

s∗n
(
m1
)( K∑

k=1
a∗k
(
m1
)
ak
(
m2
))

cp
(
m2
)
,

(A.14)
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from which it is not difficult to see that[
Ψas

Ψcs

]
= 1

σ2
[
U2R,U3R, . . . ,UNR

]
∈ C((K−1)M+(P−1)Mout)×(N−1)M ,

(A.15)

where

Un = diag

([ 1︷ ︸︸ ︷
s∗n (1), . . . , s

∗
n (M), . . . ,

K−1︷ ︸︸ ︷
s∗n (1), . . . , s

∗
n (M),

1︷ ︸︸ ︷
s∗n
(
Min + 1

)
, . . . , s∗n (M), . . . ,

P−1︷ ︸︸ ︷
s∗n
(
Min + 1

)
, . . . , s∗n (M)

])
∈ C((K−1)M+(P−1)Mout)×((K−1)M+(P−1)Mout)

R =



(( P∑
p=1

c∗p
(
m1
)
cp
(
m2
))

ak
(
m2
))

{(k−1)M+m1,m2}(( K∑
k=1

a∗k
(
m1
)
ak
(
m2
))

cp
(
m2
))

{(p−1)Mout+m1,m2}


∈ C((K−1)M+(P−1)Mout)×M.

(A.16)

Let

G :=
[
Ψas

Ψcs

]
Ψ−1

ss

[
ΨH

asΨ
H
cs

]
∈ C((K−1)M+(P−1)Mout)×((K−1)M+(P−1)Mout),

(A.17)

then

G = 1
σ2

N∑
n=2

UnRHRHUH
n . (A.18)

With Z := RHRH , we have

G = 1
σ2

N∑
n=2

UnZUH
n , (A.19)

and from

E
(
s∗n1
(
m1
)
sn2
(
m2
)) = δn1,n2δm1,m2 , (A.20)

we obtain

lim
N→∞

1
N
G = 1

σ2
lim
N→∞

1
N

N∑
n=2

UnZUH
n =

1
σ2

Z	Q, (A.21)

where

Q = lim
N→∞

1
N

N∑
n=2

diag
(
Un
)
diag

(
Un
)H

. (A.22)

Therefore, we have[
CRBaa CRBac

CRBH
ac CRBcc

]
limit

= lim
N→∞

[
CRBaa CRBac

CRBH
ac CRBcc

]

= 1
N

(
lim
N→∞

1
N

[
Ψaa Ψac

ΨH
ac Ψcc

]

− lim
N→∞

1
N

[
Ψas

Ψcs

]
Ψ−1

ss

[
ΨH

asΨ
H
cs

])−1

= σ2

N

([
Ψaalimit Ψaclimit

ΨH
aclimit

Ψcclimit

]
− Z	Q

)−1
.

(A.23)
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