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Motion estimation in image sequences is undoubtedly one of the most studied research fields, given that motion estimation is a
basic tool for disparate applications, ranging from video coding to pattern recognition. In this paper a new methodology which,
by minimizing a specific potential function, directly determines for each image pixel the motion parameters of the object the
pixel belongs to is presented. The approach is based on Markov random fields modelling, acting on a first-order neighborhood
of each point and on a simple motion model that accounts for rotations and translations. Experimental results both on synthetic
(noiseless and noisy) and real world sequences have been carried out and they demonstrate the good performance of the adopted
technique. Furthermore a quantitative and qualitative comparison with other well-known approaches has confirmed the goodness

of the proposed methodology.
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1. INTRODUCTION

Estimation of motion fields and their segmentation are still
an important task to be solved; in disparate applications
ranging from pattern recognition to image sequence analysis,
passing through object tracking and video coding, determin-
ing trajectories and positions of objects composing the scene
is mandatory, and much effort has been spent in research-
ing and devising a robust solution to adequately and satis-
factory address this problem. Though for human visual sys-
tem (HVS), motion recognition is effortless, the same thing
cannot be assessed for computer-aided estimation. This is
mainly due to the complex relationship existing between the
movements of objects in a 3D scene and the apparent mo-
tion of brightness pattern in a sequence of 2D projections of
the scene. Information about depth is lost and what appears
as motion in the image plane can actually be determined by
other phenomena, such as changes in scene illumination and
shadowing effects. Furthermore, motion recognition is also
hard to obtain because of some application hurdles, as the
aperture problem [1] and regions occlusion; and although

many algorithms and valuable approaches have been devel-
oped, this issue cannot be considered as completely investi-
gated yet [2, 3, 4].

Different are the approaches to motion estimation task.
One of the most well-known consists of representing mo-
tion fields by assigning independent motion vectors to each
image pixel (dense motion fields) [5, 6]. Velocity vector esti-
mate is generally performed by searching for the vector field,
minimizing a predefined functional. As proposed in the ba-
sic paper by Horn and Schunck [1], this functional is com-
posed by two contributions, the former weighs for the devi-
ation from constancy of brightness intensity and the latter is
used to impose a smoothness binding due to spatial correla-
tion; the field which minimizes the functional is assumed to
be the solution. Other techniques also impose the smooth-
ness constraint in order to obtain an additional relationship
to solve the underconstrained optic flow problem [7, 8]. In
[9] the regularization of the velocity field, determined by
a primary coarse least squares (LS) estimation, is achieved
through a weighted vector median filtering operation. Mo-
tion estimation can also be performed through a Bayesian
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approach [6, 10] in which an inference framework is adopted
to calculate the probability of a motion hypothesis given im-
age data. In literature, some other algorithms use parametric
motion models (e.g., [11]) to represent transformations by
modelling relations between two successive images; in par-
ticular, the motion of a specific region is determined through
an adopted model that, depending on its complexity, will be
described by a different number of parameters (e.g., six pa-
rameters for affine motion model, eight parameters for per-
spective projection model [12]).

In this paper an algorithm which, by using a parametric
motion model, deals with the direct estimation of model pa-
rameters is presented. This is the main characteristic of the
proposed method, distinguishing it from other common ap-
proaches, that first estimate motion vectors and then evalu-
ate motion parameters fitting the estimated vectors. Such a
two-step approach poses problems from the point of view of
segmentation, that should precede vectors aggregation, but
should also benefit from knowledge of motion parameters.
On the contrary, our technique directly obtains, for each im-
age pixel, a parameter set describing the motion of the ob-
ject the pixel belongs to; this information can then be suc-
cessfully used for motion-based segmentation. Starting from
two frames of an image sequence, the parameters describ-
ing the adopted motion model are computed for each im-
age pixel through an iterative minimization of an ad hoc
functional. The extracted motion parameters can be used
for many higher-level analysis tasks beyond the already men-
tioned motion-based object segmentation, as for example,
for reducing the motion description burden in coding oper-
ation (video coding), for describing the behavior of moving
objects (event detection), for estimating the 3D structure of
the surrounding world, and so on.

The remainder of this paper is organized as follows.
In Section 2 the adopted motion model is introduced, and
in Section 3 some theoretical arguments, which are impor-
tant for work understanding, are discussed; in Section 4 the
choice of the to be minimized functional is motivated and in
Section 5 some experimental results both on synthetic and
on real sequences are presented, finally Section 6 draws the
conclusions.

