
EURASIP Journal on Applied Signal Processing 2004:14, 2214–2223
c© 2004 Hindawi Publishing Corporation

Secure Multimedia Authoring with
Dishonest Collaborators

Nicholas Paul Sheppard
School of Information Technology and Computer Science, The University of Wollongong, NSW 2522, Australia
Email: nps@uow.edu.au

Reihaneh Safavi-Naini
School of Information Technology and Computer Science, The University of Wollongong, NSW 2522, Australia
Email: rei@uow.edu.au

Philip Ogunbona
School of Information Technology and Computer Science, The University of Wollongong, NSW 2522, Australia
Email: philipo@uow.edu.au

Received 31 March 2003; Revised 16 December 2003

Many systems have been proposed for protecting the intellectual property of multimedia authors and owners from the public at
large, who have access to the multimedia only after it is published. In this paper, we consider the problem of protecting authors’
intellectual property rights from insiders, such as collaborating authors and producers, who interact with the creative process be-
fore publication. We describe the weaknesses of standard proof-of-ownership watermarking approaches against dishonest insiders
and propose several possible architectures for systems that avoid these weaknesses. We further show how these architectures can
be adapted for fingerprinting in the presence of dishonest insiders.

Keywords and phrases: digital watermarking, collaboration, multiple watermarking, proof of ownership, fingerprinting.

1. INTRODUCTION

Multimedia security research has focused on security of pub-
lished content, and upon protecting the intellectual property
of the content owners and creators frommalicious end users.
These systems, however, do nothing to resolve intellectual
property disputes that arise prior to publication, for exam-
ple, between collaborating authors.

We will consider intellectual property protection in the
case where the disputing parties are (or claim to be) involved
in the creation stage of the content in dispute.We will specifi-
cally consider proof-of-ownership, that is, enabling authors to
prove to an arbiter that they were involved in the authoring
process. We will also consider how our architectures can be
adapted to fingerprinting, that is, enabling authors to deter-
mine the identity of an author who has “leaked” a copy of the
work without permission from the other authors.

Watermarking solutions to the above problems have been
proposed in the case where the adversary has access only to
the published work, that is, is an outsider. In Section 2, we
will describe the weaknesses in these solutions against an ad-
versary who is part of the authoring process—that is, is an in-
sider—who in a naı̈ve protocol may be able to obtain a copy

of the unwatermarked original. While some previous algo-
rithms have considered watermarks for representing the col-
laborative effort of several contributors [1, 2], protocols by
which such watermarked objects are created have not been
extensively studied.

In Section 3, we will describe several possible protocols
for multimedia authoring in the proof-of-ownership setting
that avoid the weaknesses in naı̈ve protocols by preventing
insiders from obtaining a copy of the unwatermarked origi-
nal. We will further show how these protocols can be adapted
for fingerprinting in Section 4.

2. INTELLECTUAL PROPERTY PROTECTION
USINGWATERMARKS

A digital watermark is a secret signal embedded into a multi-
media object that can only be detected or recovered by some-
one possessing a secret key. Many techniques for embedding
watermarks in all manner of multimedia objects have been
proposed; a survey is given in [3].

In the watermarking solution to the proof-of-ownership
problem, the owner of a multimedia object embeds a wa-
termark into the finished object prior to publication, and

mailto:nps@uow.edu.au
mailto:rei@uow.edu.au
mailto:philipo@uow.edu.au


Secure Multimedia Authoring with Dishonest Collaborators 2215

publishes the watermarked object instead of the original ver-
sion. If, at a later time, an imposter claims to be the origina-
tor of the published object, the true owner can prove his or
her ownership by demonstrating the existence of the secret
watermark to an arbiter.

This solution assumes that the adversary has access only
to the published version of the object. Existing watermark-
ing systems generally make an implicit assumption that wa-
termarking is more or less the final step before publication,
since they take a finalised object as input and output the ob-
ject to be published. Without an additional protocol to gov-
ern access to the object prior to watermarking and publica-
tion, an insider is able to take a copy of the object without a
watermark.

Clearly, an adversary in possession of an unwatermarked
object can circumvent the protocol described above, since
this copy does not contain the legitimate owners’ secret wa-
termark. In this paper, we will discuss protocols for authoring
multimedia such that no party gains access to an unwater-
marked version of the content, thus preserving the integrity
of the protocol described above even in the presence of dis-
honest insiders.

Of course, any attack on a watermarking system that is
available to outsiders is also available to insiders. In this pa-
per, however, we will only consider attacks by insiders that
are not available to outsiders. Our example watermarks will
be chosen for ease of exposition rather than security against
conventional outsider attacks.

2.1. Multiple watermarking

We will use multiple watermarking to represent the intellec-
tual property rights of multiple contributors, that is, each
contributor will have a personal watermark and the final ob-
ject will contain the collection of these personal watermarks.
An overview of schemes that allow multiple watermarks to
be embedded into a single object is given in [2].

We distinguish three classes of multiple watermark:

(i) a rewatermark created by watermarking the object with
several different watermarks in turn;

(ii) a segmented watermark created by dividing the object
into pieces and embedding a different watermark into
each piece;

(iii) a composite watermark created by composing several
different watermarks into a single watermark (i.e., the
composition is a kind of shared secret) and embedding
this composition.

Separability

For our purposes, we assume that all of our multiple water-
marks are separable, that is, that it is possible to detect each
component watermark individually in the watermarked ob-
ject.

Segmented watermarks are always separable, since each
segment (and therefore watermark) is tested independently.

Watermarks produced by rewatermarking are usually
separable if the underlying algorithm is robust against re-
watermarking. For the applications discussed in this pa-

per, watermarks are required to be robust against rewater-
marking since otherwise an attacker can defeat the proof-of-
ownership protocol by simply rewatermarking the object.

