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A sound recording of a plucked string instrument is encoded and resynthesized using two stages of prediction. In the first stage of
prediction, a simple physical model of a plucked string is estimated and the instrument excitation is obtained. The second stage
of prediction compensates for the simplicity of the model in the first stage by encoding either the instrument excitation or the
model error using warped linear prediction. These two methods of compensation are compared with each other, and to the case
of single-stage warped linear prediction, adjustments are introduced, and their applications to instrument synthesis and MPEG4’s
audio compression within the structured audio format are discussed.
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1. INTRODUCTION

Since the discovery of the Karplus-Strong algorithm [1] and
its subsequent reformulation as a physical model of a string,
a subset of the digital waveguide [2], physical modelling has
seen the rapid development of increasingly accurate and dis-
parate instrument models. Not limited to string model im-
plementations of the digital waveguide, such as the kantele
[3] and the clavichord [4], models for brass, woodwind, and
percussive instruments have made physical modelling ubiq-
uitous.

With the increasingly complex models, however, the
task of parameter selection has become correspondingly
difficult. Techniques for calculating the loop filter coeffi-
cients and excitation for basic plucked string models have
been refined [5, 6] and can be quickly calculated. How-
ever, as the one-dimensional model gave way to models with
weakly interacting transverse and vertical polarizations, re-
search has looked to new ways of optimizing parameter se-
lection. These new methods of optimizing parameter se-
lection use neural networks or genetic algorithms [7, 8]
to automate tasks which would otherwise take human op-
erators an inordinate amount of time to adjust. This re-
search has yielded more accurate instrument models, but

for some applications it also leaves a few problems unad-
dressed.

The MPEG-4 structured audio codec allows for the im-
plementation of any coding algorithm, from linear predic-
tive coding to adaptive transform coding to, at its most ef-
ficient, the transmission of instrument models and perfor-
mance data [9]. This coding flexibility means that MPEG-
4 has the potential to implement any coding algorithm and
to be within an order of magnitude of the most efficient
codec for any given input data set [10]. Moreover, for sources
that are synthetic in nature, or can be closely approximated
by physical or other instrument models, structured audio
promises levels of compression orders of magnitude bet-
ter than what is currently possible using conventional pure
signal-based codecs.

Current methods used to parameterize physical models
from recordings require, however, a great deal of time for
complex models [8]. They also often require very precise
and comprehensive original recordings, such as recordings
of the impulse response of the acoustic body [5, 11], in or-
der to achieve reproductions that are indistinguishable from
the original. Given current processor speeds, these limita-
tions preclude the use of genetic algorithm parameter selec-
tion techniques for real-time coding. Real-time coding is also
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made exceedingly difficult in such cases where body impulse
responses are not available or playing styles vary from model
expectations.

This paper proposes a solution to this real-time pa-
rameterization and coding problem for string modelling in
the marriage of two common techniques, the basic plucked
string physical model and warped linear prediction (WLP)
[12].

The justifications for this approach are as follows. Most
string recordings can be analyzed using the techniques de-
veloped by Smith, Karjalainen et al. [2, 6] in order to param-
eterize a basic plucked string model, and a considerable pre-
diction gain can be achieved using these techniques. The ex-
citation signal for the plucked string model is constituted by
an attack transient that represents the plucking of the string
according to the player’s style and plucking position [11], and
is followed by a decay component. This decay component in-
cludes the body resonances of the instrument [11, 13], beat-
ing introduced by the string’s three-dimensional movement
and further excitation caused by the player’s performance.
Additional excitations from the player’s performance include
deliberate expression through vibrato or even unintentional
influences, such as scratching of the string or the rattling
caused by the string vibrating against the fret with weak
fingering pressure. The body resonances and contributions
from the three-dimensional movement of the string mean
that the excitation signal is strongly correlated and there-
fore a good candidate for WLP coding. Furthermore, while
residual quantization noise in a warped predictive codec is
shaped so as to be masked by the signal’s spectral peaks [12],
in one of the proposed topologies, the noise in the physical
model’s excitation signal is likewise shaped into the mod-
elled harmonics. This shaping of the noise by the physical
model results in distortion that, if audible, is neither un-
natural nor distracting, thereby allowing codec sound qual-
ity to degrade gracefully with decreasing bit rate. In the
ideal case, we imagine that at the lowest bit rate, the guitar
would be transmitted using only the physical model param-
eters and that with increasing excitation bit rate, the repro-
duced guitar timbre would become closer to the target origi-
nal one.

