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An algorithm for the estimation of chin and cheek contours in video sequences is proposed. This algorithm exploits a priori
knowledge about shape and position of chin and cheek contours in images. Exploiting knowledge about the shape, a parametric
2D model representing chin and cheek contours is introduced. Exploiting knowledge about the position, a MAP estimator is
developed taking into account the observed luminance gradient as well as a priori probabilities of chin and cheek contours posi-
tions. The proposed algorithm was tested with head and shoulder video sequences (image resolution CIF). In nearly 70% of all
investigated video frames, a subjectively error free estimation could be achieved. The 2D estimate error is measured as on average
between 2.4 and 2.9 pel.
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1. INTRODUCTION

Techniques for estimation of facial features like eyes, mouth,
nose, eyebrows, chin and cheek contours are essential for var-
ious types of applications [1, 2, 3, 4, 5, 6, 7, 8]. For facial
recognition applications, features are estimated and used for
recognition, authentification, and differentiation of human
faces [7, 9, 10]. In multimedia data bases and information
systems, facial feature estimation is required for analysis and
indexing of human facial images. For specific video coding
schemes like model-based video coding [11, 12, 13] (also
sometimes called semantic video coding [14, 15] or object-
based video coding [16, 17, 18]), facial feature estimation is
also required. The estimated facial features are used for adap-
tation of a 3D face model to a person’s face as well as for the
determination of facial expressions [19, 20, 21, 22, 23].

In this paper, the estimation of chin and cheek contours
is discussed. The estimation of chin and cheek is one of the
most difficult tasks of facial feature estimation, especially that
the chin contour is in many cases little visible. Furthermore,
shadows, variations of the skin color, clothing, and double
chin can complicate the estimation procedure. Rotations of
the head (especially to the side) result in strong variations of
the chin and cheek’s shape and position. In this paper, head
and shoulder video sequences are considered which are typi-
cal for news, videophone, or video conferencing sequences.
Assuming a typical spatial resolution like the CIF format
(352 × 288 luminance pels), the face size is quite small in
those video sequences (with a typical face width from 40 to

70 pels). Taken this into account, the estimation of chin and
cheek contours is further complicated.

In order to overcome these problems of chin and cheek
contours estimation, the usage of a priori knowledge about
these features is necessary. On one hand, knowledge about
the typical shape of chin and cheek contours should be ex-
ploited. On the other hand, knowledge about more or less
probable positions of chin and cheek contours should be
taken into consideration.

In the literature, algorithms for chin and cheek contours
estimation use a priori knowledge about shape and position
only to a limited extent. Some approaches use edge detection
or other basic image processing procedures for estimation
[9]. Often, parametric 2D models (also called deformable
templates [8]) for chin and cheek contours are exploited.
Here, the model should be selected in such a way that an ex-
act localization of the chin and cheek contours is possible.
However, the number of unknown parameters should be as
low as possible in order to increase the estimation’s robust-
ness. In [24, 25, 26], chin and cheek contours are approxi-
mated by ellipses resulting in quite large estimation errors.
In [6, 21], parametric models consisting of two parabolas
are used. A cost function is minimized to find the best fit of
the parametric model to the chin. However, a two-parabola
model is too rough for an exact representation of chin and
cheek contours. For estimation, a person in the scene looking
straight into the camera is assumed. No a priori knowledge
about more or less probable positions of chin and cheek con-
tours is exploited. In [22, 27], active contour models (snakes)
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are used for the estimation of chin and cheek contours. A
snake is an energy-minimizing spline influenced by image
features to pull it toward edges. These approaches were ap-
plied to persons looking straight into the camera. Since the
number of unknown parameters is high, the reliability of
these algorithms is low [27].

In this paper, a new algorithm for chin and cheek con-
tours’ estimation is proposed. A priori knowledge about
the typical shape and probable positions of chin and cheek
contours is exploited in many ways. A new parametric 2D
model representing chin and cheek contours is introduced.
This 2D model consists of four parabola pieces which are
linked together. The 2D model is described by eight param-
eters which have to be estimated. Assuming video sequences
with a quite small face size, this model allows an exact lo-
calization of chin and cheek contours with a low number
of parameters to be estimated. For estimation, a MAP es-
timator is developed. This estimator takes into account the
observed luminance gradient as well as the probabilities of
certain positions of chin and cheek contours. Besides, ro-
tations of the head are also considered in the new estima-
tor. For estimation, the positions of eyes and mouth are
assumed to be known. In this paper, the algorithm from
[20] is used for estimation of eyes and mouth middle po-
sitions.

