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This paper introduces a real-timemodel-based humanmotion tracking and analysis method for human computer interface (HCI).
This method tracks and analyzes the human motion from two orthogonal views without using any markers. The motion parame-
ters are estimated by pattern matching between the extracted human silhouette and the human model. First, the human silhouette
is extracted and then the body definition parameters (BDPs) can be obtained. Second, the body animation parameters (BAPs) are
estimated by a hierarchical tritree overlapping searching algorithm. To verify the performance of our method, we demonstrate
different human posture sequences and use hidden Markov model (HMM) for posture recognition testing.
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1. INTRODUCTION
Human motion tracking and analysis has a lot of applica-
tions, such as surveillance systems and human computer in-
terface (HCI) systems. A vision-based HCI system need to
locate and understand the user’s intention or action in real
time by using the CCD camera input. Human motion is a
highly complex articulated motion. The inherent nonrigid-
ity of human motion coupled with the shape variation and
self-occlusions make the detection and tracking of human
motion a challenging research topic. This paper presents a
framework for tracking and analyzing human motion with
the following aspects: (a) real-time operation, (b) no mark-
ers on the human object, (c) near-unconstrained humanmo-
tion, and (d) data coordination from two views.

There are two typical approaches to human motion
analysis: model based and nonmodel based, depending on
whether predefined shape models are used. In both ap-
proaches, the representation of the human body has been de-
veloped from stick figures [1, 2], 2D contour [3, 4], and 3D
volumes [5, 6] with increasing complexity of the model. The
stick figure representation is based on the observation that
human motions of body parts result from the movement of
the relative bones. The 2D contour is allied with the projec-

tion of 3D human body on 2D images. The 3D volumes, such
as generalized cones, elliptical cylinders [7], spheres [5], and
blobs [6] describe human model more precisely.

With no predefined shapemodels, heuristic assumptions,
which impose constraints on feature correspondence and de-
creasing search space, are usually used to establish the cor-
respondence of joints between successive frames. Moeslund
and Granum [8] give an extensive survey of computer vision-
based human motion capture. Most of the approaches are
known as analysis by synthesis, and are used in a predict-
match-update fashion. They begin with a predefined model,
and predict a pose of the model corresponding to the next
image. The predicted model is then synthesized to a certain
abstraction level for the comparison with the image data. The
abstract levels for comparing image data and synthesis data
can be edges, silhouettes, contours, sticks, joints, blobs, tex-
ture, motion, and so forth. Another HCI system called “video
avatar” [9] has been developed, which allows a real human
actor to be transferred to another site and integrated with a
virtual world.

One human motion tracking method [10] applied the
Kalman filter, edge segment, and a motion model tuned to
the walking image object by identifying the straight edges.
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It can only track the restricted movement of walking human
parallel to the image plane. Another real time system, Pfinder
[11], starts with an initial model, and then refines the model
as more information becomes available. Themultiple human
tracking algorithm W4 [12, 13] has also been demonstrated
to detect and analyze individuals as well as people moving in
groups.

Tracking human motion from a single view suffers from
occlusions and ambiguities. Tracking from more viewpoints
can help solving these problems [14]. A 3D model-based
multiview method [15] uses four orthogonal views to track
unconstrained human movement. The approach measures
the similarity between model view and actual scene based on
arbitrary edge contour. Since the search space is 22 dimen-
sions and the synthesis part uses the standard graph render-
ing to generate 3D model, their system can only operate in
batch mode.

For an HCI system, we need a real-time operation not
only to track the moving human object, but also to analyze
the articulated movement as well. Spatiotemporal informa-
tion has been exploited in some methods [16, 17] for detect-
ing periodic motion in video sequences. They compute an
autocorrelation measure of image sequences for tracking hu-
man motion. However, the periodic assumption does not fit
the so-called unconstrained human motion. To speed up the
human tracking process, a distributed computer vision sys-
tems [18] uses a model-based template matching to track the
moving people at 15 frames/second.

Real-time body animation parameters (BAP) and body
definition parameters (BDP) estimation is more difficult
than the tracking-only process due to the large degrees of
freedom of the articulated motion. Feature point corre-
sponding has been used to estimate the motion parameters
of the posture. In [19], an interesting approach for detecting
and tracking human motion has been proposed, which cal-
culates a best global labeling of point features using a learned
triangular decomposition of the human body. Another real-
time human posture estimation system [20] uses trinocu-
lar images and a simple 2D operation to find the signifi-
cant points of human silhouette and reconstruct the 3D po-
sitions of human object from the corresponding significant
points.

Hidden Markov model (HMM) has also been widely
used to model the spatiotemporal property of human mo-
tion. For instance, it can be applied for recognizing model
human dynamics [21], analyzing the human running and
walking motions [22], discovering and segmenting the ac-
tivities in video sequences [23], or encoding the temporal
dynamics of the time-varying visual pattern [24]. The HMM
approaches can be used to analyze some constrained human
movements, such as human posture recognition or classifi-
cation.

This paper presents a model-based real time system ana-
lyzing the near-unconstrained human motion video in real-
time without using any markers. For a real-time system, we
have to consider the tradeoff between computation complex-
ity and system robustness. For a model-based system, there
is also a tradeoff between the accuracy of representation and

the number of parameters for the model that needs to be es-
timated. To compromise the complexity of model with the
robustness of system, we use a simple 3D human model to
analyze human motion rather than the conventional ones
[2, 3, 4, 5, 6, 7].