This paper is composed of six sections. Following the in-
troduction, the second section describes the plucked string
model used in this experiment and the analysis methods used
to parameterize it. The third section describes the record-
ing of a classic guitar and an electric guitar for testing. The
coding of the guitar tones using a combination of physical
modelling and warped linear predictive coding is outlined in
Section 4. Section 5 analyzes the results from simulated cod-
ing scenarios using the recorded samples from Section 3 and
the topologies of Section 4, while investigating methods of
further improving the quality of the codec. Section 6 con-
cludes the paper.

2. MODEL STRUCTURE

A simple linear string model extended from the Karplus-
Strong algorithm, by Jaffe and Smith [14], was used in this
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FiGure 1: Topology of a basic plucked string physical model.

study, comprised of one delay line z7L with a first-order all-
pass fractional delay filter F(z) and a single pole low-pass
loop filter G(z) as shown in Figure 1, where,
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and the overall transfer function of the system can be ex-
pressed as
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This string model is very simple and much more accurate
and versatile models have been developed since [6, 11, 15].
For the purposes of this study, however, it was required that
the model could be quickly and accurately parameterized
without the use of complex or time consuming algorithms
and sufficient that it offers a reasonable first-stage coding
gain. The algorithms used to parameterize the first-order
model are described in detail in [15] and will only be out-
lined here as they were implemented for this study.

In the first stage of the model parameterization, the pitch
of the target sound was detected from the target’s autocorre-
lation function. The length of the delay line z=* and the frac-
tional delay filter F(z) were determined by dividing the sam-
pling frequency (44.1 kHz) by the pitch of the target. Next,
the magnitude of up to the first 20 harmonics were tracked
using short-term Fourier transforms (STFTs). The magni-
tude of each harmonic versus time was recorded on a loga-
rithmic scale after the attack transient of the pluck was deter-
mined to have dissipated and until the harmonic had decayed
40 dB or disappeared into the noise floor.

A linear regression was performed on each harmonic’s
decay to determine its slope, S, as shown in Figure 2, and the
measured loop gain for each harmonic, Gi, was calculated
according to the following equation,

Gi = 108200 o — 1.2 N, (4)

where L is the length of the delay line (including the frac-
tional component), and H is the hop size (adjusted to ac-
count for hop overlap). The loop gain at DC, g, was esti-
mated to equal the loop gain of the first harmonic, G, as
in [15]. Because the target guitar sounds were arbitrary and
nonideal, the harmonic envelop trajectories were quite noisy
in some cases, so, additional measures had to be introduced
to stop tracking harmonics when their decays became too
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FiGure 2: The temporal envelopes of the lowest four harmonics of
a guitar pluck (dashed) and their estimated decays (solid).

erratic or, as in some cases, negative. In such cases as when
the guitar fret was held with insufficient pressure, additional
transients occurred after the first attack transient and this
tended to raise the gain factor in the loop filter, resulting in
a model that did not accurately reflect string losses. For the
purposes of this study, such effects were generally ignored so
long as a positive decay could be measured from the harmon-
ics tracked.

The first-order loop filter coefficient a; was estimated by
minimizing the weighted error between the target loop filter
Gk, as calculated in (4), and candidate filters G(z) from (2).
A weighting function Wy, suggested by [15] and defined as

1

Wi = (1-Gy)’

(5)

was used such that the error could be calculated as follows:

Ni

E(ar) = X Wi(Gk — | G(e/*,a1) |), (6)
k=1

where wy is the frequency at the harmonic being evaluated
and 0 < a; < 1. This error function is roughly quadratic in
the vicinity of the minimum, and parabolic interpolation was
found to yield accurate values for the minimum in less time
than iterative methods.

For controlled calibration of the loop filter extraction al-
gorithm, synthesized plucked string samples were created us-
ing the extended Karplus-Strong algorithm and the model as
described by Valimiki [11], with two string polarizations and
a weak sympathetic coupling between the strings.