2. CHOICE OF THE MOTION MODEL

Parametric motion models are introduced in many video
processing applications. In most of these, they are used to
efficiently analyse the moving objects that are present in a se-
quence. Motion can be described by adopting different mod-
els (translational, affine, projective linear, and so on) which
have at their disposal a diverse number of parameters (de-
grees of freedom (DOF)); the greater this number the more
complex the motion that can be represented. In this applica-
tion, attention has been focused on the affine model which
can be described as

)-C90) () o

where the parameters a, b, ¢, d, e, and f represent the
6 DOF, x and y are the coordinates of pixel initial po-
sition, and dx and dy are the components of its spatial
displacement. In particular, the parameters e and f also
take into account transformations (e.g., scaling and rota-
tion) occurring with respect to a point (x, y.) different
from the image center, and their expressions are reported as
follows:

e=dxy—a-x.—b-y,
(2)
f:d)’O_C'xc—d'}’c,

where dx and dy, are, respectively, the initial horizontal and
vertical displacement of the object with respect to the im-
age center. With this model, transformations such as transla-
tions, rotations, and anisotropic scaling can be represented;
geometric manipulations like projections (8 DOF) are not
contemplated.

To reduce the computational burden, it has been decided
to concentrate solely on the case of roto translations, so the
model is simplified and is based just on three parameters; (1)
can be rewritten as

dx\ [cosf—1 —sinf X e
dy) \ sinf cos60-1)\y * - (3)

The terms in the matrix in (1) are not independent anymore
and the motion analysis will be demanded only to estimate
the parameters 0, e, and f. The parameter 0 takes into ac-
count rotations, and, as stated before, the parameters e and
f include both the translational motion component (respec-
tively, horizontal and vertical) and the rotation with respect
to a point different from the image center. For the sake of
clarity, in the following, a reference system centered in the
middle of the image with x-axis directed to right and y-axis
directed to top will be assumed. Moreover a clockwise rota-
tion will be considered as negative (these issues are important
to adequately understand the experimental results presented
in Section 5).

3. MARKOV RANDOM FIELDS AND MAP ESTIMATION

Markov random fields (MRF) are often used in many im-
age processing applications like motion detection and esti-
mation. By simply making a direct multidimensional exten-
sion of a 1D Markov process, the definition of an MRF can
be derived [13], here after the main characteristics of MRFs
are outlined.

Let A be a sampling grid in R, (n) is a neighborhood
of n € A, such thatn ¢ #(n) andn € 5(1) ¢ 1 € 5(n). For
example, a first-order bidimensional neighborhood consists
of the closest top, bottom, left, and right neighbors of n (see
Figure 1).

Let IT be a neighborhood system, that is, a collection of
neighborhoods of all n € A; a random field Y over A is a
multidimensional random process such that each site n € A
is assigned a random variable whose v € I is an occurrence.
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FIGURE 1: First-order bidimensional neighborhood.

A random field Y with the following properties:

PY=v) >0, Vverl,
P(Yy, =, | Y=, V1#n)
=P(Y, =7, 1Y, =, V1€ 5(n)),
VneA, Vvel,

(4)

where P is a probability measure, is called an MRF with state
space I'. Roughly speaking, in (4) it is asserted that the prob-
ability that the field assumes a certain value v, in the loca-
tion n, depending on all the other elements of the field, is
the same probability of getting that value, depending only on
the elements belonging to #(n). To exploit MRFs character-
istics in a practical way, we need to refer to the Hammersley-
Clifford theorem which allows to set a relationship between
MRFs and Gibbs distributions, by linking MRFs properties to
distribution parameters by means of a potential function V.
This theorem states that Y is an MRF on A with respect to
IT if and only if its probability distribution is a Gibbs distri-
bution with respect to A and II. A Gibbs distribution, with
respect to A and I1, is a probability measure ¢ on I such that

p) = e VO, 5)

where the constants Z and T are called the partition function
and temperature, respectively, and the energy function U is of
the form

U = > Vine). (6)

ceC

The term V (v, ¢) is called potential function and depends only
on the value of v at sites that belong to the clique c. With
clique c is intended a subset of A, defined over A with respect
to I, such that either ¢ consists of a single site or every pair of
sites in ¢ are neighbors, according to 1. The set of all cliques is
denoted by C. Examples of two-element spatial cliques {n, 1}
with respect to the first-order neighborhood of Figure 1 are
two immediate horizontal and vertical neighbors.