Our system analyzes the object motion by extracting its
silhouette and then estimating the BAPs. The BAPs estima-
tion is formulated as a search problem that finds the mo-
tion parameters of the 2D human model of which its syn-
thetic appearance is the most similar to the actual appear-
ance, or silhouette, of the human object. The HCI system re-
quires that a single human object interacts with the computer
in a constrained environment (e.g., stationary background),
which allows us to apply the background subtraction algo-
rithm [12, 13] to extract the foreground object easily. The
object extraction consists of (1) background model genera-
tion, (2) background subtraction and thresholding, and (3)
morphology filtering.

Figure 1 illustrates the system flow diagram, which con-
sists of four components including two viewers, one inte-
grator, and one animator. Each viewer estimates the partial
BDPs from the extracted foreground image and sends the
results to the BDP integrator. The BDP integrator creates
a universal 3D model by combining the information from
these two viewers. In the beginning, the system needs to gen-
erate 3D BDP for different human objects. With the com-
plete BDPs, each viewer may locate the exact position of
the human object from its own view and then forward the
data to the BAP integrator. The BAP integrator combines
the two positions and calculates the complete 2D locations,
which can be used to determine the BDP perspective scal-
ing factors for two viewers. Finally, each viewer estimates the
BAPs individually, which are combined as the final universal
BAPs.

2. HUMANMODEL GENERATION

The human model consists of 10 cylindrical primitives, rep-
resenting torso, head, arms, and legs, which are connected by
joints. There are ten connecting joints with different degrees
of freedom. The dimensions of the cylinders (i.e., the BDPs
of the human model) have to be determined for the BAP es-
timation process to find the motion parameters.

2.1. 3DHumanmodel

The 3D human model consists of six 3D cylinders with el-
liptic cross-section (representing human torso, head, right
upper leg, right lower leg, left upper leg, and left lower leg)
and four 3D cylinders with circular cross-section (represent-
ing right upper arm, right lower arm, left upper arm, and
left lower arm). Each cylinder with elliptic cross-section has
three shape parameters including long radius, short radius,
and height. A cylinder with circular cross-section has two
shape parameters including radius and height. The post of
the human body can be described in terms of the angles of
the joints. For each joint of cylinder, there are up to three
rotating angle parameters: θX , θY , and θZ .
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Figure 1: The flow diagram of our real-time system.

These 10 connecting joints are located at navel, neck,
right shoulder, left shoulder, right elbow, left elbow, right hip,
left hip, right knee, and left knee. The human joints are clas-
sified as either flexion or spherical. A flexion joint has only
one degree of freedom (DOF) while a spherical one has three
DOFs. The shoulder, hip, and navel joints are classified as
spherical type, and the elbow and knee joints are classified as
the flexion type. Totally, there are 22 DOFs for humanmodel:
six spherical joints and four flexion ones.

2.2. Homogeneous coordinate transformation
From the definition of the human model, we use a homoge-
neous coordinate system as shown in Figure 2. We define the
basic rotation and translation operators such asRx(θ),Ry(θ),
and Rz(θ) which denote the rotation around x-axis, y-axis,
and z-axis with θ degrees, respectively, and T(lx, ly , lz) which
denotes the transition along x-, y-, and z-axis with lx, ly , and
lz. Using these operators, we can derive the transformation
between two different coordinate systems as follows.
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Figure 2: The homogeneous coordinate systems for the 3D human model.

(1) MN
W = Ry(θy) · Rx(θx) depicts the transformation

between the world coordinate (XW ,YW ,ZW ) and the
navel coordinate (XN ,YN ,ZN ), where θx and θy repre-
sent the joint angles of the torso cylinder.

(2) MS
N = T(�x, �y , �z) · Rz(θz) · Rx(θx) · Ry(θy) de-

scribes the transformation between the navel coordi-
nate (XN ,YN ,ZN ) and the spherical joints (such as
neck, shoulder, and hip) coordinate (XS,YS,ZS), where
θx, θy , and θz represent the joint angles of the limbs
connected to torso and (lx, ly , lz) represents the posi-
tion of joints.

(3) MF
S = T(�x, �y , �z) ·Rx(θx) denotes the transformation

between the spherical joint coordinate (XS,YS,ZS) and
the flexion joints (such as elbow and knee) coordinate
(XF ,YF ,ZF), where θx represents the joint angle of the
limbs connected to the spherical joint, and (lx, ly , lz)
represents the position of joints.

2.3. Similaritymeasurement

The matching between the silhouette of human object and
the synthesis image of the 3D model is to calculate the shape
similarity measure. Similar to [3], we present an operator
S(I1, I2), whichmeasures the shape similarity between two bi-
nary images I1 and I2 of the same dimension in interval [0, 1].
Our operator only considers the area difference between two
shapes, that is, the ratio of positive error p (represents the
ratio of the pixels in the image but not in the model to the
total pixels of the image and model) and the negative error n
(represents the ratio of the pixels in the model but not in the
image to the total pixels of the image and model), which are

calculated as

p =
(
I1 ∩ IC2

)
(
I1 ∪ I2

) ,

n =
(
I2 ∩ IC1

)
(
I1 ∪ I2

) ,
(1)

where IC denotes the complement of I . The similarity be-
tween two shapes I1 and I2 is the matching score defined as
S(I1, I2) = e−p−n(1− p).

2.4. BDPs determination

We assume that initially the human object stands straight
up with his arms stretched as shown in Figure 3. The BDPs
of the human model are illustrated in Table 1. The side
viewer estimates the short radius of torso, whereas the front
viewer determines the remaining parameters. The boundary
of body, including xleftmost, xrightmost, yhighest, and ylowest, is eas-
ily found, as shown in Figure 4.