3. DATA ACQUISITION

The purpose of the algorithms explored in this research was
to resynthesize real, nontrivial plucked string sounds using

FIGURE 3: Schematic for classic guitar pluck recording.

the combination of the basic plucked string model and WLP
coding. No special care was taken, therefore, in the selec-
tion of the instruments to be used or the nature of the gui-
tar tones to be analyzed and resynthesized beyond that they
were monophonic, recorded in an anechoic chamber and
each pluck was preceded by silence to facilitate the analysis
process. A schematic of the recording environment and sig-
nal flow for the classic guitar is pictured in Figure 3.

Two guitars were recorded. The first, a classic guitar, was
recorded in an anechoic chamber with the guitar held ap-
proximately 50 cm from a Bruel & Kjaer type 4191 free field
1/2” microphone, the output of which was amplified by a
Falcon Range 1/2" type 2669 microphone preamp with a
Bruel & Kjaer type 5935 power supply and fed into a PC
through a Layla 24/96 multitrack recording system. The elec-
tric guitar was recorded through its line out and a Yamaha
03D mixer into the Layla. A variety of plucking styles were
recorded in both cases, along with the application of vibrato,
string scratching, and several cases where insufficient finger
pressure on the frets lead to further string excitation (i.e., a
rattling of the string) after the initial pluck.

After capturing approximately 8 minutes of playing with
each guitar, suitable candidates for the study were selected
on the basis of their unique timbres, durations, and poten-
tial difficulty for accurate resynthesis using existing plucked
string models. More explicitly, in the case of the classic guitar,
bright plucks of E1 (82 Hz) were recorded along with several
recordings of B1 (124 Hz), where weak finger pressure lead
to a rattling of the string. Another sample selected involved
this weak finger pressure leading to an early damping of the
string by the fret hand, though without the nearly instan-
taneous subsequent decay that a fully damped string would
yield. A third, higher pitch was recorded with an open string
at E3 (335 Hz). In the case of the electric guitar, two samples
were used—one of slapped E1 (82 Hz) with almost no decay
and another of E2 (165 Hz) with some vibrato applied.
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FIGURE 4: The decomposition of an excitation into (a) attack and
(b) decay. The attack window is 200 milliseconds long. In this case,
decay refers to the portion of the pluck where the greatest attenu-
ation is a result of string losses. Because the string is not otherwise
damped, it may also be considered to be the sustain segment of the
envelope.

4. ANALYSIS/RESYNTHESIS ALGORITHMS

4.1. Warped linear prediction

Frequency warping methods [16] can be used with linear
prediction coding so that the prediction resolution closely
matches the human auditory system’s nonuniform frequency
resolution. Harma found that WLP realizes a basic psychoa-
coustic model [12]. As a control for the study, the target
signal was therefore first processed using a twentieth-order
WLP coder of lattice structure.

The lattice filter’s reflection coefficients were not quan-
tized, and after inverse filtering, the residual was split into
two sections, attack and decay, which were quantized using a
mid-riser algorithm. The step size in the mid-riser quantizer
was set such that the square error of the residual was mini-
mized. The number of bits per sample in the attack residual
(BITSA) was set to each of BITSA = {16,8,4} for each of
the bits per sample in the decay residual BITSD = {2,1}.
The frame size for the coding was set to equal two periods of
the guitar pluck being coded, and the reflection coefficients
were linearly interpolated between frames. The bit allocation
method was used in order to match the case of the topolo-
gies that use a first-stage physical model predictor, where
more bits were allocated to the attack excitation than the
decay excitation. Harma found in [12] that near transpar-
ent quality could be achieved with 3 bits per sample using
a WLP codec. It is therefore reasonable to suggest that the

WLP used here could have been optimized by distributing
the high number of bits used in the attack throughout the
length of the sound to be coded. However, since similar op-
timizations could also be made in the two-stage algorithms,
only the simplest method was investigated in this study.

