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Gaussian mixture models (GMMs) are recently employed to provide a robust technique for speaker identification. The determi-
nation of the appropriate number of Gaussian components in a model for adequate speaker representation is a crucial but difficult
problem. This number is in fact speaker dependent. Therefore, assuming a fixed number of Gaussian components for all speakers
is not justified. In this paper, we develop a procedure for roughly estimating the maximum possible model order above which the
estimation of model parameters becomes unreliable. In addition, a theoretical measure, namely, a goodness of fit (GOF) measure
is derived and utilized in estimating the number of Gaussian components needed to characterize different speakers. The estimation
is carried out by exploiting the distribution of the training data for each speaker. Experimental results indicate that the proposed
technique provides results comparable to other well-known model selection criteria like the minimum description length (MDL)
and the Akaike information criterion (AIC).
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1. INTRODUCTION

Speech signal is believed to be among the fast methods
to transmit information between human and machine. In
speech recognition, the emphasis is on recognizing words
and phrases in a spoken utterance, while speaker recognition
is concerned with extracting the identity of the person speak-
ing the utterance. The latter has recently found many applica-
tions such as telephone financial transactions, machine voice
commands, and voice stamp security applications.

Speaker recognition is divided into two main categories,
verification and identification. Speaker verification concerns
with deciding whether a certain voice sample belongs to a
certain speaker or not. Speaker identification systems may
be open set or closed set. Closed-set speaker identification
addresses the following problem: given an unknown test ut-

terance whose speaker is known a priori to be among a cer-
tain group of speakers, to whom does this utterance belongs?
Open-set speaker identification includes the additional pos-
sibility where a speaker may be outside the given set of speak-
ers [1].

Another distinguishing feature of speaker recognition is
whether it is text-dependent or text-independent. In text-
dependent systems, the underlying texts of training and test-
ing are the same. On the other hand, the task is more dif-
ficult in the text-independent systems, where the utterances
used in training phase differ from that used in testing phase
[2]. This paper focuses on the closed-set text-independent
speaker identification task.

Over the past several years, Gaussian mixture models
(GMMs) have become the dominant approach for modeling
in text-independent speaker recognition applications. This
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is evidenced by the numerous research works on the use
of GMMs for speaker identification and verification tasks
[3,4, 5, 6]. GMMs are shown to efficiently represent speaker-
dependent acoustic features. In this method, each speaker is
represented by a single model. Learning is performed by ad-
justing the model parameters so that the likelihood function
of the training pattern is maximized. Testing an unknown
utterance is done by calculating its likelihood value with re-
spect to each model. A decision is made to the speaker whose
model gives the largest likelihood value.

The motivation behind this work is to enhance the iden-
tification performance of systems that use GMMs. In partic-
ular, the number of Gaussian components for each model is
not specified a priori. Instead, it is determined according to
the goodness of fit (GOF) measure of the training data to the
model.

The paper is organized as follows. In Section 2, a brief
review of the GMM is given. Section 3 describes a pro-
cedure for roughly estimating the maximum model order
based on the theory of conventional sampling. In addition,
a model-order selection technique, based on the GOF mea-
sure, is deduced. In Section 4, computer simulation results
are presented and justified. Finally, conclusions are drawn in
Section 5.

2. GAUSSIAN MIXTURE MODEL

This section is divided into three parts. In the first part, the
mathematical representation of a GMM is given. The train-
ing procedure using GMM is explained in the second part,
followed by a brief description of the conventional GMM-
based speaker identification technique in the third part.

2.1. Model description

A GMM is a convex linear combination of multivariate Gaus-
sian probability distributions with different mean vectors
and covariance matrices. It can be represented mathemati-
cally as

M
p(xI) = > wip(xli,A), (1)

i=1

where M is the number of Gaussian components, x € RP,
w; is the weight of the ith Gaussian component, and p(x|i; 1)
is the multivariate Gaussian distribution with mean vector g,
and covariance matrix I'; and is given by

1
p(xi ) e (-3 - ) T (x— ) ).