The front viewer estimates all BDPs except the short ra-
dius of torso. There are three processes in the front viewer
BDP determination: (a) torso-head-leg BDP determination,
(b) arm BDP determination, and (c) fine tuning. Before
the BDP estimation of the torso, head, and leg, we con-
struct the vertical projection of the foreground image, that is,
P(x) = ∫ f (x, y)dy, as shown in Figure 5. Then, we may find
avg = ∫ xrightmost

xleftmost
P(x)dx/(xrightmost − xleftmost), where P(x) �= 0

for xleftmost < x < xrightmost.. To find the width of the torso,
we scan P(x) from left to right to find x1, the smallest x value
that makes P(x1) > avg, and then scan P(x) from right to
left to find x2, the largest x value that makes P(x2) > avg
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Table 1: The BDPs to be estimated, V indicates the existing BDP parameter.

Parameter
Limb

Torso Head Upper arm Lower arm Upper leg Lower leg

Height V V V V V V

Radius — — V V — —

Long radius V V — — V V

Short radius V V — — V V

(a) (b)

Figure 3: Initial posture of person: (a) the front viewer; (b) the side viewer.

xrightmostxleftmost

ylowest

yhighest

xrightmostxleftmost

ylowest

yhighest

Figure 4: the BDPs estimation.

(see Figure 5). Therefore, we may define the center of body
as xc = (x1 + x2)/2, and the width of torso,Wtorso = x2 − x1.

To find the other BDP parameters, we remove the head
by applying morphological filtering operations, which con-
sists of the morphological closing operation using a structure
element (size 0.8Wtorso × 1), and the morphological open-
ing operation by the same element (as shown in Figure 6).
Then we may extract the location of shoulder in y-axis (yh)
by scanning the image (i.e., Figure 6b) horizontally from top
to bottom in the image without head, and define the length
of head: lenhead = yhighest − yh. Here, we assume the ratio of
length of the torso and the leg is 4 : 6, and define the length
of torso as lentorso = 0.4(yh − ylowest); the length of upper leg
as lenup-leg = 0.5×0.6(yh−ylowest), and the length of lower leg
as lenlow-leg = lenup-leg. Finally, we may estimate the center of
body in y-axis as yc = yh− lentorso; the long radius of torso as
LRtorso = Wtorso/2; the long radius of head as 0.2Wtorso; the
short radius of head as 0.16Wtorso; the long radius of leg as
0.2Wtorso; and the short radius of leg as 0.36Wtorso.

Before identifying the radius and length of arm, the
system extracts the extreme position of arms, (xleftmost, yl)
and (xrightmost, yr) (as shown in Figure 7), and then defines
the position of shoulder joints, (xright-shoulder, yright-shoulder) =
(xa, ya) = (xc − LRtorso, yc − lentorso +0.45LRtorso). From the
extreme position of arms and position of shoulder joints, we
calculate the length of upper arm (lenupper-arm) and lower arm
(lenlower-arm), and the rotating angles around z-axis of the
shoulder joints (θarmz ). These three parameters are defined

as follows: (a) lenarm =
√
(xb − xa)2 + (yb − ya)2; (b) θarmz =

arctan(|xb − xa|/|yb − ya|); (c) lenupper-arm = lenlower-arm =
lenarm /2. Finally, we fine-tune the long radius of torso, the
radius of arms, the rotating angles around the z-axis of the
shoulder joints, and the length of arms.

To find the short radius of torso, the side viewer con-
structs the vertical projection of the foreground image, that
is, P(x) = ∫ f (x, y)dy, and avg = ∫ xrightmost

xleftmost
P(x)dx/(xrightmost−

xleftmost), where P(x) �= 0 for xleftmost < x < xrightmost. Scan-
ning P(x) from left to right, we may find x1, the smallest x
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Figure 5: Foreground image silhouette and its vertical projection.

value, with P(x1) > avg, and then scanning P(x) from right to
left, we may also find x2, the largest x value, with P(x2) > avg.
Finally, the short radius of torso is defined as (x2 − x1)/2.

3. MOTION PARAMETERS ESTIMATION

There are 25 motion parameters (22 angular parameters and
3 position parameters) for describing human body motion.
Here, we assume that three rotation angles of head and two
rotation angles of torso (rotation angle around X-axis and
Z-axis) are fixed. The real-time tracking and motion estima-
tion consists of four stages: (1) facade/flank determination,
(2) Human position estimation, (3) arm joint angle estima-
tion, and (4) leg joint angle estimation. In each stage, only
the specific parameters are determined based on the match-
ing between the model and the extracted object silhouette.

3.1. Facade/flank determination

First, we find the rotation angle of torso around the y-axis
of the world coordinate (θTYW

). A y-projection of the fore-
ground object image is constructed without the lower por-
tion of the body, that is, P(x) = ∫ ymax

yhip f (x, y)dy, as shown in
Figure 8. Each viewer finds the corresponding parameters in-
dependently. Here, we define the hips’ position along y-axis
as yhip = (yc + 0.2 · heighttorso) · rt,n, where yc is the cen-
ter of body in y-axis, heighttorso is the height of torso, and
rt,n is the perspective scaling factor of viewer n (n = 1 or 2),
which will be introduced in Section 4.2. Then, each viewer
scans P(x) from left to right to find x1, the least x, where
P(x1) > heighttorso, and then scans P(x) from right to left to
find x2, the largest x, where P(x2) > heighttorso. The width of
the upper body is Wu-body,n = |x2 − x1|, where n = 1 or 2 is
the number of the viewer. Here, we define two thresholds for

each viewer to determine whether the foreground object is a
facade view or a flank view: thlow,n and thhigh,n, where n = 1
or 2 is the number of the viewer. In viewer n (n = 1 or 2), if
Wu-body,n is smaller than thlow,n, it is a flank view; ifWu-body,n

is greater than thhigh,n, it is a facade view; otherwise, it re-
mains unchanged.