3.1. MAP criterion

In order to estimate an unknown MREF realization, based on
some observations, the maximum a posteriori probability
(MAP) criterion is often used. In the sequel, the MAP ap-
proach is briefly described.

Let Y be a random field of observations and let Y be a
random field that it has to be estimated based on Y. Let y, v
be their respective realizations. For example, y could be the
difference between two images, while ¥ could be a field of
motion detection labels. In order to compute v based on y,
the MAP criterion can be used as follows:

¥ = argmax P(Y = v|y)

P(Y = y[9)P(Y =) (7)
P(Y = y) ’

= arg max
Vv

where max, P(Y = v|y) denotes the MAP P(Y = v|y) with
respect to v and arg denotes the argument ¥ of this maximum
such that P(Y = 9|y) = P(Y = »|y) for any ». In (7), by
applying Bayes theorem, the final expression can be derived;
moreover (7) can be simplified by not considering P(Y = y)
because it does not depend on .

4. THE POTENTIAL FUNCTION

According to (7) and just reporting this general case to the
case of motion parameter estimate in an image sequence, the
best-fitting parameter set for each point (0, e, f),p can be ob-
tained based on the MAP criterion. This is made evident in
(8) where (6, e, f) is the parameter set realization of the ran-
dom field (®,E, F) and g4 is the image at time t + dt (real-
ization of Gt.4¢) and g; is the image at time ¢:

(0) e) f)opt
= arg(rglggP((G),E,F) =(0,e,1) | Girar = givars Gr = g).

(8)

The expression to be maximized can be rewritten, also in this
case, as

P((®,EF) = (0,e,f) | Grear = gevars Ge = &)
= P(Giiar = grvat | (©,E,F) = (8,,6); G, = g) (9)
-P((®,E,F) = (8,e,f); G, = g).

The two terms of the product, in the right member, represent,
respectively, two contributions: the first one accounts for the
probability to have the image gi+4: given the parameter values
(0,e,f) and the previous image g, the second one accounts
for the a priori probability by considering all the information
available about the field (@, E, F) and the image G;.

In the light of this consideration, this maximization has
been achieved by defining a potential function Wror, itself
composed by two terms and directly depending on the mo-
tion parameters, in such a way that the optimal set will be
chosen in correspondence of the minimum of this potential
function,

(9) €, f)opt = arg min Wror
(B,e,f)
(10)

= arg min Z Wiey)s
(0,e,f) (xy)ER
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where R represents the whole image. The assumption to deal
with MRFs [13] permits to consider the motion of a generic
point as depending on the motion of the other points be-
longing to its neighborhood. In the proposed approach for
each pixel (x,y), only its four neighbors of first order (T, B,
R, and L) (this set will be indicated with the notation N, )))
have been deemed as relevant. The potential W(, ,) can be ex-
pressed as evidenced in (11) to better highlight the meaning
of its composing terms:

Wixy) = a - Ay + Bixy)- (11)

The term A()) is defined as

Ay = |Gix,y) = Grar(x +dx, y +dy)|  (12)

and it takes into account the goodness of matching between
the brightness G;(x, y) of the pixel (x, y) at time ¢ and the
corresponding brightness Gyq4:(x + dx, y + dy) in the suc-
cessive frame in the location (x + dx, y + dy); if dx and dy
have been correctly estimated, the value of A(,,,) will be very
low. On the other side, the term By, gives a contribution to
the potential function from the point of view of motion field
smoothness (see (13))

>, Vel ), (7)),

()?»)7) EA’(x,y)

o 0 if (6, e,f)(x,y) = (6, e)f)(>'€>5’)’
Ve((x,9), (%, 7)) = .
y otherwise,

B(x,y) =

(13)

