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To address multiple motions and deformable objects’ motions encountered in existing region-based approaches, an automatic
video object (VO) segmentation methodology is proposed in this paper by exploiting the duality of image segmentation and
motion estimation such that spatial and temporal information could assist each other to jointly yield much improved segmentation
results. The key novelties of our method are (1) scale-adaptive tensor computation, (2) spatial-constrained motion mask generation
without invoking dense motion-field computation, (3) rigidity analysis, (4) motion mask generation and selection, and (5) motion-
constrained spatial region merging. Experimental results demonstrate that these novelties jointly contribute much more accurate

VO segmentation both in spatial and temporal domains.
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1. INTRODUCTION

Due to large amount of data and highly dynamic contents,
digital video processing creates many technical challenges for
conducting even some basic tasks that we, human beings,
have been simply taking for granted in our daily lives. Among
these operations, video object (VO) segmentation is an emerg-
ing signal processing tool, and is gradually becoming indis-
pensable to many digital video applications often encoun-
tered in multimedia, virtual reality, computer vision, and
machine intelligence. Given a digital video, how to bestow
a machine with the capability of automatically (i.e., unsuper-
visedly) segmenting dominant VOs with reasonable accuracy
on objects’ boundaries is by no means a small goal.

Various VO segmentation methods [1, 2, 3, 4, 5, 6, 7, 8]
are proposed to combine image (or spatial) and motion (or
temporal) segmentations together to enhance the accuracy of
VO extraction. Typical VO segmentation methodologies can
be grouped into three categories: (1) region-based [1, 2]; (2)
boundary-based [3, 4, 5]; and (3) probabilistic model-based
approaches [6, 7, 8].

Region-based methods were developed by performing the
clustering operation [1] or regional splitting and growing
[2] on the feature space, which is usually formed by mo-
tion vectors and some spatial features, like color, texture, and

position. However, accurate region boundary is difficult to
achieve. Since human visual system (HVS) is very sensitive
to the edge and contour information, boundary-based tech-
niques were implemented with this consideration in mind by
using edge detectors (3], level set and fast marching [4], or ac-
tive contours [5], further combined with motion-field infor-
mation for VO segmentation. Such approaches are very sen-
sitive to noise, and the evolution of the active contour highly
depends on the given initial position or convergence param-
eters imposed by the user. Probabilistic model-based methods
exploit Bayesian inference [6], minimum description length
(MDL) [7], or expectation maximization (EM) [8] to extract
moving objects. Although these approaches are theoretically
formulated, they suffer from high computational complexity.
Some of them also need the number of objects/regions pre-
assumed as an input parameter, which might prohibit their
usage in practical applications.

Automatic VO segmentation is intimately affected by
the image content and some frequently encountered issues:
(1) multiple motions, which is encountered when multi-
ple VOs under different moving velocities (i.e., various dis-
placements and directions), and even with various object
sizes, are involved in the video sequence. How to appro-
priately select the local scale size is imperative to achieve
more accurate motion mask generation for moving VOs; and
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(2) deformable/nonrigid motion, which is encountered when
the VO moves with various changes in sizes and shapes dur-
ing a scene of the video sequence. How to perform rigidity
analysis is important to yield accurate motion models for
capturing objects’ individual characteristics.

To address the above-mentioned two problems en-
countered in VO segmentation, a novel VO segmentation
methodology is proposed in this paper that integrates spa-
tial and temporal information in a similar way to what are
performed in the HVS cortex’s pathways. The novelty of
our method is that we only use the eigenvalues of the lo-
cal three-dimensional (3D) structure tensor without com-
puting dense motion vectors; thus, our method yields much
lower computational load and is less sensitive to noise and
global/background motion [9]. Furthermore, in the calcu-
lation of the 3D structure tensor, the scale-adaptive spatio-
temporal Gaussian filter is introduced to handle multiple
VOs under different motions in which the scale (i.e., the win-
dow size) is driven by the condition number. To differen-
tiate whether the sequence contains rigid or nonrigid mo-
tion, rigidity analysis is performed using correlation coeffi-
cients over a range of successive video frames. The largest
eigenvalue and coherency measurements of the 3D structure
tensor are computed to form motion masks (i.e., eigenmap
and corner map, respectively), which are further selected by
the change detection and refined by graph-based spatial seg-
mentation for rigid and nonrigid motions, respectively. And,
for the final spatial VO segmentation, region merging is per-
formed on adjacent over-segmented spatial segments based
on the thresholding of the distance computed between the
3D structure tensor and an affine motion model [10]. Such
a parametric method results in much more relevant VO seg-
mentation and accurate VO boundaries as compared to en-
ergy minimization approach [11].

The paper is outlined as follows. Section 2 highlights the
main ideas of our methodology. Section 3 introduces the ba-
sics of the 3D structure tensor and provides an overview of
existing methods relevant to our work. Section 4 describes
our proposed VO segmentation methodology. Experimental
results of our scheme and comparison with other approaches
are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2. FOUNDATION

2.1. The duality ofimage segmentation
and motion estimation

In the previous works, several image segmentation [12] and
motion segmentation [10, 13] techniques have been pro-
posed for extracting the moving VOs. Image segmentation
is to partition an image into nonoverlapping regions so that
each one is “homogeneous” in some sense, such as intensity,
color or, texture. The most commonly-used segmentation
techniques can be classified into two broad categories [12]:
(1) region-based segmentation that looks for regions satisfy-
ing a given homogeneity criterion; and (2) boundary-based
segmentation that looks for boundaries between adjacent re-

gions whose characteristics are different. Generally speak-
ing, image segmentation techniques can produce good re-
sults among homogeneous regions with distinct boundaries
(e.g., cartoon images), in which the produced segments are
assumed to be piecewise constant/smooth. However, region-
based techniques often fail to yield the desired region bound-
aries due to the difficulty of choosing a reasonable starting
“seed” for region growing and appropriate growing/stopping
rules. Moreover, boundary-based techniques are sensitive to
noise and tend to be trapped into local minimum points like
small edges.