3.2. Object tracking

The object tracking determines the position, (XT
W ,YT

W ,ZT
W ),

of human object. We may simplify the perspective projection
as a combination of the perspective scaling factor and the or-
thographic projection. The perspective scaling factor values
are calculated (in Section 4.2) by new position XT

W and ZT
W .

Given a scaling factor and BDPs, we generate a 2D model
image. With the extracted object silhouette, we shift the 2D
model image along X-axis in image coordinate and search
for the real XT

W (or ZT
W in viewer 2) that generates the best

matching score, as shown in Figure 9a.
The estimated XT

W and ZT
W are then used to update the

perspective scaling factor for the other viewer. Similarly, we
shift the silhouette along Y-axis in image coordinate to find
YT
W that generates the best matching score (see Figure 9b). In

each matching process, the possible position difference be-
tween the silhouette and the model are −5, −2, −1, +1, +2,
and +5. Finally, the positions XT

W and ZT
W are combined as

the 2D position values and a new perspective scaling factor
can be calculated for the tracking process in the next time
instance.

3.3. Arm joint angle estimation

The arm joint has 2 DOFs, and it can bend on certain 2D
planes. In a facade view, we assume that the rotation an-
gles of shoulder joint around X-axis of the navel coordinate
(θRUAXN

and θLUAXN
) are fixed and then we may estimate the oth-

ers including θRUAZN
, θRUAYN

, θRLAXRS
, θLUAZN

, θLUA
YN

, and θLLAXLS
, where

RUA depicts the right upper arm, LUA depicts the left upper
arm, RLA depicts the right lower arm, LLA depicts the left
lower arm, N depicts the navel coordinate system, RS depicts
the right shoulder coordinate system, and LS depicts the left
shoulder coordinate system.

In a facade view, the range of θRUAZN
is limited in [0, 180◦],

while θLUAZN
is limited in [180◦, 360◦], and the values of θRUAYN

and θLUAYN
are either 90◦ or −90◦. Different from [15], the

range of θRLAXRS
(or θLLAXLS

) relies on the value of θRUAZN
(or θLUAZN

)
to prevent the occlusion between the lower arms and the
torso. In a flank view, the range of θRUAXN

and θLUAXN
is limited in

[−180◦, 180◦]. Here, we develop an overlapped tritree search
method, see Section 3.5, to reduce the search time and ex-
pand the search range. In a facade view, there are 3 DOFs for
each arm joint, whereas in a flank view, there are 1 DOF for
each arm joint. In a facade view, the right arm joint angle
estimation is illustrated in the following steps.

(1) Determine the rotation angle of the right shoulder
around the Z-axis of the navel coordinate (θRUAZN

) by
applying our overlapped tritree search method and
choose the value where the corresponding matching
score is the highest (see Figure 10a).
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Figure 6: The head-removed image. (a) Result of closing. (b) Result of opening.

(xleftmost, yl) (xrightmost, yr)

(a)

Navel

Torso

θarmz

(xleftmost, yl)

= (xb, yb)

Length of arm
(lenarm)

(xright-shoulder, yright-shoulder)

= (xa, ya)

(b)

Figure 7: (a) The extreme position of arms. (b) The radius and length of arm.
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Figure 8: Facade/flank determination. (a) Facade. (b) Flank.

(2) Define the range of the rotation angle of the right el-
bow joint around x-axis in the right shoulder coordi-
nate system (θRLAXRS

). It relies on the value of θRUAZN
to

prevent the occlusion between the lower arm and the
torso. First, we define a threshold tha: if θRUAZN

> 110◦,
then tha = 2 · (180◦ − θRUAZN

), or else tha = 140◦.
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Figure 10: (a) Rotate upper arm along ZN -axis. (b) The definition of tha. (c) Rotate lower arm along XRS-axis.
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Figure 11: Rotate the arm along XN -axis.

So, θRLAXRS
∈ [−tha, 140◦] for θRUAYN

= 90◦, and θRLAXRS
∈

[−140◦, tha] for θRUAYN
= −90◦. From �ABC shown

in Figure 10b, we find AB = BC, ∠BAC = ∠BCA =
180◦ − θRUAZN

, and tha = ∠BAC +∠BCA = 2 · (180◦ −
θRUAZN

).
(3) Determine the rotation angle of the right elbow joint

around x-axis in the right shoulder coordinate sys-
tem (θRLAXRS

) by applying the overlapped tritree search
method and choose the value where the correspond-
ing matching score is the highest (see Figure 10c).

Similarly, in the flank view, the arm joint angle estima-
tion determines the rotation angle of shoulder around the
X-axis of the navel coordinate (θRUA

XN
) (see Figure 11).

3.4. Leg joint angle estimation

The estimation processes for the joint angle of the legs in a
facade view and a flank view are different. In a facade view,
there are two cases depending on whether knees are bent or
not. To decide which case, we check the location of navel in

y-axis to see whether it is less than that of the initial posture
or not. If yes, then the human is squatting down, else he is
standing. For the standing case, we only estimate the rota-
tion angles of hip joints around ZN -axis in navel coordinate
system (i.e., θRULZN

and θLULZN
). As shown in Figure 12a, we esti-

mate θRULZN
by applying the overlapped tritree search method.