1
h m)P2 ||
(2)

Thus, a GMM with M Gaussian components is parameter-
ized by a set of M positive weights, M mean vectors, and M
covariance matrices. These parameters are collectively math-
ematically represented by the notation

A= {wpp, T}, i=1,2...,M (3)

2.2. Parameter estimation and model training

For a sequence of vectors {x;}, t = 1,2,..., T, the likelihood
value for that sequence is given by

1=

p({x}IA) = [ [p(xld). (4)

l
—

t

The training vectors {x;} are fed to the GMM in order to set
up the model parameters A such that the likelihood value is
maximum. The likelihood value is, however, a highly non-
linear function in the model parameters and direct maxi-
mization is not possible. Instead, maximization can be done
through iterative procedures. Of the many techniques de-
veloped to maximize the likelihood value, the most pop-
ular is the expectation maximization (EM) algorithm [7]
which proceeds as follows. Starting with a model A, we
need to find another model ' such that p({x/}[A") =
p({x¢}|A). This is done by maximizing the following auxiliary
function,

Qs {xhA) = > p(ixc},I1A) log (p(fx:},111)),  (5)

I

with respect to A’, where I is a particular sequence of Gaus-
sian component densities which produces {x;}, and X; de-
notes the summation over all possible sequences of Gaussian
component densities. The reestimation formulae for the jth
Gaussian component parameters takes the following form
(7], =1,2,..., M,

, 1

M~

wi = — > plir = jIx,A),
! T t=1
. Shiplic = jlxeA)x ]
b= <1t . , (6)
thlp(lt - ]|XtaA)
. S plo=jlxoNxx!, r
r= T P —H M.
thlp(lt = ]|Xt,/1)

If diagonal covariance matrices are used, then only the diag-
onal elements in the covariance matrices need to be updated.
For the dth diagonal element sz(d) of the covariance matrix
of the jth Gaussian component, the variance update becomes

Splic = jlxo Mgy 2
Siplic = jlxeA) o

where the a posteriori probability for the jth Gaussian com-
ponent is given by

o'3(d) = (7)

L wip(x¢lj,A)
i = ko) = — PR (8)
plie = jlxd) = Sar L ol d)

in which x;(d) and u;(d) refer to the dth element of x;, and
14j> respectively.
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Training a model to a certain pattern {x;} can be done
in the following way. First, appropriate initial values are as-
signed to the model parameters. The model parameters are
updated using equations (6), (7), and (8). The new model
parameters become the initial parameters for the next itera-
tion. Updating is continued until no significant increase oc-
curs to the likelihood value or a maximum allowable number
of iterations has been exceeded.

2.3. Speaker identification (conventional technique)

Given a group of S speakers represented by GMMs
A,A2,...,As and an unknown test pattern {x;}, t =
1,2,..., T, it is required to find the model that best matches
this pattern, that is, the model that gives the largest a posteri-
ori probability. Formally, the index of the selected speaker is

p({xe} Ax) Pr (L)
p(ix})

9)

Assuming equi-probable speakers (i.e., Pr(Ax) = 1/S) and

noting that p({x;}) is the same for all models, (9) reduces
to

$=arg 1rill;anSPr (A {x¢}) = arg max

s”=arg11£1kasxsp({xt}|/1k), (10)

where p({x;}|A) is given by (4). Since p({x;} [Ax) is the prod-
uct of a large number of small values, direct implementation
of (4) on a digital computer will result in an underflow. In-
stead, maximization is done over log(p({x;}[Ax)), yielding

T
$ = arg max log (p({x/} |Ax)) = arg max > log (p(x:|Ak)),
1<k<S$ 1<k=S,7}

(11)
where p(x¢|Ax) is given by (1).