Two main methods of motion estimation used for motion
segmentation are optical flow (OF) and block matching. In
both approaches, motion information is extracted through
detecting the change of pixel intensities between successive
frames in the video sequence. However, OF estimation is of-
ten chosen for achieving boundary-accurate VO segmenta-
tion because it allows motion detection at pixel level and
ensures finer objects’ boundaries than what block matching
approach can accomplish. Furthermore, from the compu-
tational or numerical point of view, OF estimation is well-
defined in the areas of complex textures/patterns with large
gradients. But in piecewise constant regions, it suffers from
the ill-posed least-squares constraint that is yielded by very
small or zero local gradient; consequently, no motion vector
can be estimated.

In summary, motion estimation is well-posed at the loca-
tions where image segmentation is ill-posed, such as texture-
like areas, while image segmentation succeeds more easily in
those areas where OF methods fail, such as homogeneous ar-
eas without (sufficient) gradients. That is, image segmenta-
tion techniques can more easily identify region boundaries
where motion segmentation techniques have a difficulty. On
the other hand, motion information is a helpful indicator
to merge over-segmented spatial segments into semantic ob-
jects. Because of this duality, it is intuitive to construct an
algorithm which uses image segmentation to assist the deter-
mination of motion field, and vice versa.

2.2. Two pathways involved in human
visual perception

VO extraction should be in accordance with the human per-
ception, which involves two cortical pathways: form percep-
tion pathway (processing spatial information) and motion
perception pathway (processing temporal information) [14].
They interact with each other in all stages along the visual
cortex in the HVS to associate different aspects of visual in-
formation and establish the perception of objects.

In order to fill the gap between perceiving processing in
human eyes and the information processing in a digital com-
puter, intensive research works for VO segmentation have
been carried out (e.g., [15, 16]) by exploiting extracted spa-
tial or temporal features. Since a moving VO usually has dif-
ferent motion features from the background and from other
VOs, most proposed automatic VO segmentation approaches
use motion information in temporal domain as an impor-
tant cue to generate VOs’ motion masks, and the spatial
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FIGURE 1: Our proposed dual spatio-temporal scheme for automatic video object (VO) segmentation corresponding to the two pathways of

the HVS.

information, like color, texture, and edge, is mainly used as
an assistant cue to refine the generated motion mask, thus,
only yielding the segmentation results for moving VOs with
distinct motions.

However, little effort has been made for exploiting mo-
tion information to assist VO segmentation in the spatial
domain, for it is quite helpful to extract and track tempo-
rally stand-still VOs, for example. Therefore, a new method-
ology is proposed in this paper by jointly exploiting the du-
ality and synergism of spatial segmentation and motion es-
timation as illustrated in Figure 1, in which the processes in
the four white rectangular boxes mimic the interactions in-
curred between the two pathways in the HVS. On the one
hand, spatial VO segmentation is performed through merg-
ing the generated spatial masks driven by parametric motion
models. On the other hand, temporal VO segmentation is
achieved via refining the yielded motion masks by incorpo-
rating spatial information, thus, leading to the effective in-
teraction between spatial segmentation and motion estima-
tion. The detailed description of the processes implemented
in each module of our framework as shown in Figure 1 will
be presented in Section 4.

3. 3D STRUCTURE TENSOR-BASED VIDEO
OBJECT SEGMENTATION

3.1. 3D structure tensor

Image sequence L(x) can be treated as a volume data, where
x = [x y t]T; x and y are the spatial components, and ¢
is the temporal component. Spatio-temporal representation
I(x) is generated by convolving the image sequence L(x) with
a spatio-temporal filter H(x). That is,

I(x) = L(x) * H(x), (1)

as “x” denotes convolution, and H (x) is defined as

2
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where X = [0x 0y 0y] is called the spatio-temporal scale.

The 3D structure tensor is an effective representation of
the local orientation for VO’s spatio-temporal motion [17].
It can be generated on I(x) according to
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where V := (0x,0,,0;) denotes the spatio-temporal gradi-
ents. The eigenvalue analysis of the 3D structure tensor cor-
responds to a total least-squares (TLS) fitting of the local
constant displacement of image intensities [17]. After per-
forming eigenvalue decomposition of the 3 X 3 symmetric
positive matrix J, the eigenvectors ex (for k = 1,2,3) of J can
be used to estimate the local orientations. The corresponding
eigenvalues A of ex, which denote the local grayvalue varia-
tions along these directions, respectively, are sorted into the
descending order A; = A, = A3 = 0 [17] for further analy-
sis on their solution stability. The details will be presented in
Section 4.2.4.

3.2. Previous works

In conventional OF estimation [18], only a small number of
consecutive video frames are used for computing the motion
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F1GURE 2: Detailed description in each module of our proposed 3D structure tensor-based methodology for automatic VO segmentation in
spatial and temporal domains, via exploiting the duality of image segmentation and motion estimation.

vectors, which might create “holes” within the motion masks
and small isolated motion masks in the background. There-
fore, a stack of consecutive frames treated as a 3D space-
time image cube are used to estimate the motion vectors
by analyzing the orientations of local gray-value structures,
and this is described as the 3D structure tensor-based OF
in [17]. Tensor-based OF field can be integrated with spa-
tial information for improving VO segmentation as proposed
in [5, 9, 10]. Such methods can be further classified into
contour-based and region-based approaches as follows.

Contour-based VO segmentation lies on interactively re-
fining the contour models based on motion masks generated
from motion field. As proposed in [5], the tensor-based mo-
tion field is used as the external force to converge the geodesic
active contour model and aligns the boundaries of the mov-
ing VOs. Instead of computing dense OF field for motion de-
tection as described above, the novelty of the technique in
[9] is that only the smallest eigenvalues of the 3D structure
tensors are chosen and formed as the motion masks. Based
on such motion information, the curve evolution driven by
narrowband level-set technique [19] was implemented to
perform VO segmentation. These contour-based techniques
use the enclosed contours to match VOs which can reach
more smooth and accurate objects’ boundaries than those
obtained from the region-based approaches. But the evolu-
tion of the contour model is sensitive to the given initial con-
tour, and it can be easily trapped into the local minimum
positions like small edges or discontinuities of motion vec-
tors.