4.2. Windowed excitation

As the most basic implementation of the physical model, the
residual from the string model’s inverse filter can be win-
dowed and used as the excitation for the model. In this study,
the excitation was first coded using a warped linear predic-
tive coder of order 20 and with BITSA bits of quantization
for each sample of the residual. In many cases, the first 100
milliseconds of the excitation contains enough information
about the pluck and the guitar’s body resonances for accurate
resynthesis [13, 15]. The beating caused by the slight three-
dimension movement of the string and the rattling caused by
the energetic plucks used in the study, however, were signifi-
cant enough that a longer excitation was used.

Specifically, the window used was thus unity for the first
100 milliseconds of the excitation and then decayed as the
second half of a Hanning window for the following 100 mil-
liseconds. An example of this windowed excitation can be
seen in the top of Figure 4. This windowed excitation, consid-
ered as the attack component, was input to the string model
for comparison to the WLP case and used in the modified
extended Karplus-Strong algorithm which will now be de-
scribed.

4.3. Two-stage coding topologies

As described in [9], structured audio allows for the parame-
terization and transmission of audio using arbitrary codecs.
These codecs may be comprised of instrument models, effect
models, psychoacoustic models, or combinations thereof.
The most common methods used for the psychoacoustic
compression of audio are transform codecs, such as MP3
[17] and ATRAC [18] and time-domain approaches such as
WLP [12]. Because the specific application being considered
here is that of the guitar, the first stage of our codec is the
simple string model described in Section 2. The second stage
of coding was then approached using one of two methods:

(1) the model’s output signal error (referred to as model
error) could be immediately coded using WLP, or

(2) the model’s excitation could be coded using WLP, with
the attack segment of the excitation receiving more bits
as in the WLP case of Section 4.2.

The topologies of these two strategies are illustrated in
Figure 5.

Both topologies require the inverse filtering of the target
pluck sound in order to extract the excitation. The decompo-
sition of the excitation into attack and decay components for
the first topology, as formerly proposed by Smith [19] and
implemented by Vilimaki and Tolonen in [13], reflects the
wideband and high amplitude portion which marks the be-
ginning of the excitation signal and the decay which typically
contains lower frequency components from body resonances
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or inverse filter, and WLPD indicates the WLP decoder. Q is the quantizer, with BITSA and BITSD being the number of bits with which the

respective signals are quantized.

or from the three-dimensional movement of the string. How-
ever, whereas the authors of [13] synthesized the decay exci-
tation at a lower sampling rate, justified by its predominantly
lower frequency components, the excitations in our study of-
ten contained wideband excitations following the initial at-
tack and no such multirate synthesis was therefore used. Typ-
ical attack and decay decomposition of an excitation is shown
in Figure 4. The high frequency decay components are a re-
sult of the mismatch between the string model and the source
recording.

4.4. Warped linear prediction coding of model error

The WLPCME topology from Figure 5 was implemented
such that WLP was applied to the model error as follows

Swex = I ¥ Ratacko

(7)

€model = S — Swex>

S = Swex T €model>

where s is the recorded plucked string input, h is the im-
pulse response of the derived pluck string model from (3),
Kattack 15 the WLP-coded windowed excitation introduced in
Section 4.2, syex is the pluck resynthesized using only the
windowed excitation, and enodel is the model error. épodel 1S
thus the model error coded using WLP and BITSD bits per
sample and § is the reconstructed pluck.

4.5. Warped linear prediction coding
of model excitation

In this case, the model excitation was coded instead of the
model error. Following the string model inverse filtering, the
excitation is whitened using a twentieth-order WLP inverse
filter. Next, the signal is quantized with BITSA bits per sam-
ple allotted to the residual in the attack, and BITSD bits per

sample for the decay residual. This process can be expressed
in the following terms:

X = b1 ks,

= -1
Xattack = {BITSA (P * Xfull - Wattack))

(8)

= -1
xdecay = (BITSD (P X Xfll ¢ Wdecay))
-’Acfull = P * (-’Eattack + xdecay):

§ = h * X,

where s is the original instrument recording being modelled,
h is the string model’s inverse filter, and xgy is thus the
model excitation. Xaack 1S therefore the string model exci-
tation whitened by the WLP, p~!, and quantized to BITSA,
while Xgecay is likewise whitened and quantized to BITSD. The
sum of the attack and decay is then resynthesized by the WLP
decoder, p. The resulting %1 is subsequently considered as
excitation to the string model, 4, to form the resynthesized
plucked string sound .