In squatting down case, we also estimate the rotation an-
gles of hip joints around ZN -axis in navel coordinate system
(θRULZN

and θLULZN
). After that, the rotation angles of the hip

joints around XN -axis in the navel coordinate system (θRULXN

and θLULXN
) and the rotation angles of the knee joints around

xH-axis in the hip coordinate system (θRLLXRH
and θLLLXLH

) are es-
timated. Because the foot is right beneath the torso, θRLLXRH

(or
θLLLXLH

) can be defined as θRLLXRH
= −2θRULXN

(or θLLLXLH
= −2θLULXN

).
From �ABC in Figure 12c, we find AB = BC, ∠BAC =
∠BCA = θRULXN

, and θRLLXRH
= −(∠BAC + ∠BCA). The range

of θRULXN
and θLULXN

is [0, 50◦]. Take the right leg as an exam-
ple, θRULXN

and θRLLXRH
are estimated by applying a search method

only for θRULXN
with θRLLXRH

= −2θRULXN
(e.g., Figure 12b). In flank

view, we estimate the rotation angles of the hip joints around
xN -axis of the navel coordinate (θRULXN

and θLULXN
) and the ro-

tation angles of the knee joints around XH-axis of the hip
coordinates (θRLLXRH

and θLLLXLH
).

3.5. Overlapped tritree hierarchical search algorithm

The basic concept of BAPs estimation is to find the high-
est matching score between the 2D model and the silhou-
ette. However, since the search space depends on the mo-
tion activity and the frame rate of input image sequence, the
faster the articulated motion is, the larger the search space
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Figure 12: Leg joints angular values estimation in facade view. (a) Rotate upper leg along ZN -axis. (b) Determine θRULXN and θRLLXRH . (c) The
definition of θRLLXRH .

Rr

Rm

Rl

Search region

Figure 13: The search region is divided into three overlapped sub-
regions.

will be. Instead of using the sequential search in the specific
search space, we apply the hierarchical search. As shown in
Figure 13, we divide the search space into three overlapped
regions (left region (Rl), middle region (Rm), and right re-
gion (Rr)) and select one search angle for each region. From
the three search angles, we do three different matches, and
find the best match of which the corresponding region is the
winner region. Then we update the next search region by the
current winner region recursively until the width of the cur-
rent search region is smaller than the step-to-stop criterion
value. During the hierarchical search, we will update the win-
ner angle if the current matching score is the highest. After
reaching to the leaf of the tree, we assign the winner angle as
the specific BAP.

We divide the initial search region R into three over-
lapped regions as R = Rl + Rm + Rr , select the step-to-stop
criterion value Θ, and do the overlapped tritree searching as
follows.

(1) Let n indicate the current iteration index and initialize
the absolute winning score as SWIN = 0.

(2) Set θl,n as the left extreme of the current search re-
gion Rl,n, θm,n as the center of the current search re-
gion Rm,n, and θr,n as the right extreme of the current
search region Rr,n, and calculate the matching score
corresponding to the right region as S(Rl,n, θl,n), the
middle region as S(Rm,n, θm,n), and the left region as
S(Rr,n, θr,n).

(3) If Max{S(Rl,n, θl,n), S(Rm,n, θm,n), S(Rr,n, θr,n)} < SWIN,
go to step (5), else Swin = Max{S(Rl,n, θl,n), S(Rm,n,
θm,n), S(Rr,n, θr,n)}, θwin = θx,n|Swin=S(Rx,n,θx,n), x∈{r,m,l},
Rwin = Rx,n|Swin=S(Rx,n,θx,n), x∈{r,m,l}.

(4) If n = 1, then θWIN = θwin and SWIN = Swin, else if
the current winner matching score is larger than the
absolute winner matching score, Swin > SWIN, then
θWIN = θwin and SWIN = Swin.

(5) Check the width of Rwin, if |Rwin| > Θ, then continue,
else stop.

(6) Divide Rwin into another three overlapped subregions:
Rwin = Rl,n+1 + Rm,n+1 + Rr,n+1 for the next iteration
n + 1, and go to step (2).

On each stage, we may move the center of search region
according to the range of joint angular value and the previous
θwin, for example, when the range of arm joints is defined
as [0, 180] and the current search region’s width is defined
as|Rarm-j| = 64. If the θwin in the previous stage is 172, the
center of Rarm-j will be moved to 148 (180− 64/2 = 148) and
Rarm-j = [116, 180], so that the right boundary of Rarm-j is
inside the range [0, 180]. If θwin of the previous angle is 100,
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the center of Rarm-j is unchanged, Rarm-j = [68, 132], because
the search region is inside the range of angular variation of
the arm joint.

In each stage, the tritree search process compares the
three matches and finds the best one. However, in real imple-
mentation, it requires less matching because some matching
operations in current stage had been calculated in the previ-
ous stage. When the winner region in previous stage is the
right or left region, we only have to calculate the matches us-
ing the middle point of current search region, and when the
winner region in previous stage is the middle region, we have
to calculate the matches using the left extreme and the right
extreme of the current search region.