with y >0. By, will be low if the parameters under judge-
ment are homogeneous with their neighbors. Lastly, in the
definition of the potential function Wror, there is the fac-
tor & which allows to balance the two effects, frame matching
and field smoothness. During the optimal parameter search,
from a computational point of view, to exhaustively test all
the possible values for each pixel results to be prohibitive.
Therefore a deterministic relaxation is adopted to obtain a
succession of estimated fields, bringing in a suboptimal so-
lution but with reduced convergence time. The method used
to sequentially visit all the points of the image and to up-
date their values is the iterated conditional mode (ICM)
[14, 15, 16]. At this point, we analyze in detail how the com-
puting and the updating of the potential take place. We sup-
pose that this computing and updating be on the generic
point (x, y) which has got the parameter set (6:, e, f)(x,y)»
and we test the candidate parameters (0, e, fc)(x,y) by cal-
culating W) (the new potential value on the considered
point) and the four values Wz ), for all (%, 7) € Ni,y) (po-
tentials of the four points near to (x,y)); these last ones
are checked because albeit only the parameter set referred
to (x, y) is modified, also the Bz, terms are affected. The
so far best fitting set (6;, e;, fi)(x,y) Will be substituted by the
candidate set (6, e, fc)(x,) if the relation expressed in (14)

is verified:
<W<x,y> + > W(fc,y))
()_C,)-’)EN(X,}/) (Gc,eufc)(x,y) (14)
< <W<x,y> + 2 W(m) >
(£)EN k) (Orsenfe) (1)

otherwise the set (0., ec, fc)(x,) will be rejected. The param-
eter 3D space has to be investigated, and by depending on
the parameter search step, the computational complexity will
be differently onerous. Finally the optimum set, which mini-
mizes the addition of the five potentials, related to the point
and to Ny, ), will be obtained. The parameter field gets stable
after 7-8 complete iterations, and variations are not recorded
anymore.

4.1. The macropixel approach

One of the crucial problems in dealing with dense fields
is to obtain homogeneous motion regions; ideally the pro-
posed estimation approach should yield to the recognition
of rigid moving objects characterized by the same motion
parameters, but this does not happen because a specific mo-
tion, in some particular object areas, could be adequately
represented, for example, by a uniform rotation or by a
smoothly variable translation, without any relevant differ-
ence in the potential function evaluation. To avoid this,
a multiresolution approach can be used; blocks of pixels
(named macropixel), forming a 4 X 4 or 2 X 2 window, are
constrained to move with the same parameters, thus result-
ing in a superior motion field homogeneity. On the other
side, loss of resolution is a drawback from moving object de-
tection point of view, in fact the boundaries of these could
appear enlarged with respect to their real size. A good trade-
off between these two aspects has been achieved by adopting
the macropixel arrangement (macropixel size has been set to
2 X 2) just for the first two or three iterations, then resolu-
tion is augmented again to the single pixel level; doing so a
primary raw estimation is obtained which is successively re-
fined in the subsequent steps.

5. EXPERIMENTAL RESULTS

The proposed approach has been tested both on synthetic se-
quences, with and without added noise, and on real world se-
quences; and some experimental results confirming the good
performance of the method are presented in this section.

5.1. Testing on synthetic sequences

In the synthetic sequence (see Figure 2a), there are two tex-
tured squares of different size moving on a slightly textured
background. The big square has got only a translational mo-
tion towards left direction by 1 pel/frame and the small one
rotates clockwise around its center by 5 deg/frame.

In Figure 2b the estimated values of the parameter 0
are depicted; it can be noted that the rotating square is ex-
actly and homogeneously recognized (dark gray states for
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(b)

(d)

FIGURE 2: Synthetic sequence: (a) a frame with the superimposed ideal motion vector field, (b) the estimated motion parameters 6, (c) e,

and (d) f.

negative values, clear gray for positive); contributions on the
big square, that has no rotational components, have not been
rightly revealed. On the contrary, the big square horizontal
motion is correctly detected through the parameter e as il-
lustrated in Figure 2¢; in this picture and also in Figure 2d,
for the parameter f, it appears that the values over the small
square are not zero although its motion has not any trans-
lational component: these are due to the fact that this ob-
ject rotates around a point which is not the center of the im-
age and this gives origin to two translational components in
the model, as described in (2). In Table 1 the mean absolute
error (MAE) between the true displacements and the esti-
mated ones, computed both through the proposed method
and through the well-known Horn and Schunck (H&S) tech-
nique [1], is proposed. This algorithm has been running with
the parameter that balances the two-component terms in the
functional set at 1 and the number of iterations set at 128
(this has been maintained also for real world sequences). Er-
rors have been computed on the whole image, in the inte-
rior and on the boundaries of the moving objects; two cases,
perfect data and data with noise addition (Gaussian noise
with 62 = 20), have been taken into account. Errors re-
lated to the proposed method are widely lower than those ob-
tained with the H&S method, especially in the interior of the
moving objects, thanks to the adoption of the model-based
approach.