3. THE PROPOSED TECHNIQUE

The GMM-based speaker identification technique proposed
by Reynolds and Rose [3] assumes a fixed order for each
speaker model. This assumption ignores the fact that the ac-
tual distribution of the training data is speaker dependent.
In other words, some speaker patterns need to be fitted with
a large number of Gaussian components, while others re-
quire only a small number of Gaussian components. In [8],
two different methods are proposed in order to determine
the relationship between the amount of training data and
the model order. In the first one, a nonlinear transforma-
tion with different parameters was proposed. In the other
method, exhaustive experiments (train and test) with differ-
ent lengths of the training utterance were performed so that
a linear relation between speech signal duration and model
order could be established. However, the training time of the
two methods is very large.

In this work, a new approach for determining the opti-
mum order for each speaker model is presented. The main
idea is to employ a well-known statistical measure called

GOF measure to decide whether the training data fits well
into the GMM distribution or not. This section is divided
into three subsections. In Section 3.1, a GOF measure for the
GMM distribution is introduced. In Section 3.2, a simple way
for estimating the maximum allowable model order, is pre-
sented. The method is based on the theory of Monte Carlo
simulation (conventional sampling). The final algorithm for
determining the optimum order for a speaker model is given
in Section 3.3.

3.1. GOF measure

In many statistical applications, it is important to establish
a measure of the closeness between the frequency distribu-
tion of observations in a sampled space and a hypothesized
distribution. Such measures are called GOF measures. Some
GOF measures are applicable for any hypothesized distribu-
tion like the chi-squared test [9]. However, the focus here
will be on a test devoted to the Gaussian distribution since
the GMM is a convex combination of Gaussian densities. A
popular test for examining Gaussianity is the kurtosis test
[10] which measures the ratio between the fourth-order cen-
tral moment and the squared variance. This ratio should be
exactly three for Gaussian random variables. Assuming that
random samples {x:}, t = 1,2,..., T are taken from a Gaus-
sian distribution N (g, 3*), a modified version of the kurtosis
test is established as

Sy - S (- )T

GOE =
E{(x-w'} 30"

» o (12)

where y, and o2 are the population mean and variance, re-
spectively. The numerator is a good estimator of 3¢* if the
distribution is Gaussian, but may overestimate or underes-
timate 36* when there is departure from Gaussianity. Thus,
values of GOF differing considerably from one indicate that
the hypothesis of Gaussianity should be rejected. The above
test can be generalized to the case of the multivariate Gaus-
sian distribution in the following way. In this case, we test the
hypothesis that the random samples {x;}, t = 1,2,..., T are
drawn from the multivariate Gaussian distribution N (g, T).
The GOF will be the ratio between a sample estimate and
the model estimate of a fourth-order statistic centered at .
Therefore, it can be expressed by the following formula:

DL () T - w)
E{(x—w)T ' (x - )’}

, (13)

where g and T are the population mean vector and covari-
ance matrix, respectively. In the appendix, we show that

E{((x- )T (x - )’} = D>+ 2D. (14)

Substituting (14) in (13), we get

L WDSL ()T )

D2 +2D

(15)
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As mentioned before, the GMM is a convex combination
of multivariate Gaussian distributions with different mean
vectors and covariance matrices. Therefore, if we partition
the given training data set into M clusters using the k-means
algorithm, it will be reasonable to assume that the data vec-
tors of each cluster follow a unimodal multivariate Gaussian
distribution. Therefore, we may test the hypothesis that the
given data vectors follow the GMM distribution by testing
the Gaussianity of each cluster. Formally, the GMM parame-
ters are estimated using the EM algorithm. Each data vector
is assigned to the cluster with the nearest mean vector (in a
log-likelihood sense) and thereby M clusters are formed. De-
noting the ith cluster by C;, its GOF value is given by

, 16
D? +2D (16)

where T; is the number of data points in the ith cluster.
Clearly, we can construct an M X 1 column vector; g =
[GOF;], i = 1,2,..., M. Ideally, all elements of g should be
equal to unity. Denoting this ideal vector by gigeal, we suggest
defining a global measure of GOF, GGOE, as

||gidea — ng

GGOF =1 -
||gideal||1

1M
:I—M;H—GOF,»L (17)

The last term in the above equation represents an average
value of the errors caused by individual components.