The paper is organized as follows. In Section 2, the new
parametric 2D model for chin and cheek contours is intro-
duced. In Section 3, the chin contour is estimated, whereas
the cheek contour is estimated in Section 4. Section 5 gives
experimental results. A conclusion is given in Section 6.

2. PARAMETRIC 2DMODEL OF CHIN
AND CHEEK CONTOURS

For representing the shape of chin and cheek contours, a
parametric 2D model for these contours is introduced. The
estimation of chin and cheek contours is done by estima-
tion of the parameters of this 2D model. Figure 1 shows the
parametric 2D model in a local, 2D system of coordinates
(W ,V). The origin of (W ,V) lies in the middle of the inter-
section between the eyes middle points r and l. The W axis
shows in the direction of the left eye middle point l. The 2D
model consists of the four parts of a parabola P1, P2, P3, and
P4 which are linked together. P1 and P2 represent the chin
contour, while P3 and P4 the cheek contours. The endpoints
a = (aW , aV )T and b = (bW , bV )T form the boundary of P1,
while the endpoints a = (aW , aV )T and c = (cW , cV )T form
the boundary of P2. A parabola part is unambiguously de-
scribed by its two endpoints and the parabola axis. For the
chin contour, the parabola axis A0 is defined in such a way
that A0 is parallel to the V axis and a is a part of A0. There-
fore, P1 and P2 are completely described by the three end-
points a = (aW , aV )T , b = (bW , bV )T , and c = (cW , cV )T

only. So, six parameters have to be determined for the esti-
mation of the chin contour.

The right cheek contour is described by the parabola
piece P3. The endpoints b = (bW , bV )T and d = (dW ,dV )T
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Figure 1: Parametric 2D model of chin and cheek contours con-
sisting of four parabola pieces P1, P2, P3, and P4. r and l are the eyes
middle points, andm the mouth middle point.

form the boundary of P3. For a complete description of P3,
its parabola axis A3 is needed. A3 can be constructed from
the parameters of the chin contour. A3 is defined in such a
way that it passes the origin of (W ,V) and divides chord s01
between a and b in the middle. Since the endpoints a and b
are known after the chin contour estimation, only the posi-
tion d = (dW ,dV )T is unknown for a complete description
of P3. d depends on another restriction. Cheek contours are
often covered by hair and therefore impossible to estimate.
So, d is defined in such a way that it passes the line S. S is
parallel to the W axis with a distance LC. LC is chosen as
LC = 0.15LEM with the eye-mouth distance LEM defined as
the distance between theW axis and the mouthmiddle point
m. So, only the W-coordinate dW is necessary for a descrip-
tion of d. Corresponding to P3, only theW-coordinate eW is
necessary for the description of P4. Taken these two param-
eters for the cheek contours into account, eight parameters
have to be estimated for the chin and cheek contours.

The estimation is carried out in two steps. First, the chin
contour is estimated. Using the estimated chin contour, the
cheek contours are estimated in a second step.

3. ESTIMATION OF CHIN CONTOUR

For estimation of the chin contour, the absolute value of the
luminance gradient |g(W ,V)| is computed using the Sobel
operator (Figure 2).

|g(W ,V)| is the observable measurement value that
is used for estimation of the unknown parameters a =
(aW , aV )T , b = (bW , bV )T , and c = (cW , cV )T . For simplifica-
tion, these parameters are summarized to a parameter vector
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(a) (b)

Figure 2: Luminance gradient: (a) luminance image; (b) absolute
value of the luminance gradient determined by Sobel operator.

fchin = (aW , aV , bW , bV , cW , cV )T . For chin contour estima-
tion, an estimation algorithm is necessary which calculates
an estimated value f̂chin from the known absolute value of
the luminance gradient |g(W ,V)|. Here, a MAP estimator is
used. f̂chin is calculated using the MAP estimation algorithm
according to

f̂chin = argmax
fchin

{
pg|fchin

(
g|fchin

)
pfchin

(
fchin

)}
(1)

with g = |g(W ,V)|. The conditional probability density
function pg|fchin (g|fchin) is called likelihood function, while
pfchin (fchin) is the a priori probability density function of the
parameter vector fchin. The product from likelihood func-
tion and a priori probability density function is called quality
function. For calculation of f̂chin, the quality function has to
be established first. Then, the quality function is maximized
by an optimization algorithm and the estimate value f̂chin is
determined.