Here we assume that the winning probabilities of the left,
middle, or right region are equiprobable. The number of
matching of the first stage is 3 and the average number of
matching in other stages T2,avg = 2× (1/3) + 1× (2/3) = 4/3.
The average number of matching is

Tavg = 3 + T2,avg ·
(
log2

(
Winit

)− log2
(
Wsts

)− 1
)
, (2)

where Winit is the width of the initial search region and Wsts

is the final width for the step to stop. The average number
of matching for the arm joint is 3 + 4/3 ∗ (6 − 2 − 1) = 7
because Winit = 64 and Wsts = 4. The average number of
matching operations for estimating the leg joint is 5.67(3 +
4/3∗ (5−2−1)) becauseWinit = 32 andWsts = 4. The worst
case for the arm joint estimation is 3 + 2 ∗ (6 − 2 − 1) = 9
matching (or 3+2∗(5−2−1) = 7matching for the leg joint),
which is better than the full search method which requires 17
matching for the arm joint estimation and 9matching for the
leg joint estimation.

4. THE INTEGRATION AND ARBITRATION
OF TWOVIEWERS

The information integration consists of camera calibra-
tion, 2D position and perspective scaling determination, fa-
cade/flank arbitration, and BAP integration.

4.1. Camera calibration
The viewing directions of two cameras are orthogonal. We
define the center of action region as the origin in the world
coordinate and we assume that the position of these two
cameras are fixed at (Xc1,Yc1,Zc1) and (Xc2,Yc2,Zc2). The
viewing directions of these two cameras are parallel to z-axis
and x-axis. Here we let (Xc1,Yc1) ≈ (0, 0) and (Yc2,Zc2) ≈
(0, 0). The viewing direction of camera 1 points to the nega-
tive Z direction, while that of camera 2 points to the positive
X direction. The camera is initially calibrated by the follow-
ing steps.

(1) Fix the positions of camera 1 and camera 2 on the z-
axis and x-axis.

(2) Put two sets of line markers on the scene (MLzg
and MLzw as well as MLxg and MLxw, as shown in
Figure 14). The first two line markers are projection
of Z-axis onto the ground and the left-hand side wall.
The second two line markers are the projection of X-
axis onto the ground and the background wall.

Camera 1

Camera 2

Action region

MLzg

MLxg

Z

MLxw

MLzw
X

Y

Figure 14: The line marker for camera calibration.

(3) Adjust the viewing direction of camera 1 until the line
markerMLzg overlaps the line x = 80 and the line x =
81; the line markerMLxw overlaps the line y = 60 and
the line y = 61.

(4) Adjust the viewing direction of camera 2 until the line
mark MLxg overlaps the line x = 80 and the line x =
81; the line markerMLzw overlaps the line y = 60 and
the line y = 61.

The camera parameters include the focal lengths and the
positions of the two cameras. First we assume that there are
three rigid objects located at the positions A = (0, 0, 0),
B = (0, 0,DZ), and C = (DX , 0, 0) in the world coordinate,
where DX and DZ are known. Therefore, the pinnacles of
three rigid objects are located at positions A′, B′, and C′,
where the A′ = (0,T , 0), B′ = (0,T ,DZ), andC′ = (DX ,T , 0)
in the world coordinate. The pinnacles of the three rigid ob-
jects are projected at (x1A, t1A), (x1B, t1B), and (x1C, t1C) in
the image frame of camera 1, and (z2A, t2A), (z2B, t2B), and
(z2C , t2C) in the image frame of camera 2, respectively.

We assume λ1 is the focal length of camera 1, and
(0, 0,Zc1) is its location. By applying the triangular geom-
etry calculation on perspective projection images, we have
λ1 = Zc1(x1c − x1A)/Dz. Similarly, let λ2 the focal length
and (Xc2, 0, 0) the location of camera 2, and we have λ2 =
−Xc2(z2B − z2A)/Dz.

4.2. Perspective scaling factor determination

The location of the object is (XT
W ,YT

W ,ZT
W ) in the world co-

ordinate, of which the XT
W and ZT

W can be obtained from two
viewers. Here, we need to find the depth information and
calculate the perspective scaling factors of these two viewers.
Here, we assume that the location of the object changes from
A = (0, 0, 0) to D = (DX

′, 0,DZ
′), Xc1 ≈ 0, and Zc2 ≈ 0.

The pinnacle of the object moves from A′ = (0,T , 0) to
D′ = (DX

′,T′,DZ
′). The ratio T′/T is not a usable parameter

because it is depth dependent and there is a great possibility
that human object may be squatting down. The pinnacles of
the previous and current objects are projected as (x1A′, t1A′)
and (x1D′, t1D′) in camera 1, and as (z2A′, t2A′) and (z2D′, t2D′)
in camera 2. The heights, t1D′ and t2D′, are unknown since
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they are depth dependent, however, the locations, x1D′ and
z2D′ are approximated as x1D′ ≈ XW

T and z2D′ ≈ ZW
T . The

perspective scaling factors of human model in two viewers
(i.e., rt1′ and rt2′) are different, where rt1′ = |t1D′/t1A′| and
rt2′ = |t2D′/t2A′|. Given x1A′, t1A′, z2A′, t2A′, x1D′, and z2D′,
we may find DX

′ and DZ
′ as

D′X =
Zc1λ2 + z′2Dxc2
λ1λ2/x

′
1D + z′2D

,

D′Z =
x′1DZc1 − Xc2λ1
λ1λ2/z

′
2D + x′1D

,

(3)

and then find the perspective scaling factor rt1′ and rt2′ as

r′t1 =
∣∣∣∣
t′1D
t′1A

∣∣∣∣ =
Zc1 ·

√
λ1

2 + x′1D
2

√
λ1

2 + x′1A
2 ·
√(

Zc1 −D′Z
)2

+D′X
2
,

r′t2 =
∣∣∣∣
t′2D
t′2A

∣∣∣∣ =
−Xc2 ·

√
λ2

2 + z′2D
2

√
λ2

2 + z′2A
2 ·
√(

D′X − Xc2
)2

+D′Z
2
.