Composite watermarks may or may not be separable, de-
pending on the way composition is performed. For the exam-
ples in this paper, composition is performed by simple vector
or matrix addition of independently chosen, randomly dis-
tributed watermark patterns. A statistical detector can sepa-
rate the component watermarks since the watermarking pat-
terns are mutually uncorrelated. Some more exotic methods
of composition, such as those suggested by Guo and Geor-
ganas [1] may require modified detectors. The specifics of
each of our examples will be discussed in Section 3.

Capacity

Obviously, there is a limit to the number of watermarks that
any multimedia object can contain. Watermarks formed by
composition or rewatermarking gradually degrade the image
as each new watermark is added. In a segmented watermark,
the number of watermarks that can be embedded is limited
by the number of available segments.

In general, it seems reasonable to believe that the water-
marking capacity of an object would be commensurate with
the number of authors working on it. It does not seem very
likely, for example, that a still image would require more than
two or three authors to produce. Larger works that may re-
quire large teams of authors to produce, such as feature films,
have a much greater watermarking capacity.

2.2. Ourmodel

In our collaborative version of the proof-of-ownership prob-
lem, our aim is to prevent a dishonest insider from denying
the contribution of other insiders. This is not much differ-
ent from the aim in the conventional proof-of-ownership
problem, except that the dishonest outsider in that model
is replaced by a dishonest insider here. In both the conven-
tional model and our one, an honest insider desires to pro-
duce evidence that proves his or her case against the dishon-
est party.

We define an insider as someone who has access to the
multimedia content before publication, such as an author.
We will sometimes use the term “author” to mean an ac-
tively contributing insider. Each insider is assumed to have
some secret information which he or she can use to em-
bed a secret watermark known only to that insider. We will
give some examples of how this secret information is used in
Section 3.

An outsider is anyone who is not an insider. We will not
explicitly consider protection from dishonest outsiders in
this paper. During the prepublication phase, we assume that
the insiders have suitable private channels which cannot be
listened to or tampered with by outsiders. (By the letter of
the definition, an outsider who could do such things would
become an insider).

We are not aware of any method by which a computer
system can make artistic decisions about the contributions
of authors. We will therefore assume that



2216 EURASIP Journal on Applied Signal Processing

(i) all insiders are permitted to make arbitrary changes
to the object being authored, whatever their perceived
artistic value is;

(ii) all insiders have an equal right to be represented as the
owners of the finished object, whatever a human judge
might think of their contribution.

It is possible to developmore complex systems that use access
control structures to constrain authors to changing only cer-
tain regions of the object; give different preassigned weights
to different authors’ watermarks; eliminate insiders’ water-
marks if that insider makes no contribution; and so forth,
but for simplicity we will not discuss these straightforward
extensions here.

Any insider is able to take a copy of the object being au-
thored at any time, and optionally make private changes to
it, possibly including “changes” made by ignoring the contri-
butions of other authors. An object created other than by the
legitimate publication procedure will be referred to as a rebel
object. We will not attempt to prevent authors from creating
and publishing rebel objects, since such activity is analogous
to an outsider who takes a copy of the published object and
makes his or her own changes to it, and this cannot be pre-
vented in the general watermarking model. We do, however,
demand that rebel objects contain the watermarks of all the
contributors to the object, so that the rebel insider cannot
deny the other insiders’ contribution to any object, whether
it is a rebel one or not.

3. ARCHITECTURES FOR SECURE AUTHORING

In this section, we will describe several possible architectures
for multimedia authoring systems that provide intellectual
property protection against dishonest insiders who partici-
pate in the authoring process itself, avoiding the vulnerabil-
ity of the conventional approaches to dishonest insiders de-
scribed in Section 2. For ease of exposition, we will describe
only proof-of-ownership watermarking in this section. We
will show how to adapt the constructions here for finger-
printing in Section 4.

As in the conventional proof-of-ownership case, we can-
not appeal to encryption for protection against dishonest
parties since all parties must have access to the unencrypted
object if they are to make any use of it. Watermarking aims
to solve this problem by embedding subliminal information
into an unencrypted object that deters illegitimate use by
threatening an illegitimate user with detection.

Our general approach is to maintain a version of the
work-in-progress that contains a “watermark-in-progress.”
Changes to the work-in-progress result in corresponding
changes to the watermark. The authors, therefore, do not
have an opportunity to obtain an unwatermarked version of
the object, but are still able to access a usable version of the
object. An author making some illegitimate use of the object
can then be dealt with in the same way as in the conventional
case.

Of course, any form of collaborative authoring system re-
quires some form of concurrency control to prevent mishaps

due to two or more authors trying to edit the same thing
at the same time. This is a well-known problem with well-
known solutions in concurrent programming, and for sim-
plicity we will not explicitly mention them here.

3.1. Authoringwith a trusted repository

If the authors have access to a repository which they all trust
with their watermark information and the unwatermarked
original, it is relatively straightforward to implement a so-
lution to our problem, using an architecture similar to the
IETF’s WebDAV protocol [4].

Whenever an author wishes to make a change to the ob-
ject, the repository makes a watermarked version (containing
the watermarks of all authors) of its master copy, and trans-
mits this to the editing author. The editing author transmits
the changes back to the repository, which incorporates them
into its unwatermarked original. In a naı̈ve implementation,
the master copy may become degraded due to the repeated
addition of watermarks every time the object is checked out;
however, we will give an example of how this can be avoided
in Section 3.2.2.

3.2. Authoringwith a blind repository

By embedding the watermark in an encrypted domain, it is
possible to implement a system in which

(i) no party, including the server, has access to the unwa-
termarked original X ;

(ii) the watermark wi is known only to author i;
(iii) all the authors have access to the watermarked object

X̂ containing all of the authors’ watermarks.

Some techniques for embedding watermarks in encrypted
domains are described by Fridrich et al. [5, 6], Yen [7], and
Memon and Wong [8]. Memon and Wong’s construction,
based on a privacy homomorphism [9] between the encryp-
tion and watermarking functions, is the most convenient for
our purposes.