3.2. Finding an upper bound for the model order

The relatively limited number of training vectors imposes a
constraint on the maximum allowable number of Gaussian
components, above which the estimation of model param-
eters will not be reliable. We suggest the following simple
method to obtain a rough estimate of the maximum possi-
ble model order.

The data is grouped into M clusters using the k-means
algorithm [11]. Assume that the prior probability of the ith
cluster is w;, that is, each training vector is classified to the
ith cluster with probability w;. Evidently, the number of data
points in the ith cluster, T;, follows the binomial distribution
b(T,w;). Thus, the mean and the variance of T; are

E{T,} = TW;’,

(18)
var {T;} = Tw;(1 —w;).
According to Monte Carlo simulation (conventional sam-
pling) theory [12], the number of iterations (data points) is
sufficient if the ratio between the standard deviation of T; to
its mean value does not exceed a specified threshold, usually
taken as 0.1, that is,

\/V::tr{T,‘} B \/Twi(l - w;)
E{Ti} B Tw;

<0.1 (19)

or

1

P — | =
P2 ooy = LM (20)

w
Thus, the model parameters are reliably estimated if all
prior probabilities are greater than 1/(0.01T + 1). The prior
probability of the ith cluster is estimated as w; = T:/T, where
T; is the actual number of data points in the ith cluster after
performing the k-means algorithm.

3.3. GOF-based training algorithm

Having established the GOF measure for the GMM distri-
bution, the number of Gaussian components can be deter-
mined while training via the following algorithm.

(1) Start with model order M = 1.

(2) Group the training data into M clusters. Estimate the
prior probability of the ith cluster as w; = T/T, i =
1,2,...,M.

(4) Apply the EM algorithm to find the model Ay € Ay
that maximizes the likelihood function of the training
data, where A is the set of all GMMs with M Gaussian
components.

(5) Partition the data set into M clusters. Calculate the
GOF value of each cluster using (16).

(6) Calculate the global GOF value for model order M,
GGOFyy, using (17).

(7) Increment M by one and return to step (2).

(8) The optimum model order M,y is determined by

Mopt = argk:lrgla)ﬁdil GGOFy. (21)

.....

A couple of points should be addressed in this context.
First, the GOF can play the role of an “educated guess” of the
appropriate number of Gaussian components. The main as-
pect of the GMM technique is that both the training and test
patterns, though different, share similar underlying distribu-
tions. As a result, using the GOF measure to find this opti-
mum distribution from the training data is appropriate for
the test utterance. Moreover, increasing the number of Gaus-
sian components does not necessarily lead to an increase in
the GOF. If this number is too large, then the number of data
points close to each center will decrease, resulting in a bad fit
for each component and a small value for the GOFE.

4. EXPERIMENTAL EVALUATION

In this section, the GOF measure is applied to a particular ex-
ample in order to determine the optimal number of Gaussian
components required for characterization of different speak-
ers.

4.1. Database development

The speech database contains speech time samples of 95
speakers, 50 males, 45 females. Each speaker has recorded
five phrases, one for training and the other four for testing.
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In order to ensure that the speaker identification algorithm
is text-independent, the five recorded utterances are com-
pletely different. All phrases are recorded using a high quality
microphone in almost noise-free conditions. The sampling
rate of the digital recorder is 11025 Hz and each sample is
represented by 16 bits. The speech samples of each speaker
are grouped into frames. Each frame contains 256 successive
samples from which short-time energy is computed. A frame
is discarded if its energy is less than some specified threshold.
In our database, this threshold is taken as 0.01 of the maxi-
mum frame energy. Low energy frames represent from 30 to
40% of the total frames of each utterance. This is the sim-
plest form of speech silence discrimination [13]. The num-
ber of frames in each training utterance is kept fixed at 1721
frames, extracted from 20 seconds of pure speech. Each test-
ing utterance contains 429 frames extracted from 5 seconds
of pure speech.