TaBLE 1: MAE between ideal displacements and estimates com-
puted through the proposed and H&S methods with perfect and
noisy (0% = 20) data.

MAE
Overall Interior Contours
Proposed 0.029 0.001 0.251
Perfect data H&S 0.058 0.024 0.324
Noisy data Proposed 0.042 0.003 0.346
H&S 0.156 0.134 0.329

5.2. Testing on real sequences

In this subsection experimental tests carried out on three dif-
ferent real world sequences are proposed.

5.2.1.

The first sequence examined is Carphone. The same frames
(QCIF format), numbers 168 and 171, considered in [17]
have been processed to make a possible comparison with
some numerical results presented in that paper.

In Figure 3a, the estimated motion vector field has been
superimposed to the frame 171; the vectors over the head of
the man and over his left shoulder are quite accurate, but re-
gions that are visible through the car window, on the right

Carphone
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®

(g)

FIGURE 3: Real world sequence (Carphone): (a) frame 171 with the superimposed motion field estimated through the proposed method;
(b) pixel-per-pixel squared difference between frame 171 and its motion compensated version; estimates obtained by means of the proposed
method: the displacements (c) dx and (d) dy, the motion parameters (e) e, (f) f, and (g) 6.

side of the image and near the chin of the man, contain
some wrong nonhomogeneous vectors. In particular, the er-
rors visible on the objects at the right extreme of the window
are due to the fact that these objects were not present in the
previous frame, thus confusing motion estimation. On the
other side, the few not well-estimated vectors on the chin cor-
respond to uniform grey-level regions of the face, where local
motion estimation algorithms often encounter problems. In
Figure 3D a pixel-per-pixel squared difference between frame
171 and its motion compensated version is depicted. A clear
gray level means a high discrepancy between the two im-
ages; also in this picture significant errors are confirmed in
the same areas as before. To better evaluate the obtained re-
sults, in Table 2 the value of prediction error (PE), computed
with the proposed method, is compared to the data provided
in [17], regarding the same sequence, and to H&S technique
[1]: the proposed method performs better with respect to
the other kind of approaches. In Figures 3c and 3d the com-
puted displacements (dx and dy) are also depicted. Finally,
in Figures 3e, 3f, and 3g the motion parameters, respectively,

TasLE 2: PE for Carphone sequence (higher value means a better
prediction). The results for the first three methods are taken from
[17].

Kind of adopted approach PE

Block-based prediction [17] 31.8dB
Pixel-based prediction [17] 35.9dB
Region-based prediction [17] 35.4dB
Horn&Schunck 30.4dB
Proposed method 36.7dB

representing the horizontal and vertical translation, and the
rotation, are presented. In particular, by observing Figure 3e,
it can easily be noticed that the left-side movement of the
left shoulder of the man is correctly recognized by the dark
(negative) homogeneous region. The same shoulder has also
a light up-side motion as evidenced by the bright region
in Figure 3f in that location. The rotation parameter 6 is
zero almost everywhere, with the exception of some zones in
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®

(g)

FIGURE 4: Real world sequence (Robox): frame 15 with the superimposed motion field estimated through (a) the proposed method and (b)
the H&S approach; estimates by means of the proposed method: the displacements (c) dx and (d) dy, and the motion parameters (e) e, (f)

f,and (g) 6.

correspondence of the mouth and of the nose where motion
is quite complex, and small rotational components are de-
tected by the algorithm.

5.2.2. Robox

Experimental tests carried out with sequence named Robox
are illustrated in Figure 4 and discussed in the sequel; frames
taken into consideration are numbers 15 and 17. This se-
quence is composed by two moving objects: a round box
which rotates clockwise over a table and a small robot mov-
ing towards the camera. In Figures 4a and 4b, frame 15 of the
sequence with the motion field superimposed, computed, re-
spectively, by means of the proposed method and through
the H&S technique, is pictured. It can be easily noted how
the motion field is more properly and precisely detected in

Figure 4a with respect to the other methodology, in particu-
lar, for the rotating object.