The likelihood function pg|fchin (g|fchin) determines the
probability for a measurement value g under the condition
of a certain position fchin of the chin contour. The determina-
tion of pg|fchin (g|fchin) is difficult since manifold disturbances
like shadows, clothing, or skin variations influence the obser-
vation g. Therefore, a simple approach is chosen in this work.
Here, a proportional relation between pg|fchin (g|fchin) and the
mean absolute value of the luminance value along the chin
contour is assumed:

pg|fchin
(
g|fchin

) = cchin
1

LP1+P2

∫
P1+P2

∣∣g(W ,V)
∣∣ds, (2)

where
∫
P1+P2 |g(W ,V)|ds denotes the integral of the lumi-

nance gradient’s absolute value along the parabola pieces P1
and P2; LP1+P2 is the length of both parabola pieces; and cchin
a proportional constant. P1 and P2 are dependent on the pa-
rameters of fchin. According to (2), a high value of the mean
luminance gradient corresponds to a high value of the likeli-
hood function pg|fchin (g|fchin). On the other hand, a low value
means that the observedmeasurement belongs to the consid-
ered parameter vector with a low probability.

pa

p(aV )

aV,min aV,1 aV,2 aV,max

aV

Figure 3: Probability density p(aV ).

The probability density function pfchin (fchin) describes
the probability of a certain chin contour position fchin =
(aW , aV , bW , bV , cW , cV )T . Due to the human anatomy, the
bottom point a of the chin contour is located below the
mouth and near the V axis. The W-coordinate aW varies
only slightly. The upper endpoints b and c are approximately
located at the height of the mouth. The V coordinates bV
and cV vary only little. Taking this into account, it is assumed
that pfchin (fchin) is only dependent on the coordinates aV , bW ,
and cW . Assuming a further independence between aV on
one side and bW and cW on the other side, pfchin (fchin) is equal
to

pfchin
(
fchin

) = p
(
aV
)
p
(
bW , cW

)
. (3)

First, p(aV ) is examined. A range aV ,min < aV < aV ,max

is set, whereas aV ,min and aV ,max are set proportional to the
eye-mouth distance LEM (see Figure 1). In case of talking, the
mouth of a person is opened and closed. The position aV
is changing corresponding to the mouth movement. Due to
the uniformmovement, the probability p(aV ) is not changed
inside most part of the aV range (Figure 3).

Therefore, p(aV ) is set to

p
(
aV
) =




pa
aV − aV ,min

aV ,1 − aV ,min
, aV ,min ≤ aV ≤ aV ,1,

pa, aV ,1 ≤ aV ≤ aV ,2,

pa
aV − aV ,max

aV ,2 − aV ,max
, aV ,2 ≤ aV ≤ aV ,max.

(4)

p(aV ) is constant between aV ,1 and aV ,2. At the borders of
the range, p(aV ) is decreasing linearly. At aV ,min and aV ,max,
respectively, p(aV ) is equal zero. aV ,1 and aV ,2 are set propor-
tional to the eye-mouth distance LEM.

Next, the term p(bW , cW ) in (3) is examined. First, ranges
for bW and cW are introduced which are symmetrical to the
V axis: −bW ,max < bW < −bW ,min and bW ,min < cW < bW ,max.
Here, bW ,min, bW ,max > 0 and are set proportional to the
eye-eye distance LEE. Since bW and cW are hardly influenced
by the mouth movement, the assumption of a nearly uni-
form probability distribution is in contrast to p(aV ) not
useful. Considering instead that values of bW , cW have a
higher probability in the middle of the corresponding range
than at the borders, a sinus-like curve for p(bW ) and p(cW )
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|bW |

|cW |{{

Figure 4: In case of a head rotation to the left side, a low value of
|cW | corresponds to a high value of |bW |.

is assumed:

p
(
bW
) = 1

2
sin

(
bW + bW ,max

bW ,max − bW ,min
π

)
,

p
(
cW
) = 1

2
sin

(
cW − bW ,min

bW ,max − bW ,min
π

)
.

(5)

In case of a statistical independence between bW and cW ,
the probability p(bW , cW ) could be expressed by

p
(
bW , cW

) = p
(
bW
)
p
(
cW
)
. (6)

For this case, a certain value of cW would have no influence
on the occurrence of certain values of bW . However, Figure 4
shows that a dependence between bW and cW exists.

In case of a head rotation to the left side, |cW | has a low
value. In this case, |bW | has a high value. Therefore, an in-
dependence between bW and cW does not exist. In order to
take their dependence into consideration, (6) is extended by
an additional term pdep(bW , cW ):

p
(
bW , cW

) = p
(
bW
)
p
(
cW
)
pdep

(
bW , cW

)
. (7)

According to Figure 4, a high value of |bW | corresponds to a
low value of |cW | in case of a head rotation to the left side.
In case of a head rotation to the right side, a low value of
|bW | corresponds to a high value of |cW |. Looking at the sum
|bW | + |cW | (which is the W distance of the chin contour
endpoints), a middle value of |bW |+ |cW | is preferred in case
of a head rotation. Low or high values of |bW |+ |cW | are less
probable. According to this, pdep(bW , cW ) is assumed to be

pdep
(
bW , cW

) = 1
2
cos

(∣∣bW∣∣ + ∣∣cW∣∣− sbc,min

sbc,max − sbc,min
π

)
(8)

in the range sbc,min < |bW | + |cW | < sbc,max and

pdep
(
bW , cW

) = 0 (9)

in all other areas (Figure 5).

|bW | + |cW |

pdep(bW , cW )

Sbc,min Sbc,max

Figure 5: pdep(bW , cW ) describes the dependence between bW and
cW by the distance of the chin contour |bW | + |cW |.