Inspired by the region-based moving-layer segmentation
scheme as proposed in [1], the 3D structure tensor was ex-

ploited as motion information in [10] to replace the conven-
tional gradient-based OF in [1]. The segmentation is per-
formed based on the region growing concept [12] as fol-
lows. First, the candidate regions are selected from the ini-
tially divided, but possibly overlapping, regions (e.g., with a
fixed size of 21 X 21 pixels). Based on the distance computed
between an affine motion model and each local 3D struc-
ture tensor, the candidate region with the smallest distance is
identified, followed by the region-growing process, in which
the costs of adjacent pixels of this region are computed and
the pixel with the smallest distance will be added to this re-
gion. Such a region-growing process is implemented itera-
tively until the lower limit (200 pixels) or the upper limit (400
pixels) of the generated real region size is reached. However,
this iterative region-based VO segmentation scheme is very
time consuming, for example, consumes around 45 minutes
per frame as mentioned in [10]. Furthermore, it is unable to
detect multiple motions due to lacking of scale adaptation on
tensor computation.

4. PROPOSED METHODOLOGY FOR
SPATIO-TEMPORAL VO SEGMENTATION

To address the problems encountered in the existing 3D
structure tensor-based VO segmentation approaches and to
handle multiple VOs under various motions as described in
Section 3.2, a unified region-based framework for perform-
ing spatio-temporal VO segmentation is proposed and illus-
trated in Figure 2, in which the processes in four dashed-line
boxes are the detailed implementations of the corresponding
main modules as shown in Figure 1, respectively.
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(a) Rubik cube.

(b) Taxi.

(c) Silent.

FIGURE 3: Spatial segmentation results (the 9th frame) by implementing graph-based image segmentation approach [20].

In our methodology, for spatial segmentation, an effi-
cient graph-based image segmentation approach [20] is im-
plemented in the target frame to generate homogeneous spa-
tial subregions with small intensity variations. These regions
are exploited as the spatial constraint to refine the bound-
aries of motion masks. For motion segmentation, without
computing the dense OF field, motion masks are obtained by
executing the following three proposed steps: scale-adaptive
tensor computation, rigidity analysis, and motion mask gen-
eration and selection, as shown in three subboxes belong-
ing to motion segmentation dashed-line box, respectively.
Finally, the spatial-constrained motion masks is generated
and the motion-constrained spatial region merging is per-
formed to achieve VO segmentation in spatial and temporal
domains.

4.1. Spatial segmentation

Graph-based segmentation is based on the graphical repre-
sentation of the image. The pixels are arranged as a lattice
of vertices connected using either a first- or second-order
neighborhood system. As proposed in [20], graph-based ap-
proach connects vertices with edges which are weighted by
the intensity or RGB-space distance between the vertices’
pixel values. After sorting the edges in a certain order, pix-
els are merged together iteratively based on some criteria as
follows.

Let G = (V,E) be an undirected graph with vertices
v € V,and eq,,0, € E corresponds to the edge connected
between each pair of neighboring segments Q,, and Q. Ini-
tially, each pixel I(i, j) in the image is labeled as an unique
segment Q) by itself. It is associated to its nearest eight neigh-
boring pixels: I(i—1,j—1),I(i—1, ), I(i—1,j+1),I(i,j—1),
IG,j+ 1), IG+1,j — 1), I(i + 1,7), and I(i + 1,j + 1)
to form an eight-neighbor graph with the vertex of I(i, j).
Each edge between I(i, j) and one of its neighbors is given
a nonnegative weight computed from the intensity differ-
ence w(eq, 0,) = [1(Qm) — I(Q,)] for example. After all the
edges are sorted in nondecreasing order according to their
weights, the initial graph G = (V, E) is constructed based on
the weighted edges. Further region merging is started from
the edge with the minimum weight. If both of the follow-
ing criteria [11] are matched, two segments (), and Q, need
to be merged together, and the edges within them should be
deleted from the initial graph G = (V,E) to form the up-

dated graph G’ = (V', E'):

P
" Size ()’
, @

LT
Size (Qy,)

w(eq,,0,) < MaxWeight (Q,,)

w(eq,,0,) = MaxWeight (Q,)

where MaxWeight(Q,,) and MaxWeight((Q),,) are the largest
weights of the edges included in the segment Q,, and Q,,
respectively. Such a graph-based region merging process will
be iterated until the edge with the maximum weight in the
graph is reached. The factor p is used to adjust the segmented
image between over-segmentation and under-segmentation.
In order to avoid under-segmentation where two separately
moving objects are joined into one spatial segment, the value
of p is set to be 300 in our work.

This graph-based image segmentation algorithm is cho-
sen because it performs the segmentation in O(nlogn) time
for n graph edges which takes about one second per frame
using Pentium III 800 MHz personal computer. Further-
more, using the same image segmentation approach, our fi-
nal motion-constrained spatial VO segmentation results can
be fairly compared with the results provided in [11]. As sug-
gested in [20], Gaussian filtering is used to remove noise as
a preprocessing stage, and the scale-size of the spatial Gaus-
sian filter is set to be 1.0 in our experiments. In the post-
processing stage, some small isolated regions are merged into
their neighboring segments. The spatial segmentation results
of the three test sequences are illustrated in Figure 3.

4.2. Motion segmentation

4.2.1. Exploiting the eigenvalues of conventional

3D structure tensor

Intuitively, VI(x) - VI (x)T in (3) can be viewed as a correla-
tion matrix constituted by the gradient vectors of the space-
time image volume. From the perspective of principal com-
ponent analysis (PCA) [21], if the eigenvectors of the cor-
relation matrix computed from the input data are sorted
in the descending order, the first eigenvector which corre-
sponds to the largest eigenvalue indicates the direction that
incurs the largest variance of the data. Furthermore, the ra-
tio of each eigenvalue to the total sum of three eigenvalues
reveals how much of the data energy is concentrated along
the corresponding eigenvector (direction) [21]. Therefore,
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(a3) Silent.