In order to make experiments more realistic, we created
another version of the testing phrases in which the effects of
the telephone channel environment, for example, noise and
band-limitation, are simulated. In our simulation, the signal-
to-noise ratio (SNR) is taken as 20 dB. The passband of the
telephone channel is from 300 to 3300 Hz.

4.2. Feature extraction

Although there are no speech features that completely iden-
tify the speaker, the speech spectrum has shown to be very
effective, since it reflects a person’s vocal tract structure
which distinguishes one’s utterance from another [3]. For
this reason, Mel frequency cpestrum coefficients (MFCC)
has been used extensively and shown to be very efficient in
speaker identification tasks. In our database, 25 MFCC'’s, de-
rived from the linear prediction (LP) polynomial, are cal-
culated for each frame. The overlapping between frames is
50%. Hamming window is used in time domain, triangular-
shaped filters are used in Mel domain, and filters act in the
absolute magnitude domain. Cepstral analysis is performed
only over the telephone passband (300-3300 Hz).

4.3. Performance evaluation

This section compares the performance of the proposed al-
gorithm to two well-known model order selection criteria,
minimum description length (MDL) [14] and Akaike infor-
mation criterion (AIC) [15]. The MDL for a model A is given
by

MDL = — log (p({x:} 1)) + %N(A) logT,  (22)

where N (1) is the number of parameters of the model A. The
AIC objective function for a model A is given by

AIC = —2log (p({x¢}I1)) + 2N(A). (23)

Each of the above three techniques was applied on two
GMM-based speaker identification systems, employing the
database described in Section 4.1. One of the two systems
utilizes full covariance matrices in speaker models, while the

other utilizes diagonal covariance matrices. The EM algo-
rithm, used for model training, stops if the difference be-
tween two successive log-likelihood values is less than 5 x
1077 or the number of iterations exceeds 200, whichever
condition comes first. Because of the limited size of train-
ing data, the parameter estimates, obtained by the EM al-
gorithm, were very sensitive to the model initialization. In
order to overcome the above deficiency, the training data
of each speaker is clustered using the k-means algorithm
twenty times, each with a different random initialization.
For each trial, the model parameter values are stored and
the average quantization error is computed. The model that
attains the smallest value for the quantization error is se-
lected as an initial model to the EM algorithm. So as to
demonstrate the effects of telephone channel on the recog-
nition accuracy, both the clean and noisy versions of the ut-
terances, assigned for testing, were used in the identification
phase. In each case, the average CPU testing time for each
technique was also measured. All simulations were carried
out on a Pentium III PC with a processor clock speed of
1 GHz.

The global GOF, MDL, and AIC values of the patterns of
three typical speakers are plotted versus the model order in
Figures 1, 2, and 3, respectively. In the upper subplots of each
figure, the speaker GMMs have diagonal covariance matri-
ces while full covariance matrices are used in the lower sub-
plots. In all figures, the value at which the model order is
considered optimum is marked by an asterisk. The vertical
dotted line refers to the maximum model order, afforded by
the training data. It can be noticed from all figures that the
optimum model orders for GMM:s with full covariance ma-
trices are somewhat smaller than those corresponding to di-
agonal covariance matrices. In Figures 2a, 2b, 2¢, 3a, 3b, and
3¢, we see that optimum GMM orders obtained by the MDL
and AIC criteria with diagonal covariance matrices coincide
with the maximum allowable model order. This indicates the
fact that the limited amount of training data does not sup-
port the use of diagonal covariance matrices. In other words,
the optimum model order for the diagonal covariance case
may be so large that it requires amount of training data too
large to be available in many situations.