An encryption function E(X , k) is a privacy homomor-
phism with respect to a function f (X ,Y) if and only if

E
(
f (X ,Y), k

) = f
(
E(X , k),E(Y , k)

)
(1)

for all plaintexts X and Y , and keys k. For example, RSA [10]
is a privacy homomorphism with respect to fixed point mul-
tiplication.

Let each author i have a secret watermark wi, and let k be
a global encryption key known to the authors (and no one
else, including the server). Let W(X ,w) denote watermark-
ing an object X with a watermark w and let g(X , δX) be a
function that applies the changes δX to X . We require that
g(X , δX) be invertible, that is, given an object X and another
object X ′, it is possible to compute δX such that

X ′ = g(X , δX). (2)

Let E(X , k) be an encryption function that is a privacy ho-
momorphism with respect to bothW(X ,w) and g(X , δX).



Secure Multimedia Authoring with Dishonest Collaborators 2217

To initialise the server, each author transmits E(wi, k)
to the server using a private secure channel, and the server
records the encrypted watermarks for future use. The server’s
master copy of the encrypted object can be initialised by hav-
ing an author choosing a random object X and transmitting
E(X , k) to the server. Alternatively, if the encryption function
is such that the server can randomly generate a valid cipher-
text without knowing the key, it is possible for the server to
simply choose its own random “encrypted” object E(X , k).

An author wishing to modify the object X makes a re-
quest to the server. LetW∗(X ,w1, . . . ,wm) denote the object
X watermarked with each watermarkw1 up towm in turn (by
rewatermarking), where m is the number of authors. Note
that composition rather than rewatermarking is also possible
if the encryption function is a privacy homomorphism with
respect to the composition function; we will see an example
of this in Section 3.2.2. The server computes

W∗(E(X , k),E(w1, k
)
, . . . ,E

(
wm, k

))
(3)

and transmits this to the author that made the request.
Since E(X , k) is a privacy homomorphism with respect to

W(X ,w), we can see that

W∗(E(X , k),E(w1, k
)
, . . . ,E

(
wm, k

)) = E(X̂ , k) (4)

by applying the homomorphic propertym times. Hence, the
author receiving E(X̂ , k) can decrypt the watermarked object

X̂ =W∗(X ,w1, . . . ,wm
)

(5)

and edit this object as normal to produce a new object X̂ ′.
The server, however, cannot decrypt the object since it does
not know the key k.

The author computes δX such that X̂ ′ = g(X̂ , δX) and
transmits E(δX , k) to the server (in practice, the author may
just create δX directly by storing the changes he or she
makes). The server computes

E
(
g(X , δX), k

) = g
(
E(X , k),E(δX , k)

) ≈ E(X ′, k) (6)

and makes this its new master copy of the encrypted object.
Some care needs to be taken in the choice of g(X , δX) to keep
the approximation manageable. For a well-chosen g(X , δX),
the approximation can be eliminated altogether, and we will
give an example of such a choice in Section 3.2.2.

3.2.1. Limitations

Memon and Wong note that this system of embedding wa-
termarks in an encrypted domain prevents the watermark-
ing algorithm from using any perceptual information about
the object. An alternative approach that may avoid this prob-
lem is the random transform domain technique of Fridrich
et al. [5, 6], in which watermarking is performed in a random
frequency-like domain. Due to space considerations, we will
not explore this alternative further in the present paper.

3.2.2. An example

In their example of a homomorphic watermarker, Memon
and Wong use RSA encryption and the watermarking algo-
rithm of Cox et al. [11]. However,

(i) using a nonoblivious watermarking method is incon-
venient in our situation, where we have stated that the
original should be inaccessible (though a collusion of
the server and at least one author could reveal it);

(ii) asymmetric encryption, such as RSA, results in a
many-fold expansion in the size of the object when
used in the pointwise fashion required for the con-
struction to work;

(iii) pointwise encryption is potentially vulnerable to at-
tacks because of the small number of possible plain-
texts;

(iv) applying changes in the transform domain is difficult
since human authors work in the spatial domain.

As we do not need asymmetric encryption for our situa-
tion, a more convenient choice for the encryption function is
permutation in the spatial domain. Since permutation is ho-
momorphic with respect to any pointwise function, we have
great flexibility in choosing a watermarking function. Let the
watermark of author i be represented by a matrix wi of the
same size as the image to be watermarked, and let water-
marking be performed by matrix addition of the watermark
to the image. Several simple watermarking algorithms, such
as the Patchwork algorithm of Bender et al. [12] and the al-
gorithm of Pitas [13], can be implemented in this way.

A convenient choice for g(X , δX) is the function that se-
lectively replaces the elements of a p× qmatrix X with those
from another p× qmatrix δX to form a new matrix X ′ with

X ′(x, y) =

X(x, y), if δX(x, y) = −1,
δX(x, y), otherwise.

(7)

An inverse for any X and X ′ using this function can be de-
rived from a simple pointwise comparison.

With this choice of g(X , δX), watermarked pixels ob-
tained from the server and unmodified by the author are
not returned to the server since they are at positions where
δX(x, y) = −1. The only pixels incorporated into the server’s
master (unwatermarked) copy are the unwatermarked ones
created by authors after modifying the image.

Let κ be a permutation on the elements of a p×qmatrix,
known only to the authors. Let wi be a p × q watermarking
pattern known only to author i. Let the image being authored
be X , and let the server have κ(X) and κ(wi) for all authors i.
The procedure for an author i to edit the object is the same as
before, except that it is possible to use a composite watermark
here.

(1) The server computes a composed permuted water-
mark pattern κ(w∗) =∑m

j=1 κ(wj).
(2) The server computes the permuted watermarked ob-

ject by κ(X̂) = κ(X)+κ(w∗)[= κ(X +w∗)], and trans-
mits κ(X̂) to author i.