(b3) A1 (D).

(c3) Ao (I). (d3) As(I).

FIGURE 4: Figures 4al, 4a2, and 4a3 are the 9th frames of the three test sequences; (b), (c), and (d) are the eigenmaps based on the three
eigenvalues Ay, A,, and A, respectively, using conventional fixed-scale 3D structure tensor. Note that A, > 1, > A5 > 0.

the eigenvalues of local 3D structure tensor can be used to
detect the local variances of the input frames.

The smallest eigenvalue has been proposed in [9] as the
indicator of the frame difference, which was proved to be
more robust to noise and low object-background contrast
as compared to the simple frame difference. To further in-
vestigate, the three eigenmaps based on the three eigenval-
ues A (x, y, 1), La(x, y, 1), and A3 (x, y, t) of the local 3D struc-
ture tensor are denoted as A,(I), A,(I), and As(I), respec-
tively, and illustrated in Figure 4. It has been observed that,
in fact, eigenmap A,(I) captures both the moving objects
and some of isolated texture-like areas in the background.
The information revealed in eigenmap A,(I) as shown in
Figures 4cl, 4c2, and 4c3 is not so informative as that of
M(I), thus, more difficult to exploit for VO segmentation.
Furthermore, eigenmap A,(I), in general, shows more accu-
rate boundaries around the moving VOs and less number of
small holes within the VOs’ masks (see Figures 4b1, 4b2, and
4b3) than those generated by A5(I) (see Figures 4d1, 4d2, and
4d3); thus, A;(I) is selected to generate the motion mask in
our scheme.

Notice that both multiple motions (e.g., “Taxi” sequence)
and deformable motions (e.g., “Silent” sequence) cannot be

handled accurately by applying the conventional fixed-scale
3D structure tensor. (See Figures 4b2 and 4b3 for demon-
stration with explanation provided below.) This is due to the
fact that there is no scale adaptation for conventional 3D
structure tensor computation. That is, the fixed-scale ¥ =
[ox 0, o] wasused in (2) for the spatio-temporal Gaussian
filter H(x,X).

Consequently, exploiting large scale size for slow mo-
tion will reduce the effectiveness of localization, causing in-
accurate motion boundaries as highlighted by the circle in
Figure 4b1. On the other hand, large displacement of a VO
cannot be properly matched if a small scale window was ex-
ploited, thus, leading to unconnected motion masks as high-
lighted by the two small circles in Figure 4b2. Such phenom-
ena are also incurred for the deformable moving object as
shown in Figure 4b3 which contains multiple motions within
one body like rotating and translating. Therefore, it is highly
desirable to have adaptive scale for the spatio-temporal filter-
ing rather than using fixed scale.

4.2.2. Scale-adaptive 3D structure tensor computation

Due to possible involvement of different velocities in a
local region, the small scale size would not be able to
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TasBLE 1: Experimental scales and spatial windows for the spatio-temporal Gaussian filter, where the three component values in X correspond

to the scales on directions x, y, and ¢, respectively.

[0.50.50.5]
3xXx3x3

Scale £ = [0, 0, 0]

Spatio-temporal window

[111]
5X5x%5

[1.51.51.5]
7X7X7

[222]
9I9X9x9

[2.52.52.5]
11x11x 11

(a) CN = co. (b) CN = 6.8229 x 10°.

(c) CN = 68.0100.

(d) CN = 5.8320.

FIGURE 5: Some typical spatial subregions and their corresponding condition number (CN) computed from the matrix which is constituted
by the pixels’ grayvalues: (a) homogeneous region, (b) region with corners, (c) region with edges, and (d) region with corners and edges.

match/capture the motion of a VO with large displacements,
thus, leading to unconnected object boundaries. On the
other hand, exploiting large scale size for slow motions will
reduce the effectiveness of localization and cause blurred mo-
tion discontinuities, thus, causing less accurate estimation
due to the local minima. Therefore, representing images at
multiple scales is a good approximation of the HVS on per-
ceiving images. Several multiscale methods were proposed
using nonlinear filtering [22, 23], Gaussian pyramid [5, 24],
multiwindow [25] or scale-space [26, 27, 28]. For these mul-
tiscale approaches, automatic scale selection is an essential
problem to be addressed. Since our method for motion de-
tection is based on the 3D structure tensor without dense
OF field estimation, we propose an effective automatic scale-
selection method with incorporation of the measurement of
local image structure.

In the previous works, the spatio-temporal filter with
variable scales is introduced in [29] by iterative symmet-
ric Schur decomposition. But its scale adaptation through
thresholding is determined experimentally. In the 3D struc-
ture tensor-based method, the TLS approach [30] is ex-
ploited for OF estimation. Since the numerical stability of
the TLS solution can be indicated by singular value decom-
position (SVD) [30] of the local grayvalue variations, we ex-
ploit the condition number to guide the scale selection of the
spatio-temporal Gaussian filter H(x, X), which is defined as
follows. The condition number of a local area I can be com-
puted by

Umax
Cond (In) = ||Iolll1I5"[| = 7=, )

where ) denotes any area in the input frame whose size
is determined by the spatial scales o, and o, of the spatio-
temporal filter, which can be referred to in Table 1. 0yay is the
maximum singular value and o, is the minimum singular
value, which are obtained by performing SVD on the matrix

constituted by the grayvalues of each of the Figures 5a, 5b,
5¢, and 5d as illustrated. Note that the condition number of
a singular matrix is infinite, and a smaller condition number
implies a more stable solution.