Table 1 compares the identification performances of the
six available systems in terms of the identification accuracy
(success ratio), the CPU testing time, and the mean and the
standard deviation of the number of Gaussian components.
As shown from the table, the GOF provides the greatest iden-
tification accuracy in general. When using full covariance
matrices, the GOF requires slightly more time to identify the
speaker than the AIC technique. However, the GOF is supe-
rior to the other two techniques when diagonal covariance
matrices are used. Although the GOF gives the largest iden-
tification accuracy, it requires the least identification time.
From the table, one may establish that the identification ac-
curacy is somewhat proportional to the average number of
Gaussian components. The standard deviation of model or-
ders is relatively small (about 1-3 Gaussian components), in-
dicating a small fluctuation in the number of Gaussian com-
ponents over all speaker models.
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FiGuUre 1: Global GOF versus model order for three typical speakers. (a), (b), and (c) The speaker GMMs have diagonal covariance matrices.

(d), (e), and (f) The speaker GMMs have full covariance matrices.

It is also evident that the use of full covariance matri-
ces provides an increase of about 3-7% in the identifica-
tion accuracy, with a slight increase in the testing time in
the case of employing either the proposed GOF technique or
the AIC technique. However, the MDL techniques achieve a
higher identification accuracy with a less identification time
when using full covariance matrices. One can also deduce
that GMMs with full covariance matrices achieve a better fit
to the distribution of training data than do GMMs with di-
agonal covariance matrices, especially when the size of the
training data is limited.

Another important remark is about the great degrada-
tion in the identification accuracy caused by the telephone
channel distortion effects. As shown in the table, the ac-
curacy of identifying a speaker via a telephone channel is
about 15-22% less than that via high fidelity channel pro-
viding clean undistorted utterances. The telephone channel
causes mainly two undesirable effects, additive white Gaus-

sian noise (AWGN) and band-limitation of the utterances to
be tested. These two factors cause a mismatch between the
distributions of the training and testing utterances. The ef-
fect of band-limitation is more severe, since it results in a
distortion of the power spectral density of the testing utter-
ances. From the table, it is evident that the GOF can be con-
sidered a technique against telephone channel effects. While
both the GOF and AIC techniques achieve almost the same
identification accuracy when using the high fidelity version
of the testing utterances, the GOF attains about 6% increase
in the identification accuracy for the case of the noisy version
utterances.

Finally, it is worth comparing the performance of a
speaker identification system employing a model order se-
lection criterion to that of another with a fixed-order for all
speaker GMMs. For this purpose, the following experiment
was conducted. The training data of each speaker is used to
train a six-component GMM with full covariance matrices.
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FiGURE 2: MDL versus model order for three typical speakers. (a), (b), and (c) The speaker GMMs have diagonal covariance matrices. (d),

(e), and (f) The speaker GMMs have full covariance matrices.

Testing using five-second utterances with telephone channel
quality, the identification accuracy was found to be compara-
ble to the speaker identification system employing the GOF
model order selection criterion. Decreasing the duration of
the testing utterances to one second of pure speech, the iden-
tification accuracy was 59.58% for the fixed-order system
and 60.16% for the GOF-based system. Thus, it can be con-
cluded that the proposed GOF-based technique outperforms
the conventional technique especially in the difficult task of
short test utterances.

5. CONCLUSIONS

The determination of the appropriate number of Gaussian
components per model is instrumental for the success of any
GMM-based speaker identification technique. In this paper,
a GOF measure for speaker identification is introduced, de-

rived, and justified. The findings of this research are summa-
rized in the following observations.

(i) The available amount of training data imposes a con-
straint on the range of possible values of model orders.
For a limited size of the training data, increasing the
model order (and the number of the unknown param-
eters of the classifier in consequence) decreases the re-
liability of the parameter estimates.