2218 EURASIP Journal on Applied Signal Processing

(3) Author i uses the inverse permutation to get X̂ =
κ−1(κ(X +w∗)) = X +w∗.

(4) Author i makes changes δX to X̂ , where δX is a p × q
matrix with entries of −1 where the pixel at that posi-
tion was unchanged, or the new pixel value otherwise.

(5) Author i transmits κ(δX) to the server.
(6) The server computes its new master copy of the

permuted original by κ(X ′) = g(κ(X), κ(δX))[=
κ(g(X , δX))].

Using either the Patchwork or Pitas algorithms, the com-
posed watermark w∗ can be detected as usual by a conven-
tional detector since it is a valid watermark pattern of it-
self. It is also possible for a conventional detector to separate
the individual watermarks w1, . . . ,wm since they are uncor-
related and composition in this fashion is equivalent to re-
watermarking in these systems.

3.2.3. An attack

Given a watermarked object and its original version, an at-
tacker can attempt to estimate the watermark signal by com-
paring the two. This leads to a variety of possible attacks in
which a dishonest author submits a specially-constructed ob-
ject to the server, immediately requests the watermarked ver-
sion, and uses the two versions to obtain information about
the other authors’ watermarks.

Suppose, for example, an author creates an object X and
submits this to the server. This X could be the initial ob-
ject given to the server during the initialisation phase, or it
could be created by checking out an existing object and over-
writing it before resubmission.

If the author immediately requests the object again, the
author will obtain the watermarked version,

X̂ =W
(
X ,w1, . . . ,wm

)
. (8)

The author now knows both X and its watermarked version,
which may allow the author to compute the (composed) wa-
termark. For example, in the permutation example above,
the author can compute

X̂ − X = (X +w∗
)− X

= w∗.
(9)

Knowledge of w∗, in the example system, allows the author
to remove the watermark from any image watermarked by
the server by a simple matrix subtraction.

A simple-minded solution might be to disallow all-of-
object changes, but a patient author can still build up knowl-
edge of a collective watermark w∗ using a sequence of
changes that, when taken together, cover the object. Alter-
natively, an author could be prohibited from accessing the
object twice in a row, but a determined author may still be
able to piece information together from points that were not
changed by intermediate authors.

To defeat this attack and other similar attacks based
on examining the output of the server for a specially-
constructed input, either

(i) it should not be feasible to compute w∗ given X and
W(X ,w∗), or

(ii) it should not be feasible to computeX givenW(X ,w∗)
and w∗.

Watermarking schemes that satisfy one or the other of
these conditions are proposed by Depovere and Kalker [14]
and Stern and Tillich [15]. In these schemes, a single detec-
tion key σ can be used to generate many different watermark
patterns w∗ using a one-way function. Each watermarked
object is watermarked using the same σ , but a different w∗.
This approach prevents an attacker from learning any in-
formation about σ even if he or she can learn w∗. Without
knowledge of σ , an attacker cannot remove or otherwise tam-
per with watermarks created by the server. Investigation of
how these types of schemes can be implemented in our ar-
chitectures is a subject of ongoing research.

3.3. Authoringwith layers
In this section, we will consider an architecture for author-
ing that does not require a server, trusted or otherwise. Con-
sider a function U(X1, . . . ,Xm) that takes a collection of
layers X1, . . . ,Xm and merges them into a single object X .
A simple example is the function that overlays a collection
of line-drawings on transparent backgrounds, producing an
object containing every line from every drawing. For a suit-
able choice of U(X1, . . . ,Xm), we can arrange for an object
X = U(X1, . . . ,Xm) to be manipulated by a collection of m
authors, each making changes to one layer only.

Let each author i own a layer and maintain two versions
of this layer: an unwatermarked layer Xi and a watermarked
layer X̂ i = W(Xi,wi), where W(X ,w) denotes watermark-
ing an object X with a watermark w. The former is a secret
of its author, and the latter is public. Of course the author
need not embed his or her watermark in the public layer if
he or she does not want to, making the public layer the same
as the “private” layer, but this in no way affects the other au-
thors’ watermarks. Anyone knowing all of the public layers
can compute an object X̂ = U(X̂1, . . . , X̂m).

To make a change to the object, an author i first makes
the appropriate change to his or her private layer Xi. He or
she then computes a new version of the public layer X̂ i cor-
responding to the new private layer, and publishes the new
X̂ i. The other authors may then recompute their copy of the
merged object.

A rebel author may choose to create a rebel object by ig-
noring broadcasts from some particular author i. The rebel
object thus produced will not contain the watermark wi, and
therefore author i cannot claim any contribution to the rebel
object. This is unavoidable in this architecture, and it is de-
batable as to whether or not author i should be able to claim
contribution to an object from which his or her contribution
has been erased. Eliminating one author, however, does not
affect the ability of the other authors to exhibit their water-
marks in the rebel object.

Of course, it is not automatic that the watermarks in the
X̂ is will survive the merging process for any arbitrary combi-
nation of watermarking and merging functions. We will give



Secure Multimedia Authoring with Dishonest Collaborators 2219

an example in which there is a statistical expectation that the
watermarks can be detected in the merged object, but we do
not know of any way of guaranteeing this while still provid-
ing a useful merging function.

3.3.1. An example

Wewill describe a layered watermarking system for raster im-
ages, using the JAWS watermark of Kalker et al. [16], except
that for simplicity of exposition we will not use translation
invariance. While this watermark’s stated purpose is broad-
cast monitoring rather than proof-of-ownership, it is a con-
venient example for our purposes. For simplicity, we will as-
sume that the images are grey scale though it is easy to extend
the procedure to colour images.

As described above, each author i maintains a private,
unwatermarked p × q image (layer) Xi and a public, water-
marked p × q image X̂ i. These are both initialised to zero.
Each author i also has a private p × q watermark pattern wi

with standard normal distribution (i.e., each element of wi is
randomly chosen from a normal distribution withmean zero
and standard deviation one), as usual in JAWS.