5. SIMULATION RESULTS AND DISCUSSION

In order to evaluate the effectiveness of the two proposed
topologies, a measure of the sound quality was required. In-
formal listening tests suggested that the WLPCMX topology
offered slightly improved sound quality and a more musi-
cal coding at lower bit rates, although it came at the cost of
a much brighter timbre. At very low bit rates, WLPCMX in-
troduced considerable distortion especially for sound sources
that were poorly matched by the string model. WLPCME, on
the other hand, was equivalent in sound quality to WLPC
and sometimes worse. Resynthesis using windowed excita-
tion yielded passable guitar-like timbres, but in none of the
test cases came close to reproducing the nuance or fullness of
the original target sounds.
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For a more formal evaluation of the simulated codecs’
sound quality, an objective measure of sound quality was cal-
culated by measuring the spectral distance between the fre-
quency warped STFTs, Sk, of the original pluck recording
and the resynthesized output, Sy, created using the codecs.
The frequency-warped STFT sequences were created by first
warping each successive frame of each signal using cascaded
all-pass filters [16], followed by a Hanning window and a
fast Fourier transform (FFT). The method by which the bark
spectral distance (BSD) was measured is as follows:

1 N-1 .
BSD; = (N > (20log,, | Sk(n)| — 20l0g,, |Sk(n)|)2>,

n=0
9)
with the mean BSD for the whole sample being the un-
weighted mean of all frames k. A typical profile of BSD ver-
sus time is shown in Figure 6 for the three cases WLPC,
WLPCMX, and WLPCME.

In the first round of simulations, all six input samples
as described in Section 3 were processed using each of the
algorithms described in Section 4. The resulting mean BSDs
were then calculated to be as shown in Figure 7.

Subjective evaluation of the simulated coding revealed
that as bit rate decreased, the WLPCMX topology main-
tained a timbre that, while brighter than the target, was rec-
ognizably as a guitar. In contrast, the other methods became
noisy and synthetic. Objective evaluation of these same re-
sults reveals that both topologies using a first-stage physical
model predictor have greater spectral distortion than the case
of WLPC, particularly in the case of the recordings with very
slow decays (i.e., with a high DC loop gain g). In identifying
the cause of this distortion, we must first consider the model
prediction. The degradation occurs for the following reason
in each of the two topologies.

(A) In the case of the WLPCME, the beating that is caused
by the three-dimensional vibration of the string causes
considerable phase deviation from the phase of the
modelled pluck, and the model error often becomes
greater in magnitude than the original signal itself.
This leads to a noisier reconstruction by the resynthe-
sizer. Additionally, small model parameterization er-
rors in pitch and the lack of vibrato in the model result
in phase deviations.

(B) In the case of the WLPCMX, with a low bit rate in
the residual quantization stage of the linear predictor,
a small error in coding of the excitation is magnified
by the resynthesis filter (string model). In addition to
this, as noted in [15], the inverse filter may not have
been of sufficiently high order to cancel all harmon-
ics, and high frequency noise, magnified by the WLP
coding, may have been further shaped by the plucked
string synthesizer into bright higher harmonics.

The distortion caused by the topology in (A) seems im-
possible to improve significantly without using a more com-
plex model that considers the three-dimensional vibration of
the string, such as the model proposed by Vilimaki et al. [11]

12

10

Mean BSD (dB)
(o)}

0 0.5 1 1.5 2 2.5
Time (s)
FIGURE 6: Bark scale spectral distortion (dB) versus time (seconds).