(4)

The highest pixel of the silhouette is treated as the top of the
object and each position of the silhouette object is approxi-
mated to be that of the human object. Using perspective scal-
ing factor, we may scale our human model for the following
BAP estimation process.

The side viewer estimates the short radius of torso, while
the front viewer finds the remaining parameters. During ini-
tialization, the height of human object is t1 in viewer 1 and t2
in viewer 2, so the scaling factor between the viewers is rt =
t2/t1. Therefore, the BDPs of human models for viewer 1 and
viewer 2 can be easily scaled. Because the universal BDPs are
defined in the scaling factor of viewer 1, we define the short
radius of torso in universal BDPs as SRtorso,u = SRtorso,2/rt,
where SRtorso,2 is the short radius of torso in viewer 2 and the
remaining parameters in universal BDPs are defined directly
as those in viewer 1.

4.3. Facade/flank arbitrator

The facade/flank arbitrator combines the results of fa-
cade/flank transition processes of the two viewers. Initially,
viewer 1 is the front viewer and captures the facade view
of the object, whereas viewer 2 is the side viewer and cap-
tures the flank view of the object. Then, when either viewer 1
or viewer 2 changes their own facade/flank transitions, then
they will ask the facade/flank arbitrator for coordination. If
any one of the following transitions occurs, the facade/flank
arbitrator will perform the corresponding coordination as
follows.

(1) When the object in viewer 1 changes from flank to fa-
cade (i.e., wu-body,1 > thhigh,1) and the same object in
viewer 2 stays as facade (i.e., wu-body,2 ≥ thlow,2), the
arbitrator checks as follows: if |wu-body,1 − thhigh,1| >
|wu-body,2 − thlow, 2|, then sets the object in viewer 2 to
flank, else changes the object in viewer 1 back to flank.

(2) When the object in viewer 1 changes from facade to
flank (i.e., wu-body,1 < thlow,1) and the same object in
viewer 2 stays as flank (i.e., wu-body,2 ≤ thhigh,2), the
arbitrator checks as follows: if |wu-body,1 − thlow,1| >
|wu-body,2 − thhigh,2|, then sets the object in viewer 2 to
facade, else changes the object in viewer 1 back to facade.

(3) When the object in viewer 1 remains as facade (i.e.,
wu-body,1 ≥ thlow,1) and the same object in viewer 2
changes from flank to facade (i.e., wu-body,2 > thhigh,2),
the arbitrator checks as follows: if |wu-body,1−thlow,1| ≥
|wu-body,2 − thhigh,2|, then sets the object in viewer 2 back
to flank, else changes the object in viewer 1 to flank.

(4) When the object in viewer 1 stays as flank (i.e.,
wu-body,1 ≤ thhigh,1) and the same object in viewer 2
changes from facade to flank (i.e., wu-body,2 < thlow,2),
the arbitrator checks as follows: if |wu-body,1−thhigh,1| ≥
|wu-body,2 − thlow,2|, then sets the object in viewer 2 back
to facade, else changes the object in viewer 1 to facade.

4.4. Body animation parameter integration

Two different sets of BAPs have been estimated by the two
viewers. There are threemajor estimation processes for BAPs:
human position estimation, arm joint angle estimation, and
leg joint angle estimation. The BAP integration combines the
BAPs from two different views into universal BAPs. First, in
human position estimation, viewer 1 estimates XT

W and YT
W ,

while viewer 2 estimates ZT
W and YT

W . However, YT
W estimated

by two viewers may be different. With more shape informa-
tion of the object, YT

W estimated by the facade viewer is more
robust. Second, the BAPs of the joints of arms are analyzed
in two views. The flank viewer only estimates the rotation
angles of shoulder joints around XN -axis of the navel coor-
dinate (i.e., θRUAXN

and θLUAXN
); whereas the facade viewer esti-

mates the other BAPs of arms including the rotation angles
of shoulder joints around YN -axis and ZN -axis of the navel
coordinate (i.e., θRUAYN

, θRUAZN
, θLUAYN

, and θLUAZN
) and the rotation

angles of elbow joints around XN -axis of shoulder coordi-
nates (i.e., θRLAXN

and θLLAXN
). BAPs estimation processes of the

two viewers are integrated as the universal BAPs.
Different from the integration of the arm BAPs, the es-

timated joint angles of leg of different viewers are related.
Both viewers jointly estimate θRULXN

, θRLLXRH
, θLULXN

, and θLLLXRH
. For

example, in Figure 15, the facade viewer analyzes these an-
gles by assuming that the human is squatting down (see Fig-
ures 15a and 15b); whereas the flank viewer estimates these
angles by assuming that the human is lifting his legs (see
Figures 15c and 15d). Therefore, we determine whether the
human is squatting down or lifting his leg from θRULZN

and
θRLLXRH

.
If θRULZN

(from the facade viewer) is greater than 175◦ but
less than 180◦, the human is lifting his right leg, else he is not.
Then, we may integrate θRULZN

(from the facade viewer), θRULXN

(from the flank viewer), and θRLLXRH
(from the flank viewer)

into the universal BAPs. Similarly, we can find the similar
case of the left leg movement. The universal BAPs can be ex-
tracted by integrating BAPs of two viewers as the universal
BAPs.
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2D model projection
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Figure 15: The facade viewer and the flank viewer estimate θRULXN , θRLLXRH , θ
LUL
XN , and θLLLXRH . (a) Squatting down (the facade view).