It can be further observed from Figure 5 that the more
homogeneous the area, the larger value the condition num-
ber. The reason for this phenomenon is that coherent gray-
values will cause high correlation in matrix I; thus, the com-
puted condition number is near to the infinity as shown in
Figure 5a. With the presence of corners and edges, the ma-
trix correlation is decreased significantly, and the condition
number becomes much smaller (see Figures 4b, 4c, and 4d).
Therefore, it is reasonable to use the condition number of the
local intensities to steer the scale X of the spatio-temporal
Gaussian filter. In our experiments, the initial scale X is set
to be [0.5 0.5 0.5] (thus, using 3 X 3 x 3 window as indi-
cated in Table 1), and it will be extended progressively ac-
cording to Table 1 until either the condition number is below
a threshold (e.g., 100) or the scale size reaches the maximum
11 x 11 x 11.

The eigenmaps of the largest eigenvalues computed from
the scale-adaptive 3D structure tensor are illustrated in
Figure 6. More accurate boundaries and more integrity mo-
tion masks can be observed as compared to those in Figure 4
for various test sequences. However, note that the result for
the nonrigid moving VO (see Figure 6¢) fails to yield mean-
ingful motion masks. On the contrary, satisfactory motion
masks are generated for rigid VOs (see Figures 6a and 6b).
Thus, a rigidity analysis is developed in the following to dis-
tinguish whether the sequence frame contains rigid or non-
rigid VOs, and further facilitating the following motion mask
generation processes.

4.2.3. Rigidity analysis

A dynamic region matching is proposed in [31] for conduct-
ing rigidity analysis using the residual values computed from
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(a) Rubik cube.

(b) Taxi.

FIGURE 6: The eigenmaps A, (I) (the 9th frame) based on the largest eigenvalues of the scale-adaptive 3D structure tensors.

the difference between the motion vectors and the initial-
ized velocity. However, its results are affected by the inaccu-
racy of VO tracking and motion estimation. Without invok-
ing OF computation, we propose an efficient rigidity analysis
method by exploiting the correlation between two successive
frames based on their 3D structure tensors. The basic concept
is quite intuitive as follows. If the moving VO has rigid mo-
tion under a certain speed, then only the interframe changes
will be observed. On the other hand, for the nonrigid moving
VO, besides the interframe changes, the intraframe changes
can also be observed in the body of VOs. Therefore, the cor-
relation between two successive frames is expected to be high
for rigid VOs and low for nonrigid VOs.

As illustrated in Figures 4d1, 4d2, and 4d3, the eigenmap
As(I) inclines to indicate only the moving parts of VOs and
reveals much less textured details of the still background than
that in A, (I) (see Figures 4bl, 4b2, and 4b3). Therefore, the
correlation coefficient R [32] is computed based on two suc-
cessive eigenmaps A3(I;) and A3(I;41) of frames I; and Iy,
respectively, as follows:

S ) — () (ixi . iﬁ)

i=1 i=1 i=1

(%xf - (I/N) (ix,)z) (iy,? - (I/N) (iyi)z) |

i-1 i-1 i-1 i
(6)

R=

i=1

where x; € A3(I;) and y; € A3(I;41). N is the total number of
pixels in the frame.

It can be seen that the fluctuation of the curve (see
Figure 7) for rigid VOs (e.g., “Taxi” and “Rubik cube”)
is much smoother than that for the nonrigid VO (e.g.,
“Silent”). Such a fluctuation can be measured by the stan-
dard deviation S [32] of the correlation coefficients R;, for
i=1,2,...,n,as

5= SRR 7)
n— 1 P 1 b

where n is the total nu_rnber of R; over a set of frames un-
der consideration and R is the average of R;. The values of S

computed from “Rubik cube,” “Taxi,” and “Silent,” are 0.013,
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FiGure 7: Correlation coefficients computed over a range of succes-
sive video frames.

0.0126, and 0.0436, respectively. Based on extensive exper-
iments, the threshold for S is determined to be 0.015. Se-
quence with the value of S lower than 0.015 is considered
having rigid VOs; otherwise, it contains nonrigid VOs.

4.2.4. Motion mask generation and selection
Basics of the eigenvalue analysis of 3D structure tensor

Since tensor-based OF estimation is based on the TLS ap-
proach, its solution can be resolved by using the widely used
Jacobi method [30] to perform eigenvalue decomposition of
the 3D structure tensor J. The generated three eigenvalues A
(for k = 1,2,3), which denote the local grayvalue variations
along local dominant directions [17], respectively, can be ex-
ploited to derive the coherency measurements for motion field
classification.

(i) If all the three eigenvalues are equal to zero, that is,
rank(J) = 0, it means that all its partial derivatives
along the principal axes (x, y, and t) vanish. Physi-
cally, this indicates that the local area has a constant
grayvalue; thus, no motion can be detected.
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(c)

FIGURE 8: Maps based on the coherency measurements of the scale-adaptive 3D structure tensors: (a) total coherency measure C;, (b) edge

measure C,, and (c) corner measure C..

(i) If Ay > 0and A, = A5 = 0, that is, rank(J) = 1, this in-
dicates that the grayvalue changes only happen in the
normal direction, indicating that the area contains an
edge. This is the well-known aperture problem encoun-
tered in OF estimation.

(iii) If A1 > 0, A, > 0, and A3 = 0, that is, rank(J) = 2, this
indicates that a spatio-temporal structure containing
grayvalues changes in two directions, and it moves at a
constant speed, thus, indicating a corner area. The real
motion can be accurately estimated in this case.

(iv) If all the three eigenvalues are greater than zero, that is,
rank(J) = 3, this indicates that the local area is located
on the border of two moving fields under different mo-
tions; thus, no reliable motion can be estimated due to
the presence of motion discontinuity.

Although the rank of J proves to contain all necessary in-
formation to distinguish different types of motion, it can-
not be used for practical implementations because it does
not constitute a normalized measure of certainty. Therefore,
the coherency measurements for motion field classification
have been proposed [17], which yield real-valued numbers
between zero and one.