Each author also maintains a copy of a p × q ma-
trix Y with entries from 1, . . . ,m, which is initialised ran-
domly. To compute the merged, watermarked image X̂ =
U(X̂1, . . . , X̂m), every author can compute

X̂(x, y) = X̂Y(x,y)(x, y). (10)

The authors do not need to agree on an initial Y since every
author’s layer is identical in the beginning. Even if the layers
are not identical, choosing one is as good as choosing the
next.

If an author i wishes to make a change to a set of pixel
locations D, he or she makes the appropriate changes in Xi

and computes X ′ = U(X̂1, . . . ,Xi, . . . , X̂m), that is,

X ′(x, y) =

X

i(x, y), if (x, y) ∈ D,

X̂Y(x,y)(x, y), otherwise.
(11)

The author computes the perceptual mask λ of X ′ as usual in
JAWS, that is,

λ = 1
9


−1 −1 −1
−1 8 −1
−1 −1 −1


∗ X ′, (12)

where “∗” denotes convolution and computes the water-
marked values for all the pixel locations (x, y) ∈ D using
the usual JAWS embedding function

X̂ i(x, y) = Xi(x, y) + αλ(x, y)wi(x, y), (13)

where α is a global scaling parameter. The other pixels of X̂ i

are left unchanged.
The other authors are then informed of the change by a

broadcast of D by author i. Each author then updates his or
her copy of Y by setting

Y(x, y) = i ∀(x, y) ∈ D, (14)

leaving other entries in Y unchanged. Note that an author
can also choose a rebel Y , thus creating a rebel object, but
this object still contains the other authors’ watermarks unless
one author has been targeted for removal as described in the
introduction to this section.

The resulting watermark is a kind of segmented water-
mark. If the watermark detector has access to Y , it can par-
tially invert the merging function to obtain a set of layers,
each containing the pixels watermarked by a particular au-
thor (with zeros where the contents of that layer are un-
known).

Since the watermark patterns are mutually uncorrelated,
however, it is possible for a detector to test for a given wa-
termark pattern without knowledge of Y , using the normal
JAWS detection algorithm. To test an image Z for the pres-
ence of a watermark w, we filter Z with

Z′ = 1
4


 1 −2 1
−2 4 −2
1 −2 1


∗ Z, (15)

and then compute the correlation of Z′ with w. Even though
only some of the pixels of X̂ come from the layer containing
a watermark pattern wi, the correlation of X̂ with wi is still
high, as

wi · X̂ =
p∑

x=1

q∑
y=1

wi(x, y)
(
X(x, y) + αλ(x, y)wY(x,y)(x, y)

)

=
p∑

x=1

q∑
y=1

wi(x, y)X(x, y) +
∑

Y(x,y)=i
αλ(x, y)

(
wi(x, y)

)2
+

∑
Y(x,y)�=i

αλ(x, y)wY(x,y)(x, y)wi(x, y)

≈
∑

Y(x,y)=i
αλ(x, y)

(
wi(x, y)

)2
> 0

(16)

since the expected correlation of wi with the original image
and the other watermarks is zero. This is the same idea as
used by the asymmetric watermark of Hartung and Girod
[17]; in fact, Eggers et al. [18] suggest that Hartung and
Girod’s method might be more useful as a multiple water-
mark than as an asymmetric one.

3.3.2. Limitations

This system does not guarantee that an author’s watermark
will be detectable in the final object, since it is entirely possi-
ble that an author’s contribution will be obliterated by later
authors overwriting that author’s contribution. Consider, for
example, the case where some director makes a rough sketch
of a scene he or she wants drawn, then other artists move in
to fill out the details, obliterating the sketch. No watermark
can survive a complete redrawing of the image (whether or
not the new image is semantically related to the old one), so
it is difficult to see how any useful merging function could
preserve watermarks in such obliterated contributions.



2220 EURASIP Journal on Applied Signal Processing

3.4. Authoringwith instructions

A special case of the layered authoring system described in
the previous section is the case where the object is created by
authors who issue streams of instructions to make changes
to the object, such as “draw a line here,” “make this pixel
blue,” and so forth. The final object can be thought of as the
interleaving (merging) of the individual instruction streams
(layers) of each author. The Network Text Editor of Handley
and Crowcroft [19], for example, uses a similar architecture.
Clearly, this model is well suited to formats that represent
objects by a sequence of rendering primitives, such as text or
vector graphics, rather than formats that represent objects by
raster data.

The system is initialised by each author creating an empty
object. Let each author i have a secret watermark wi and let
Xi = Xi

1,X
i
2, . . . denote the stream of instructions issued by

author i.
To issue an instruction Xi

j to make a change to the object,
an author i computes a watermarked version of the instruc-
tion X̂ i

j =W(Xi
j ,w

i), and broadcasts X̂ i
j to all of the authors,

who append this to their local copy of the object. The unwa-
termarked version Xi

j is discarded (though there is no reason
author i could not keep it if he or she wanted to).

As in the layered system, an author can choose to ignore
the broadcasts of other authors and create a rebel object with
an eliminated author. In this architecture, this is equivalent
to an outsider who crops instructions from the final object,
which is unavoidable in the general watermarking model.

3.4.1. On instruction complexity

Depending on the complexity of the instructions used, it may
or may not be possible to embed an entire watermark into a
single instruction. Solachidis et al., for example, propose a
watermark for polylines [20] that could be used to embed a
whole watermark into an instruction to draw a polyline or
similar complex shape.