(b) Virtual actor is squatting down. (c) Leg lifting (the facade view). (d) Virtual actor is lifting his leg.

5. EXPERIMENTAL RESULTS

The color image frame is 160×120×24 bits and the frame rate
is 15 frames per second. Each test video sequence lasts more
than 2 seconds, so that it may consist of about 40 frames.
We use two computers equipped with video capturing equip-
ment. Our system analyzes and estimates the BAPs of human
motion in real time, based on the matching between the ar-
ticulated human model and the 2D binary human object. In
the experiments, we illustrate 15 human postures composed
of the following five basic movements: (1) walking; (2) arm
raising; (3) arm swing; (4) squatting; (5) kicking. To evalu-
ate the performance of our tracking process, we test the sys-

tem by using 15 different human motion postures. Each one
is performed by 12 different individuals. People with casual
wear and no markers are instructed to perform 15 different
actions as shown in Figure 16.

We cannot measure the real BAPs from the human ac-
tor for comparing the real BAPs with the estimated BAPs. To
evaluate the system performance, we use the HMMmodel to
verify whether the estimate BAPs are correct or not. HMM
is a probabilistic state machine widely used in human ges-
ture and action recognition [21, 22, 23]. The HMM-based
human posture recognition consists of two phases: training
phase and recognition phase.
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Figure 16: The 15 human postures in our experiment.
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Table 2: The number of correct recognitions for each posture.

Posture 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Correct Recognition 22 21 23 21 24 20 23 24 22 22 23 24 21 22 20

Model 1

P(O|Model 1)

Model 2

P(O|Model 2)

...

Model N

P(O|Model N)

Test
image

BAP
estimation

Maximum
selection

Figure 17: The evaluation system.

5.1. Training phase

A set of the joint angles (i.e., BAPs) have been extracted from
each video frame which are combined as a so-called feature
vector. A feature vector will be assigned to an observation
or to a symbol. To train the HMMs, we need to determine
some parameters: the observation number, the state number,
and the dimension of the feature vector. There is a tradeoff
between selecting a large observation number and a faster
HMM computation. A larger one means more accurate ob-
servations andmore computation. From the experiments, we
choose 64 symbols. The issue of the number of states also
needs to be determined. The states are not necessarily corre-
sponding to the physical observations of the corresponding
process. The number of states and the number of the differ-
ent postures in human motion sequences are related. Here,
we develop the 5-state HMM, which is most suitable for our
experiments.

The tracking process has estimated the joint angles of the
human actor, and there are 17 joint angles for the human
model. Actually, not all of the joint angles are required for
describing different postures. Hence, we only choose some
influential joint angles representing the postures, such as the
joint angles θx and θz of the shoulders, θx of the elbows, and
θx and θz of the hips. Totally, 10 joint angles are selected as
one feature vector. Here, we need to train 15 HMMs corre-
sponding to 15 different postures. The training process will
generate the model parameter λi for the ith HMM.

5.2. Recognition phase

In our experiments, there are 360 testing sequences for per-
formance evaluation. There are 15 different human postures,
and each one is performed twice by 12 different individuals.

As shown in Figure 17, every testing sequence,O, is evaluated
by 15 HMMs. The likelihood of the observation sequences
can be computed for each HMM as Pi = log(P(O|λi)), where
λi is the model parameter of the ith HMM. The HMM with
maximum likelihood is selected to represent the recognized
posture which is currently performed by the human actor in
the test video sequence.

The experimental results are shown in Table 2. Each pos-
ture is tested 24 times by 12 different individuals. The recog-
nition errors are caused mainly by the incorrect BAPs. The
BAP estimation algorithm may fail if the extracted fore-
ground object is noisy or ambiguous, which is caused by the
occlusion between the limbs and the torso. The limitation of
our algorithm can be summarized as follows.

(1) Since the BAP estimation is based on the preceding
BAP in the previous time instance, the error propaga-
tion cannot be avoided. Once the error of the previous
BAP is above certain level, the search range for the fol-
lowing BAP no longer covers the correct BAP, and the
system may crash.

(2) The occlusion of human body is the major challenge
for our algorithm. By using two views, some occlusion
in one view should be clear in the other view. However,
if the arm is swing beside the torso, it makes occlu-
sion in both the facade and flank views. The occlusion
among the limbs and the torso will make BAP estima-
tion fail, since the matching process cannot differenti-
ate the limb from the torso in the silhouette image.

(3) Arm swing is another difficult issue. The side viewer
cannot differentiate whether one arm or two arms is
being raised. The silhouette of the arm swing viewed
from the front view is not very reliable for accurate an-
gle estimation.

(4) It cannot tell if a facade is a front view or just a back
view. We may add the face-finding algorithm to iden-
tify whether the human actor is facing toward the cam-
era or not.

6. CONCLUSION AND FUTUREWORKS

We have demonstrated real-time human motion analysis
method for HCI system by using a new overlapped hierar-
chical tritree search algorithm with less searching time and
wider search range. The wider search range enables us to
track some fast human motions under lower frame rate. In
the experiments, we have shown some successful examples.
In the near future, we may extend to multiple person track-
ing and analysis, which may be used in HCI systems such
as human identification, surveillance, and gesture recogni-
tion.
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