Coherency measurements

The purpose of computing coherency measurements [17] in
our method is to provide some indicators regarding the mo-
tion of nonrigid moving objects. Instead of using the para-
metric approaches for nonrigid VO segmentation as pro-
posed in [7, 10], which need dense motion field and are sen-
sitive to motion estimation errors, a nonparametric method
is proposed here using coherency measurements to quantify
the degree of motion estimation certainty. They were derived
from the eigenvalues of the 3D structure tensor and can be
used as the indicators of local motion structures, such as
edge, corner, homogeneous region, and so on. They are de-
fined [17] as follows:

(i) total coherency measure: C; = (A1 — A3)/(A1 +13))?,
(ii) edge measure: C; = (A1 — A2)/(A1 + 12))?,

(iii) corner measure:

_ 44 (b = A3) (A = Aods)

Co=C -G ! :
(/‘1 +A3) (A] +/\2)

(8)

The masks of C;, C;, and C. computed from the local
scale-adaptive 3D structure tensors of “Silent” are illustrated
in Figures 8a, 8b, and 8¢, respectively. Among them, the map
of corner measure C, (i.e., corner-map) reveals the most dis-
tinct VO boundary information to yield the motion masks
for nonrigid motions; thus, it is exploited in our framework.

Change detection computation

Change detection is used as the indicator for motion mask
selection in our scheme because it can be implemented effi-
ciently and enables the detection of appearance motion ac-
cording to the predetermined thresholds [33]. The purpose
of change detection is to locate moving objects through de-
tecting intensity changes between subsequent frames of im-
age sequences. One of the change detection techniques is so-
called frame differencing D(N') [33], which is defined as

D(N) = ||[I(t+ N) = I(1)]|, )

where || * || is the L, norm, and I(¢) and I(t + N) are the
tth frame and the (¢t + N)th frame, respectively. The thresh-
old setting of D(N) depends on the requirement of practical
applications. Since the image with noise (e.g., illumination
change) may cause false alarms or missing parts of the mo-
tion mask, in our method, the threshold for D(N) in (9) is set
to be high enough (e.g., 30) in order to avoid the occurrence
of false alarm. The missing parts of D(N) within the areas of
moving objects will not affect our motion segmentation re-
sults because the final motion masks are not generated from
D(N), it is only used for motion mask selection here.

Motion mask selection

So far, we obtained the eigenvalue mask (based on A, (I)) and
corner mask (based on C.) for rigid and nonrigid motion
detection, respectively. Although there is no obvious camera
motion in the test sequences we experimented, the obtained
motion masks, however, do contain not only the moving ar-
eas but also some parts of the still background, as shown in
Figures 6 and 8. The undesirable areas from the still back-
ground are caused by the computation of the 3D structure
tensor on still, but textured, areas, yielding high spatial gradi-
ents but low temporal gradients. To exclude the undesirable
areas, D(N) is used here because it can identify the position
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(a)

(b)

FIGURE 9: Change detection based on the 5th and the 9th frames via (9): (a) “Rubik cube,” rigid rotating motion, (b) “Taxi,” rigid moving

VOs under different motions, and (c) “Silent,” nonrigid moving VO.

(a) A1 (I), Rubik cube.

(b) A1 (I), Taxi.

(¢c) Cq, Silent.

FiGure 10: Motion mask selection results (the 9th frame) obtained by the proposed percentage thresholding method using the original
motion masks (see Figures 6a, 6b, and 8c) and the corresponding change detection maps (see Figures 9a, 9b, and 9¢).

of moving objects correctly from the still background as il-
lustrated in Figure 9.

Using a rigid VO as an example, if the size of its mo-
tion mask is large enough both in the map D(N) (see Fig-
ures 9a and 9b) and in eigenmap A,(I) (see Figures 6a and
6b), that is, there is distinct motion that occurred within the
mask area, thus, the eigenmap mask is considered as part of
the moving VO. Otherwise, it is determined to be part of
the background. The proposed motion mask selection is per-
formed using our proposed percentage thresholding method
as follows.

In order to select (i.e., keep or delete) the masks in eigen-
map A;(I) one by one, each area (either in white color or in
black color in Figure 6) is labeled by an unique number using
gray image grass-fire labeling as proposed in [34], which is an
extended version of the grass-fire concept [35] for gray-level
image labeling. The labeled area in A;(I) is denoted as Acigen.
The percentage R, of change detection mask Achange (White
pixels in Figure 9) within the labeled area Acjge, of eigenmap
Ai(I) is computed as

Achange

R. = X 100%. (10)

eigen

If the value of R, is larger than the predetermined threshold
(e.g., 40 %), Acigen is kept as the motion mask of a moving
VO. Otherwise, area Acigen is considered as part of the back-
ground because there is no distinct motion that occured in
1t.

For nonrigid motions, the motion mask selection process
is implemented in the same way as for rigid motions as de-

scribed above, except that Acigen should be replaced by the
mask Acomer in the corner map C. (illustrated by the white
color in Figure 8c), and the computation of R, should be
modified as

Achange

R, = X 100%. (11)

ACOI’HQI‘

After the motion mask selection process, motion masks
for moving VOs are generated in eigenmaps (see Figures 10a
and 10b) and in the corner map (see Figure 10c), where the
homogeneous background and the selected motion masks
are shown in black and white colors, respectively.

4.3. Spatial-constrained motion segmentation

However, the motion masks as shown in Figure 10 still have
small holes in the body of VOs and inaccurate boundaries
along the borders of VOs. To address this problem, graph-
based image segmentation results (see Figure 3) as described
in Section 4.1 is used in order to benefit from the advantages
of spatial segmentation, such as the integrity of spatial seg-
ments and more accurately segmented boundaries.

To refine the boundaries of the selected motion masks
(those white-color areas in Figure 10), the shape of each mo-
tion mask should be constrained by the shape of its corre-
sponding spatial segment in Figure 3. If the percentage of the
motion mask is high enough within a spatial subregion, the
shape of the spatial segment will be used to replace the cor-
responding shape of the motion mask; thus, the boundary of
the spatial-constrained motion mask can align the border of
the moving VO.
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(a) Rubik cube.

(b) Taxi.

(c) Silent.

FIGURE 11: Spatial-constrained motion masks generated based on our method using three video sequences, respectively.