However, multimedia languages typically make use of
many much simpler instructions such as “put text here” or
“draw a line” that have only one or two points available for
embedding watermark information. In this case, the water-
mark information needs to be distributed over many instruc-
tions. Let the watermark pattern wi of a participant i be
made up of a sequence of n components wi

1, . . . ,w
i
n, and let

f (Xj ,wi
l) be a function for embedding a watermark compo-

nent wi
l into an instruction Xj . Let τ(·) be some mapping

of instructions to the integers 1, . . . ,n. Then an author i can
embed a watermark component in each instruction Xj by

X̂ j = f
(
Xj ,wi

τ(Xj )

)
. (17)

A simple choice for τ(·) would be to number instructions
according to the order in which they were issued, that is,

τ
(
Xj
) = j mod n + 1. (18)

However, this is a poor choice since the instructions may, in
general, be reordered without affecting the way the object
is rendered. A more robust choice is to determine τ(Xj) by

some property of Xj that cannot be changed so easily, such
as its position in the drawing space. We will give an example
of such a function in Section 3.4.3.

3.4.2. On the output format

The raw instruction streams issued by authors are unlikely
to make an attractive format for distribution. We can ex-
pect that the raw instruction streams will contain many in-
structions that make corrections to earlier instructions. Dis-
tributing such redundant instructions is not only inefficient,
but may also be unimplementable on output devices, such as
printers, that cannot alter the effect of any instructions once
they have been carried out.

We can therefore expect some degree of postprocessing
on the instruction stream to put it into an acceptable for-
mat for distribution. This may mean removing redundant
instructions, or combining a series of corrective instructions
into a single instruction, or radical format conversions, such
as rasterisation. It is inevitable that watermark information
will be lost in the process, and possibly whole contributions
obliterated as in the layered case. A radical format conver-
sion may destroy the watermark completely; this is true of
any watermark, not just ones created by instruction streams.

3.4.3. An example

We will describe a system for authoring two-dimensional
vector graphics where authors may draw lines, circles, poly-
gons, and so forth. We will use a very simple watermark sim-
ilar to the one suggested by Koh and Chen [21], but ours will
be robust against reordering of drawing elements.We assume
that every drawing primitive is associated with one or more
points in the plane, such as the end-points of a line, the cen-
tre of a circle, the vertices of a polygon, and so forth, and
consider each point vj individually.

We will assume that all points lie in the first quadrant of
the Cartesian plane, that is, that the origin is at the bottom-
left of the drawing space. We associate a point vj with a bin
bτ(vj ) by dividing the drawing space into n sectors using n
radial lines emanating from the origin at equally-spaced an-
gles, that is, let (r(vj), θ(vj)) denote the polar coordinates of
a point vj and set

τ
(
vj
) = ⌊2n

π
θ
(
vj
)⌋

+ 1. (19)

Let wi = wi
1, . . . ,w

i
n denote the watermark of author i,

where eachwi
j is drawn from a standard normal distribution.

We compute the watermarked version v̂ j of a point vj by

r
(
v̂ j
) = r

(
vj
)
+ αwi

τ(vj ),

θ
(
v̂ j
) = θ

(
vj
) (20)

for some agreed global scaling parameter α, that is, the point
is moved further away from or closer to the origin by an
amount proportional to wi

τ(vj ).
As for the general layered watermark, the watermark re-

sulting from a collection of collaborating authors is a seg-
mented watermark and can be detected by breaking the in-
struction stream into the streams contributed by each author.



Secure Multimedia Authoring with Dishonest Collaborators 2221

However, it is possible, and more convenient, to detect the
individual watermark as if the object contained a composite
watermark as in the layered example. This can be done for
a watermark wi using the correlation of the points distances
from the origin

r = r
(
v1
)
, r
(
v2
)
, . . . , r

(
vt
)

(21)

with the vector of corresponding watermark components

w̃i = wi
τ(v1),w

i
τ(v2), . . . ,w

i
τ(vt). (22)

If the correlation is high, we report that the watermark is
present, otherwise we report that it is not.

4. FINGERPRINTING

For simplicity, in this section we will assume that proof-of-
ownership is not an issue. Suppose, for example, that the au-
thors are employees of a company and do not own the in-
tellectual property in their work. However, leaking a copy
of their work prior to the official company publication may
compromise the company’s intellectual property, and the
company might be interested in learning who made the leak.

In the watermarking solution to this problem, each le-
gitimate copy of the object is embedded with a distinct wa-
termark, called a fingerprint, that identifies the owner of that
copy. If one of the legitimate owners makes an illegitimate
copy, and this copy is found by investigators, this copy can be
traced to the owner using the fingerprint in it.

As in the proof-of-ownership case, it is easy to see that a
dishonest insider in possession of the unwatermarked orig-
inal can circumvent the tracing protocol. In this section, we
will consider how the architectures described in Section 3 can
be adapted to solve the fingerprinting problem in the pres-
ence of dishonest insiders.

In order to implement fingerprinting, there are two ba-
sic changes that need to be made to the proof-of-ownership
systems described in the previous sections:

(i) watermarks (i.e., fingerprints) are not known by the
owner of that watermark;

(ii) each author should have a distinct (fingerprinted) ver-
sion of the object.

In general, fingerprints may be chosen to have various
useful properties, such as collusion security. For simplicity
and due to space considerations, we will not consider such
properties here. We require only that each author receives a
version of the work containing a distinct watermark.

4.1. With a server

Implementing fingerprinting is straightforward using a
server. The server simply chooses a distinct watermark wi for
each author i known only to the server, and embedswi (only)
into any objects that are transmitted to author i. If author i
leaks a copy of the object, the author can be traced by the
presence of wi in the leaked copy.

4.2. Without a server

Without a server, it is necessary for every author i to choose a
distinct fingerprint wi, j for every coauthor j. When making a
change to the object, author i must generate a version of the
change for each fingerprint wi, j and transmit this version to
author j over a private channel instead of using the broad-
cast channel as before. In this way, each author i has a copy
of the object containing a collection of m − 1 fingerprints
w1,i,w2,i, . . . , and so forth, uniquely identifying that author’s
copy. Assuming that the watermark in use is separable, any
author j who leaks a copy can be traced by the presence in
the leaked copy of any one of wi, j for some other author i.