(ii) The minimum number of Gaussian components re-
quired to adequately model the speaker data relies to a
larger extent on the data distribution rather than its
amount. Therefore, the GOF measure is a powerful
tool that can be used in determining the appropriate
number of Gaussian components.

(iii) In most cases, choosing too many Gaussian compo-
nents has almost no significant effect on the final
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FiGure 3: AIC objective function versus model order for three typical speakers. (a), (b), and (c) The speaker GMMs have diagonal covariance
matrices. (d), (e), and (f) The speaker GMMs have full covariance matrices.

(iv)

)

(vi)

recognition performance. On the other hand, the test-
ing time increases considerably.

In general, the GOF technique achieves a better iden-
tification performance than the MDL and AIC tech-
niques. In some cases, the GOF provides a greater
identification performance, with less time required to
identify the speaker.

Utilizing the GOF measure in determining the op-
timum model order increases the robustness of the
speaker identification system against the telephone
channel effects, like noise and band-limitation.

For the case of limited size of training data, the per-
formance of GMM systems using full covariance ma-
trices is superior to those using diagonal covariance
matrices, in terms of the classification accuracy (and
the identification time in the case of the MDL tech-
nique).

APPENDIX

First, it can be shown that if u, v, w, and z are four Gaussian

random variables, each with a zero mean, then [16]

E{uvwz} = E{uv}E{wz} + E{uw}E{vz}
+ E{uz}E{vz}.

(A1)

The above relation can be extended to the vector case. In this
context, if u, v, w, and z are four D-dimensional multivariate
Gaussian random vectors, each with mean equal to the zero
vector, an expression for E{u’vwz} is derived as follows,

Mo

D
Z UK VW] zl}>

1 I=1

E{uTwvw'z} = {
k

Mo

E{ukkaIZI}.

3

x>
—
T

1

(A.2)
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TasBLE 1: Identification performances for several GMM-based speaker identification systems.
. Standard
Mode.l Type 9f Identification accuracy Identification accuracy .Average CPU testing Average deviation
selection  covariance . . . . time/speaker/utterance model
et . (high fidelity version) (telephone channel version) of model
criterion  matrices (seconds) order
orders
GOF Full 95.00 77.89 3.9001 6.6632 1.5131
MDL Full 95.79 74.21 2.4630 4.1474 1.2962
AIC Full 94.21 71.58 3.5724 6.0632 1.6230
GOF Diagonal 87.37 72.11 2.5973 9.1158 2.4705
MDL Diagonal 87.37 70.53 3.3255 9.7789 1.3125
AIC Diagonal 87.11 71.58 2.7550 9.9579 1.9181

Clearly, each of uy, vk, wi, z; is a Gaussian random variable
with a zero mean. Using (A.1) and (A.2) takes the following
form

Z (E{ukvk}E{wlzl} + E{ukwl}E{kaZ}
1 I=1

+ E{uzi} E{viwi})
= E{u'v}E{w"z} +tr (E{uw"}E{zv"})
+tr (E{uz" JE{wv'}).

Mo

E{u"vw'z} =
k

(A.3)

Substituting for u, v, w, and z in (A.3) by I2(x - u) and
simplifying,

B (- - w) |

— EZ{(X _ F)Trfl(x _ F)} (A.4)
+2tr (E{T72(x — ) (x — )T 2}).
By definition,
I=E{x-mex-p'}. (A.5)
Hence,

E{x—w)'T (x— )] = E{tr (x— w)(x— )T |
= tr (E{(x - w)(x—p@)'T"'})
=tr (IT™') = D,
E{r—l/Z(x _ {J)(X _ ”)Tr—l/Z} — r—l/er—l/Z =L
(A.6)
Substituting (A.6) in (A.4) gives

E{(x-wT ' (x-w)’} =D*+2D. (A7)
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