Each spatial segment in the frame illustrated in Figure 3
is labeled by an unique number according to its color. The
percentage R, of the motion mask Ap,g within each Ay is
computed as

R, = Amask 10005, (12)
Aseg

If the value of R, is larger than the predetermined threshold
(e.g., 50 %), the whole spatial segment Ag should be viewed
as the portion of the moving VO (using white color); oth-
erwise, it is treated as part of the background (using black
color).

As compared with the motion masks as shown in Figure
10, the spatial-constrained motion masks, as illustrated in
Figures 1la, 11b, and 1lc, have yielded more accurate
boundaries which are aligned with the borders of respective
moving VOs. The small holes that occured within some mo-
tion masks in Figure 10 are also absent in Figure 11.

4.4. Motion-constrained spatial merging

Similar to the synergism existing between the form and mo-
tion perception pathways in the HVS, the proposed method-
ology is to make spatial segmentation and motion estima-
tion constrained on each other. For that, the boundary in-
formation from image segmentation has contributed to the
motion mask generation as described in Section 4.3. On the
other hand, how to merge the over-segmented spatial regions
based on the motion information is the next issue to be ad-
dressed in this section as follows.

There are two classes of region merging approaches: non-
parametric techniques [12] and parametric models [10, 11].
The nonparametric approach such as boundary melting [12]
cannot be integrated with the motion field because the mo-
tion field discontinuities are difficult to be identified accu-
rately. A parametric method for region merging using en-
ergy minimization was proposed in [11] based on Horn’s
OF field [36]. The results are sensitive to motion estima-
tion errors, and it is computationally slow through the it-
erative way. Since there is no dense motion field required
in our scheme, a novel parametric motion model [10] for
the motion-constrained region merging is exploited by using
the 3D structure tensor. The parameters of the affine motion
model estimated from each spatial segment are used to com-
pute the distance between two adjacent segments. Two seg-
ments will be merged together if the motion model distance

between them is short enough, that is, sharing the similar
motions.

4.4.1. Affine motion model

The planar motion at each pixel position I(x, y) can be de-
scribed by an affine model containing six parameters:

ve(x, ) =ax+by+c,

vy(x,y) =dx+ey+ f, (13)

where vy and v, are the x and y components of the velocity
v,and a, b, ¢, d, e, and f are the parameters of the model.

The 2D velocity can be extended to 3D directional vec-
tor v in order to include the unit temporal velocity, which is
defined as

Vi ab c|l|x
v=lv,|=|de f|]|y
1 0 1 1
o
b
x y10000]|]|c (14)
=({0 0 0 x 10f(d
0000O0O0T1 e
f
L1
= SP.

4.4.2. Parameter estimation

The motion-model parameters for a VO are estimated by
merging the spatial segmented regions based on a distance
function measured between the affine motion model and the
3D structure tensor J; (for pixel i), which can be derived [10]
as follows:

d(v,J;) = vIJivi = PTS[];S;,P = PTQP, (15)

where Q; = S/J;S; is a positive quadratic matrix. The sum of
the pixel-wise distances within a given spatial segment con-
taining N pixels is as follows:

s

N
dieg(P) = > d(v;,]i) = PT( Qi>P =PTQy,P. (16)
i=1

1

1
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Make the partitions of P and Qg as follows:

_|P1 _ |1 @
P—[l} Qseg [qu g]’ (17)

where Py = [a b ¢ d e f]T, q: is a symmetric 6 X 6 ma-
trix, qu is a 6 X 1 vector, and g is a scalar. Hence,

deeg(P) = piQiP1 +Pi Q2 + Q@ P1 + & (18)

Now the problem boils down to find the parameters in vector
p1 that minimizes dg(P), and this can be derived as [10]
follows:

A

P =-q,"'q. (19)

Thus, the residual distance value is computed by

dseg(p) = Q2Tf’1 +g. (20)

Notice that q; in (19) is not invertible if the spatial seg-
ment is (nearly) homogeneous, that is, the vectors in q; are
highly correlated. In this case, the estimated parameter is
changed to p; = —qfqa, where qf is the pseudo inverse of
qi- In fact, the invertibility of q; is not an issue for our ap-
plication because the obtained spatial segments contain cer-
tain small gradients which can highly decrease the correla-
tion among the vectors of q;.

4.4.3. Normalized distance computation

Since the quadratic form of the velocity in (15) is more sen-
sitive to large velocities than to small ones as analyzed in
[10], d(v;,];) is divided by the norm of v and the trace of
J; to avoid this issue. The normalized distance is defined as
follows:

d(vi)]i) _ PTQiP
|V,‘|2tr(],‘) |SiP|2(A1+/12+A3)'

d(vi,J;) = (21)

Thus, the normalized residual distance used to measure
the motion model distance from each spatial segment to its

adjoining segments can be derived from (16) and (20) as fol-
lows:

g+aipr g+ap
2511 |Vi|2tr (J:) Zﬁl \Sip|2(A1i+A2i+A3i)
(22)

d_seg(p) =

4.4.4. Spatial region merging

The region merging is implemented based on the parametric
motion model described in Section 4.4.2. Firstly, each seg-
ment which was obtained from the graph-based image seg-
mentation is labeled by a unique number using gray image
grass-fire labeling [34]. In each labeled spatial subregion Q;,
six affine parameters pio; estimated from (19) are applied
to its M neighbors Q;, for j = 1,2,...,M, but, j # i, to
compute the normalized residue distance for each Q); based

on (22):

80j +Q2Tojf’10i
Sy il Pt ()
a gaj + Qo;Proi (23)
SN ISP P (Mg + A+ Asg)
for j=1,2,...,M, j #1i,

= A

do, (Po;) =

where k indicates the sequence number of N pixels in seg-
ment ().

If the distance do S (Pq;) is below the predetermined
threshold, the segment Q; will be merged with the segment
Q; to generate a new labeled area. In order to group spa-
tial segments into VOs more homogeneously, higher thresh-
old (e.g., 0.5) is used for the region merging within the mo-
tion masks than the threshold used for the background (e.g.,
0.1) because the motion variance in the moving VOs is much
higher than that of the background, which is at most caused
by the camera motion or illumination changes.