Since each fingerprintwi, j is known by author i, it may be
possible for author i to attempt to frame author j by leaking
a copy of the object containing wi, j . A simple solution would
be to use majority voting in the tracing algorithm, and re-
quire that the majority of fingerprints found in a leaked copy
correspond to the accused author. Since a dishonest author
i’s object also contains them− 1 fingerprints assigned to i by
the other authors, this test would correctly identify i as the
leaker. However, it is still possible for a majority of authors
acting in collusion to frame an author in the minority.

A more robust, but more complicated, solution is to use
asymmetric fingerprinting [22] (also known as a buyer-seller
protocol [8]). In these protocols, the fingerprinter (author i
in the above) and the fingerprintee (author j) interact during
the fingerprinting process in such a way that the fingerprinter
cannot obtain a copy of the fingerprinted object. Every time
author imakes a change to the object, he or she must execute
the asymmetric fingerprinting protocol with every other au-
thor j, using fingerprint wi, j .

5. DISCUSSION

5.1. Security

Our systems permit authors to access only watermarked ver-
sions of the object they are working on, and hence an insider
wishing to deny the contribution of the other authors, or
leak an illegitimate copy of the object, would ideally be in the
same position as an outsider attempting to do the same. The
systems described above do not quite meet this ideal, since

(i) insiders see many different objects (being different ver-
sions of the object-in-progress) containing the same
watermark, potentially giving insiders greater oppor-
tunity for attacks that attempt to estimate the water-
mark;

(ii) insiders generally know the source of any change, and
therefore which pixels or instructions are watermarked
by which author, and can use this knowledge to target
a particular watermark.

Of course, if the watermark being used was perfectly secure
(in the sense that it is unremovable without unacceptably de-
grading the object), this extra knowledge should not matter,
but on current watermarking technology, this seems a little
optimistic.



2222 EURASIP Journal on Applied Signal Processing

5.2. Collusions

A group of dishonest insiders may pool their information in
an attempt to defeat the watermarks of insiders from outside
the colluding group. This sort of attack is commonly consid-
ered in fingerprinting systems, where the colluders are a col-
lection of outsiders. Here, such colluders may be insiders as
well, but as we have observed in the previous section, inside
colluders are in the same position as outside colluders since
the insiders have access only to a fingerprinted version of the
object. Hence we expect that fingerprinting algorithms that
are secure against outsider collusions should also be secure
against insider collusions.

In the proof-of-ownership case, all authors have exactly
the same information about the original object and about
other authors’ watermarks (which, ideally, is no information
at all). Hence a collusion will not reveal any information
to the colluders other than the colluders’ own watermarks,
and what they already knew by virtue of their being insid-
ers. Since all the watermarks are independently chosen and
embedded, the colluders have not improved their chances of
defeating the noncolluders’ watermarks over an insider act-
ing alone.

6. CONCLUSION

We have introduced the problem of protecting the intellec-
tual property rights of multimedia content owners where po-
tentially malicious insiders have access to the content be-
fore publication. Conventional watermarking solutions to
the proof-of-ownership problem cannot resolve intellectual
property disputes that arise prior to publication, and con-
ventional fingerprinting solutions cannot trace leakers who
leak prepublication versions of content, since the adversary
in such situations has access to an unwatermarked version of
the content.

We have proposed several possible architectures for wa-
termarking with dishonest insiders, in which insiders have
access only to a watermarked version of the object that they
are working on. Hence, an insider is in not much better a
position to defeat the watermark than an outsider. If water-
marks had perfect security, insiders would not be in a better
position at all.

Our systems cannot be guaranteed to successfully resolve
any particular intellectual property dispute in a collaborative
environment, and we do not think that any currently known
(or even foreseen) computer system can, since

(i) computers cannot make artistic judgements on the
worth of any particular contribution;

(ii) realistic authors will generally use out-of-band com-
munications such as face-to-face meetings to exchange
ideas;

(iii) we cannot watermark the semantics of multimedia
content.

However, the architectures proposed in this paper provide a
basis for the development of systems that can assist in re-
solving intellectual property disputes between collaborators

by providing at least some evidence of what happened prior
to publication, and we are hopeful that further research can
overcome at least some of the limitations we have noted.

REFERENCES

[1] H. Guo and N. D. Georganas, “A novel approach to digi-
tal image watermarking based on a generalized secret sharing
scheme,” Multimedia Systems, vol. 9, no. 3, pp. 249–260, 2003.

[2] N. P. Sheppard, R. Safavi-Naini, and P. Ogunbona, “On mul-
tiple watermarking,” inWorkshop on Security and Multimedia
at ACMMultimedia, pp. 3–6, Ottawa, Ont, Canada, 2001.

[3] G. C. Langelaar, I. Setyawan, and R. L. Lagendijk, “Wa-
termarking digital image and video data. A state-of-the-art
overview,” IEEE Signal Processing Magazine, vol. 17, no. 5, pp.
20–46, 2000.

[4] Y. Goland, E. Whitehead, A. Faizi, S. Carter, and D. Jensen,
HTTP extensions for distributed authoring – WEBDAV, RFC
2518, Internet Society, 1999.

[5] J. Fridrich, A. C. Baldoza, and R. Simard, “Robust digital wa-
termarking based on key-dependent basis functions,” in Proc.
2nd InformationHidingWorkshop, pp. 143–157, Portland,Ore,
USA, April 1998.

[6] J. Fridrich, “Key-dependent random image transforms and
their applications in image watermarking,” in International
Conference on Imaging Science, Systems, and Technology, pp.
237–243, Las Vegas, Nev, USA, June 1999.

[7] J.-C. Yen, “Watermarks embedded in the permuted image,” in
Proc. IEEE International Symposium on Circuits and Systems,
vol. 2, pp. 53–56, Sydney, Australia, May 2001.