In Figures 4c and 4d, the displacements dx and dy esti-
mated by means of the proposed technique are presented; it
is interesting to highlight that the box, which rotates around
its contact point with the table, has dx’s values increasing
from the bottom to the top (e.g., whiter regions in Figure 4c)
and also dy’s values increasing from its center towards the
right edge (e.g., darker regions with negative values) and to-
wards the left edge (e.g., brighter regions with positive val-
ues). Similar considerations, regarding the rotating object,
can be drawn by observing Figures 4e and 4f where the trans-
lation parameters e and f, that take into account the fact that
the rotation is not occurring around the image center, are
depicted. The other object (robot), that moves forward, has
got values in displacement dx especially in the robox left side
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(a)

(g)

F1GURE 5: Real world sequence (M&D): frame 39 with the superimposed motion field estimated through (a) the proposed method and (b)
the H&S approach; estimates by means of the proposed method: the displacements (c) dx and (d) dy, and the motion parameters (e) e, (f)

f>and (g) 6.

(Figure 4c) and has got values in displacement d y increasing
in magnitude going from its center towards the top and the
bottom, thus resulting in correct description of a zooming
effect. In Figure 4g the parameter 0 is illustrated; only co-
efficients related to pure rotation (the box) are detected. As
done before, also in this case, the PE has been computed and
its value is reported in Table 3.

5.2.3. Mother&Daughter

Experimental tests carried out with a sequence called
Motheré*Daughter are presented in Figure 5 and debated
hereafter.

In this video a mother caressing her daughter hair is de-
picted; the mother moves her head towards right and, in ad-
dition, slightly rotates up her neck; frames (QCIF format)
that have been considered are numbers 38 and 40. In Fig-
ures 5a and 5b the motion vector field respectively estimated
by the proposed methodology and the H&S approach are
presented. It appears immediately that, in the first case, the
field obtained is smoother and the vectors are very similar

to each other; at the right end of the mother’s head, the
estimation is not so accurate and this is due to occlusions
happened because of the rotation of her head. Furthermore,
the global field appears more clean and does not show small
vectors on the shoulders and on the breast of the mother,
and on the daughter’s head. As done before, in Figures 5¢
and 5d the values of the displacements dx and dy obtained
with the proposed approach are presented. It is interesting
to notice that pixels, belonging to the central part of the
mother’s face, which are in the 3D space closer to the cam-
era, present a higher motion towards the right with respect
to those back positioned. The head, in Figure 5¢, appears
as composed by different overlapped ovals, becoming darker
while going from foreground to background, adequately ex-
plaining the movement in act. The backward part of the head
is dark-colored and states that there is a motion towards the
left side of the image as this region really has; in fact it is lo-
cated behind the rotational axis of the head. The movement
of the mother’s hand is correctly detected as directed up and
right as witnessed by regions brighter than the background
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TasLE 3: PE for Robox sequence (higher value means a better pre-
diction).

Kind of adopted approach PE
Horn&Schunck 28.22dB
Proposed method 38.19dB

TaBLE 4: PE for sequence M&D (higher value means a better pre-
diction).

Kind of adopted approach PE
Horn&Schunck 32.55dB
Proposed method 38.34dB

in Figures 5¢ and 5d. In Figures 5e, 5f, and 5g the estimated
motion parameters are presented. Figures 5e and 5f look
quite similar to Figures 5¢ and 5d already analyzed in detail.
On the contrary, Figure 5g contains very interesting infor-
mation because it clearly indicates that there is an object with
an anticlockwise rotation (bright gray pixels) and its rotation
center can easily be supposed to be in the middle of the cir-
cular region individuated. Also in this case the PE has been
computed and its value is reported in Table 4.

6. CONCLUDING REMARKS

A new approach aiming at direct estimation of motion pa-
rameters in a sequence of images has been developed. The
method is based on the minimization of a potential function
which is composed by two basic components accounting for
frame matching and smoothness binding, respectively. This
potential has been derived by exploiting MAP criterion and
MRF modelling. The technique has given positive results
both with synthetic and with real world sequences. In par-
ticular, in addition to allow the direct estimation of motion
parameters, the proposed technique shows excellent results
also from the point of view of correct motion prediction (as
demonstrated by the superior PE performances). This is due
to fact that our approach constraint the estimated motion to
adapt to a precise model, thus reducing the effects of noise.
The main drawback of the algorithm, as for most of MRF-
based techniques, is the high computational cost. To improve
this aspect, to enhance the precision of parameter estimate,
and to better handle large displacements, a multiresolution
approach is under investigation. Work is also in progress to
adapt the algorithm to deal with a more complex kind of mo-
tion (zooming objects) by introducing a more general mo-
tion model composed by a higher number of parameters.
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