5. EXPERIMENTAL RESULTS

Experimental results for the temporal and the spatial VO seg-
mentation are illustrated in Figures 11, 12, 13, and 14, re-
spectively. Three kinds of image sequences are chosen for the
simulation to show the potential of our method: (1) “Rubik
cube,” which contains two rigid rotating objects with simi-
lar speeds; (2) “Mother and Daughter,” which involves two
objects, one has obvious rotation movement and the other
has much less movement; (3) “Taxi,” which has four rigid
translational moving objects with different speeds; and (4)
“Silent,” which is constituted by a nonrigid moving object in
front of a standstill background with complicate textures.

Our spatial-constrained motion masks as illustrated in
Figure 11 show that the moving objects can be separated ac-
curately from different kinds of background. Both rigid and
nonrigid motions can be captured well, using the proposed
motion mask generation and selection approaches as de-
scribed in Section 4.2. Thanks to the scale-adaptive 3D struc-
ture tensor computation, multiple motions are matched cor-
rectly as shown in Figure 11b, and notice that even a very
small size “walking person” (highlighted by the circle) can
also be extracted from the background.

Our spatial-constrained motion segmentation results are
also compared with other results obtained from some exist-
ing methods [37, 38, 39, 40], as illustrated in Figures 12a,
12b, and 12c. For “Rubik cube,” it is obvious that our method
yields much more accurate VO segmentation as compared
with that of Malo’s Method [37] as shown in Figure 12a.
For “Mother and Daughter”, the VO “Daughter” is unable
to be detected and segmented as documented in [38] and
presented in Figure 12b1. The improved result has been pro-
vided by [39], where two VOs (“Mother” and “Daughter”)
are successfully extracted as shown in Figure 12b2. And the
much improved result is obtained from our method with the
best segmented boundary of VOs (see Figure 12b3) among
the three methods. For “Taxi,” our method presents a distinct
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(al) Ground truth [37].

(a2) Malo’s method [37].

(a3) Our method.

(b1) Altunbasak’s method
[38].

(c1) Malo’s method [37].

(b2) Kim’s method [39].

(c2) Bors’s method [40].

(b3) Our method.

(c3) Our method.

FIGURE 12: Segmented rigid moving VOs obtained by implementing the motion masks over each original frame of the three test sequences,
respectively. The motion masks are yielded either from some existing methods [37, 38, 39, 40] or yielded by our proposed spatial-constrained
motion segmentation approach, which have been illustrated in Figure 11 as examples.

(a) The 20th frame.

(b) The 40th frame.

¢) The 60th frame.

d) The 80th frame.

(e) The 100th frame.

FIGURE 13: Segmented nonrigid moving VO over several frames of “Silent” sequence.

improved segmentation result on the “walking person” as cir-
cled in Figure 12¢3, where other approaches failed to capture
such a very small-size moving VO. Furthermore, our result
yields more accurate boundaries around the taxies as com-
pared with Malo’s [37] and Bors’s [40] results as illustrated
in Figures 12c1 and 12c2, respectively. Notice that the so-
claimed ground truth as shown in Figure 12al is only given
as the suggested good segmentation result.

Our motion segmentation results for nonrigid moving
VO are presented in Figure 13 using several frames of “Silent”
sequence as an example. Obviously, our method yields good

VO’s boundary in accordance with human perception, and
various motions of the VO have been successfully captured.
Our motion-constrained spatial segmentation results are
compared with those proposed in [11] using the same in-
put frames as illustrated in Figure 3. Figures 14al, 14b1, and
14c1 were obtained by performing region merging through
energy minimization on Horn’s OF field [36]. Consequently,
some small spatial segments could be merged into larger ho-
mogeneous region. However, since the global gradient-based
OF estimation like Horn’s algorithm is sensitive to noise
and could yield inaccurate objects’ boundaries, the method
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(a2)

(c1)

(c2)

FIGURE 14: Motion-constrained spatial segmentation results using graph-based image segmentation (see Figure 3) as the inputs. Figures
14al, 14bl, and 14cl use Ross’s method [11] which is based on Horn’s optical flow [36], and Figures 14a2, 14b2, and 14c2 exploit our
proposed method which is based on the 3D structure tensor. (a) Rubik Cub. (b) Taxi. (c) Silent.

proposed in [11] was unable to provide the whole back-
ground and homogeneous foreground objects. Using our
proposed motion-constrained region merging scheme that
benefits from the accuracy of spatial-constrained motion
mask and the precision of affine motion model-based dis-
tance computation, the spatial VOs are segmented correctly
from the complex background as illustrated in Figures 14a2,
14b2, and 14c2.

6. CONCLUSIONS

Using the duality of image and motion segmentations, a new
region-based methodology using the 3D structure tensor is
developed for extracting not only moving VOs constrained
by spatial information, but also spatial VOs constrained by
motion information; thus, both the VOs with and without
motions can be segmented much more accurately in a unified
framework. First, to handle the situation when multiple ob-
ject motions occurred in the input image sequence, adaptive
scale selection steered by the condition number is exploited
for conducting the spatio-temporal Gaussian filtering. Sec-
ond, rigidity analysis is performed based on the correlation
coefficients of the smallest eigenvalue map computed over a
range of successive frames. Third, the largest eigenvalue and
the coherency measurements of the 3D structure tensor have
been exploited for generating the motion masks of rigid and
nonrigid VOs simultaneously. Consequently, the obtained
eigenmap and corner map are selected with assistance from
the change-detection map, and the boundaries of motion
masks are further refined by implementing the spatial con-
straint. Fourth, the normalized distance measurement be-
tween the affine motion model and the 3D structure ten-

sor is utilized in our scheme to perform motion-constrained
spatial region merging via thresholding, in which different
thresholds are set for various regions (e.g., moving VOs
and the background), respectively. Experimental results show
that the performance of our scheme is superior to that of
the previous work particularly on the aspects of improving
the boundary accuracy of VO segmentation as well as si-
multaneously handling multiple VOs with rigid or nonrigid
motion.
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