WLPC is solid, WLPCMX is dashed-dotted, and WLPCME is the
dashed line.
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FIGURE 7: Mean Bark scale spectral distortion (dB) using each of
WLPC, WLPCME, and WLPCMX (left to right) for (1) E3 classic,
(2) El classic, (3) Bl classic (rattle 1), (4) B classic (rattle 2), (5) E1
electric, and (6) E2 electric. Simulation parameters were BITSA = 4
and BITSD = 1.

and previously raised in Section 2. Performance control, such
as vibrato, would also have to be extracted from the input for
alocked phase to be achieved in the resynthesized pluck. The
topology of (B), however, allows for some improvement in
the reconstructed signal quality by compromising between
the prediction gain of the first stage and the WLP coding of
the second stage. More explicitly, if the loop filter gain was to
be decreased, then the cumulative error being introduced by
the quantization in the WLP stage would be correspondingly
decreased.
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Such a downwards adjustment of the loop filter gain in
order to minimize coding noise results in a physical model
that represents a plucked string with an exaggerated decay.
This almost makes the physical model prediction stage ap-
pear more like the long-term pitch predictor in a more con-
ventional linear prediction (LP) codec targeted at speech.
However, there is still the critical difference in that the physi-
cal model contains the low-pass component of the loop filter
and can still be thought of as modelling the behaviour of a
(highly damped) guitar string.

To obtain an appropriate value for the loop gain, mul-
tiplier tests were run on all six target samples. The electric
guitar recordings and the recordings of the classical guitar
at E3 represented “ideal” cases; there were no rattles subse-
quent to the initial pluck, in addition to negligible changes
in pitch throughout their lengths. Amongst the remaining
recordings, the two rattling guitar recordings represented two
timbres very difficult to model without a lengthy excitation
or a much more complex model of the guitar string. The
mean BSD measure for the electric guitar at E1 is shown in
Figure 8.

As can be seen from Figure 8, reducing the loop gain
of the physical model predictor increased the performance
of the codec and yielded superior BSD scores for loop gain
multipliers between 0.1 and 0.9. The greater the model mis-
match, as in the case of the recordings with rattling strings,
the less the string model predictor lowered the mean BSD.
Models which did not closely match also featured minimal
mean BSDs at lower loop gains (e.g., 0.5 to 0.7). The simu-
lation used to produce Figure 7 was performed again using
a single, approximately optimal, loop gain multiplier of 0.7.
The results from this simulation are pictured in Figure 9.

The decreased BSD for all the samples in Figure 9 con-
firms the efficacy of the two-stage codec. Informal subjec-
tive listening tests described briefly at the beginning of this
section also confirmed that decreasing the bit rate reduced
the similarity of the reproduced timbre to the original tim-
bre, without obscuring the fact that it was a guitar pluck
and without the “thickening” of the mix that occurs due to
the shaped noise in the WLPC codec. This improvement of-
fered by the two-stage codec becomes even more noticeable
at lower bit rates, such as with a constant 1 bit per sample
quantization of WLP residual over both attack and decay.

To evaluate the utility of the proposed WLPCMX, it
is important to compare it to the alternatives. Existing
purely signal-based approaches such as MP3 and WLPC have
proven their usefulness for encoding arbitrary wideband au-
dio signals at low bit rates while preserving transparent qual-
ity. As an example, Hiarma found that wideband audio could
be coded using WLPC at 3 bits per sample (= 132.3kbps
@44.1 kHz) for good quality [12]. These models can be im-
plemented in real-time with minimal computational over-
head, but like sample-based synthesis, do not represent the
transmitted signal parametrically in a form that is related to
the original instrument. Pure signal-based approaches, using
psychoacoustic models, are thus limited to the extent which
they can remove psychoacoustically redundant data from an
audio stream.

Mean BSD
=~

0 . . . .
0 0.2 0.4 0.6 0.8 1

Loop gain multiplier

FIGURE 8: Mean Bark scale spectral distortion versus loop gain mul-
tiplier. WLPCMX is solid and WLPC is the dashed-dotted line.

Mean BSD (dB)
w

1 2 3 4 5 6

FIGURE 9: Mean Bark scale spectral distortion (dB) using each of
WLPC, WLPCMX (left to right) for (1) E3 classic, (2) E1 classic, (3)
B1 classic (rattle 1), (4) BI classic (rattle 2), (5) EI electric, and (6)
E2 electric. Simulation parameters were BITSA = 4 and BITSD = 1.