[8] N. Memon and P. W. Wong, “A buyer-seller watermarking
protocol,” IEEE Trans. Image Processing, vol. 10, no. 4, pp.
643–649, 2001.

[9] R. L. Rivest, L. Adleman, and M. L. Dertouzos, “On data
banks and privacy homomorphisms,” in Foundations of Se-
cure Computation, R. A. DeMillo, D. Dobkin, A. Jones, and
R. Lipton, Eds., pp. 169–179, Academic Press, New York, NY,
USA, 1978.

[10] R. L. Rivest, A. Shamir, and L. Adleman, “A method for
obtaining digital signatures and public key cryptosystems,”
Communications of the ACM, vol. 21, no. 2, pp. 120–126, 1978.

[11] I. J. Cox, J. Kilian, T. Leighton, and T. Shamoon, “A secure,
robust watermark for multimedia,” in Proc. 1st International
Workshop on Information Hiding, pp. 185–206, Cambridge,
UK, 1996.

[12] W. Bender, D. Gruhl, N. Morimoto, and A. Lu, “Techniques
for data hiding,” IBM Systems Journal, vol. 35, no. 3-4, pp.
313–336, 1996.

[13] I. Pitas, “A method for signature casting on digital images,” in
Proc. IEEE International Conference on Image Processing, pp.
215–218, Lausanne, Switzerland, September 1996.

[14] G. Depovere and T. Kalker, “Secret key watermarking with
changing keys,” in IEEE International Conference on Image
Processing, pp. 427–429, Vancouver, BC, Canada, September
2000.

[15] J. Stern and J.-P. Tillich, “Automatic detection of a water-
marked document using a private key,” in Proc. 4th Inter-
national Workshop on Information Hiding, pp. 258–272, Pitts-
burgh, Pa, USA, April 2001.

[16] T. Kalker, G. Depovere, J. Haitsma, andM.Maes, “A video wa-
termarking system for broadcast monitoring,” in IS&T/SPIE
Conference on Security and Watermarking of Multimedia Con-
tents, pp. 103–122, San Jose, Calif, USA, January 1999.



Secure Multimedia Authoring with Dishonest Collaborators 2223

[17] F. Hartung and B. Girod, “Fast public-key watermarking of
compressed video,” in IEEE International Conference on Image
Processing, pp. 528–531, Santa Barbara, Calif, USA, October
1997.

[18] J. J. Eggers, J. K. Su, and B. Girod, “Asymmetric watermark-
ing schemes,” in Sicherheit in Netzen und Medienströmen,
M. Schumacher and R. Steinmetz, Eds., pp. 124–133, Berlin,
Germany, 2000.

[19] M. Handley and J. Crowcroft, “Network Text Editor (NTE):
a scalable shared text editor for the MBone,” in Proc. ACM
SIGCOMMConference on Applications, Technologies, Architec-
tures, and Protocols for Computer Communication, pp. 197–
208, Cannes, France, September 1997.

[20] V. Solachidis, N. Nikolaidis, and I. Pitas, “Fourier descriptors
watermarking of vector graphics images,” in IEEE Interna-
tional Conference on Image Processing, pp. 9–12, Vancouver,
BC, Canada, September 2000.

[21] B. Koh and T. Chen, “Progressive browsing of 3D models,” in
Proc. IEEE 3rd Workshop on Multimedia Signal Processing, pp.
71–76, Copenhagen, Denmark, September 1999.

[22] B. Pfitzmann and M. Schunter, “Asymmetric fingerprinting,”
in EUROCRYPT ’96, pp. 84–95, Springer-Verlag, Berlin, Ger-
many, 1996.

Nicholas Paul Sheppard received Bache-
lor’s degrees in computer systems engineer-
ing and pure mathematics from the Uni-
versity of Queensland in 1996, and a Ph.D.
in computer science from the University of
Sydney in 2001. He is currently a Research
Fellow inmultimedia security at the Univer-
sity of Wollongong.

Reihaneh Safavi-Naini is a Professor of
computer science at the University of Wol-
longong. She holds a Ph.D. in electrical and
computer engineering from University of
Waterloo in Canada. Her research interests
include cryptography, computer and com-
munication security, multimedia security,
and digital right management.

Philip Ogunbona received the B.S. (with
honors) in electronic and electrical engi-
neering from the University of Ife, Nige-
ria, and the Ph.D. in electrical engineering
from Imperial College of Science, Technol-
ogy and Medicine, University of London.
From 1990 to 1998, he was on the academic
staff of the School of Electrical, Computer
and Telecommunications Engineering, Uni-
versity of Wollongong. In 1998, he joined
Motorola Australian Research Centre, where he was responsible for
developing imaging algorithms. He became Manager of the Digi-
tal Media Collection and Management Lab, and directed research
into multimedia content management for mobile systems and the
home. He is now a Professor in the School of Information Technol-
ogy and Computer Science, University ofWollongong. His research
interests includemultimedia signal processing, multimedia content
management, multimedia security, video surveillance, and colour
processing.


	1. INTRODUCTION
	2. INTELLECTUAL PROPERTY PROTECTION USINGWATERMARKS
	2.1. Multiple watermarking
	2.2. Ourmodel

	3. ARCHITECTURES FOR SECURE AUTHORING
	3.1. Authoring with a trusted repository
	3.2. Authoring with a blind repository
	3.2.1. Limitations
	3.2.2. An example
	3.2.3. An attack

	3.3. Authoring with layers
	3.3.1. An example
	3.3.2. Limitations

	3.4. Authoring with instructions
	3.4.1. On instruction complexity
	3.4.2. On the output format
	3.4.3. An example


	4. FINGERPRINTING
	4.1. With a server
	4.2. Without a server

	5. DISCUSSION
	5.1. Security
	5.2. Collusions

	6. CONCLUSION
	REFERENCES