On the other hand, increasingly complex physical models
can now reproduce many classes of instruments with excel-
lent quality. Assuming a good calibration or, in the best case,
a performance made using known physical modelling algo-
rithms, transmission of model parameters and continuous
controllers would result in a bit rate at least an order of mag-
nitude lower than the case of pure signal-based methods. As
an example, if we consider an average score file from a mod-
ern sequencing program using only virtual instruments and
software effects, the file size (including simple instrument
and effect model algorithms) is on the order of 500 kB. For
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an average song length of approximately 4 minutes, this leads
to a bit rate of approximately 17 kbps. For optimized scores
and simple instrument models, the bit rate could be lower
than 1 kbps. Calibration of these complex instrument models
to resynthesize acoustic instruments remains an obstacle for
real-time use in coding, however. Likewise, parametric mod-
els are flexible within the class for which they are designed,
but an arbitrary performance may contain elements not sup-
ported by the model. Such a performance cannot be repro-
duced by the pure physical model and may, indeed, result in
poor model calibration for the performance as a whole.

This preliminary study of the WLPCMX topology offers
a compromise between the pure physical-model-based ap-
proaches and the pure signal-based approaches. For the case
of the monophonic plucked string considered in this study, a
lower spectral distortion was realized using the model-based
predictor. Because more bits were assigned to the attack por-
tion of the string recording, the actual long-term bit rate of
the codec is related to the frequency of plucks, but at its worst
case it is limited by the rate of the WLP stage (assuming
a loop gain multiplier of 0) and its best case, given a close
match between model and recording, approaches the physi-
cal model case. For recordings that were well modelled by the
string model, such as the electric guitar at E1 and E2 and the
E3 classic guitar sample, subjective tests suggested that equiv-
alent quality could be achieved with 1 bit per sample less than
the WLPC case. Limitations of the string model prevent it
from capturing all the nuances of the recording, such as the
rattling of the classical guitar’s string, but these unmodelled
features are successfully encoded by the WLP stage. Because
the predictor reflects the acoustics of a plucked string, degra-
dation in quality with lower bit rates sounds more natural.

6. CONCLUSIONS

The implementation of a two-stage audio codec using a phys-
ical model predictor followed by WLP was simulated and the
subjective and objective sound quality analyzed. Two codec
topologies were investigated. In the first topology, the instru-
ment response was estimated by windowing the first 200 mil-
liseconds of the excitation, and this estimate was subtracted
from the target sample, with the difference being coded us-
ing WLP coding. In the second topology, the excitation to
the plucked string physical model was coded using WLP be-
fore being reconstructed by reapplying the coded excitation
to the string model shown in Figure 1. Tests revealed that the
limitations of the physical model resulted in model error in
the first topology to be of greater amplitude than the target
sound, and the codec therefore operated with inferior quality
to the WLPC control case.

The second topology, however, showed promise in sub-
jective tests whereby a decrease in the bits allocated to
the coding of the decay segment of the excitation reduced
the similarity of the timbre without changing its essential
likeness to a plucked string. A further simulation was per-
formed wherein the loop gain of the physical model was re-
duced in order to limit the propagation of the excitation’s
quantization error due to the physical model’s long-time

constant. This improved objective measures of the sound
quality beyond those achieved by the similar WLPC de-
sign while maintaining the codec’s advantages exposed by
the subjective tests. Whereas the target plucks became noisy
when coded at 1 bit per sample using WLPC, the allocation of
quantization noise to higher harmonics in the second topol-
ogy meant that the same plucks took on a drier, brighter tim-
bre when coded at the same bit rate.

WLP can easily be performed in real-time, and it could
thus be applied to coding model excitations in both audio
coders and in real-time instrument synthesizers. Analysis of
polyphonic scenes is still beyond the scope of the model,
however, and the realization of highly polyphonic instru-
ments would entail a corresponding increase in computa-
tional demands from the WLP in the decoding of the exci-
tation.

Future exploration of the two-stage physical model/WLP
coding schemes should be investigated using more accurate
physical models, such as the vertical/transverse string model
mentioned in Section 1, which might allow the first topology
investigated in this paper to realize coding gains. Implemen-
tation of more complicated models reintroduces, however,
the difficulties of accurately parameterizing them—though
this increased complexity is partially offset by the increased
tolerance for error that the excitation coding allows.
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