The upper bound sbc,max and the lower bound sbc,min for
the distance of the chin contour endpoints are set propor-
tional to the eye-eye distance LEE.

Using (2), (4), and (7), the quality function in (1) is com-
pletely known. The next step is the maximization of (1) and
the determination of f̂chin. The optimization is carried out in
two steps. First, an initial value f̂chin,init is determined. Using
f̂chin,init, the final value f̂chin is determined in the second step.
In the first step, search lines S0, S1, and S2 are introduced
(Figure 6). The initial values for the chin contour endpoints
should be located on these lines. The lower search line S0
for a is located on the V axis and is bounded by aV ,min and
aV ,max, respectively. The search lines S1 and S2 for b and c are
on the height of the mouth middle point and parallel to the
W axis. They are bounded by −bW ,max, −bW ,min and bW ,min,
bW ,max, respectively. Along these search lines, local maxima
of |g(W ,V)| are determined. Only these local maxima could
be the initial values for a, b, and c. For all combinations of
these local maxima, the quality function in (1) is evaluated.
The combination with the highest value of the quality func-
tion is chosen as initial estimate value f̂chin,init. Taking f̂chin,init
as a starting point, the final value f̂chin is determined in the
following second step. 2D search areas are placed around
the chin contour endpoints belonging to f̂chin,init. Inside these
search areas, the optimization is continued. Starting from the
endpoints belonging to f̂chin,init, the quality function in (1)
is evaluated in an 8-point neighborhood around these end-
points. If the quality function is improved inside the 8-point
neighborhood, the corresponding point is chosen as center
for the next 8-point neighborhood evaluation. This proce-
dure is continued until no more improvement of the quality
function can be achieved. Then, the final estimate value f̂chin
is found. The estimation of the chin contour is completed.

4. ESTIMATION OF CHEEK CONTOURS

Next, the cheek contours are estimated. The cheek contours
are completely described by the parameter vector fcheek =
(dW , eW )T . The determination of the estimate value f̂cheek is
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S1 S2

S0

Figure 6: Search lines for initial estimation of the chin contour.

carried out analogous to the chin contour estimation. Ac-
cording to (1), a MAP estimator

f̂cheek = argmax
fcheek

{
pg|fcheek

(
g|fcheek

)
pfcheek

(
fcheek

)}
(10)

is introduced. Analogous to (2), pg|fcheek (g|fcheek) is approx-
imated by the integral over the absolute value of the lumi-
nance gradient along the parabola pieces P3 and P4:

pg|fcheek
(
g|fcheek

) = ccheek
1

LP3+P4

∫
P3+P4

∣∣g(W ,V)
∣∣ds, (11)

where LP3+P4 denotes the length of both parabola pieces and
ccheek a proportional constant. pfcheek (fcheek) is described by

pfcheek
(
fcheek

) = p
(
dW
)
p
(
eW
)
pdep

(
dW , eW

)
, (12)

with, analogous to (5),

p
(
dW
) = 1

2
sin

(
dW + dW ,max

dW ,max − dW ,min
π

)
,

p
(
eW
) = 1

2
sin

(
eW − dW ,min

dW ,max − dW ,min
π

)
.

(13)

According to (8), pdep(dW , eW ) is described by

pdep
(
dW , eW

) = 1
2
cos

(∣∣dW∣∣ + ∣∣eW∣∣− sde,min

sde,max − sde,min
π

)
(14)

in the range sde,min < |dW | + |eW | < sde,max and by

pdep
(
dW , eW

) = 0 (15)

in all other areas.
Corresponding to bW ,min, bW ,max and sbc,min, sbc,max, the

values dW ,min, dW ,max and sde,min, sde,max are set proportional
to the eye-eye distance LEE. For determination of f̂cheek, the
search lines S3, S4 are introduced which are located on the
line S (see Figure 1) and are bounded by −dW ,max,−dW ,min

Table 1: Upper and lower bounds for chin and cheek parameters.
LEE denotes the distance between the eyes middle points, while LEM
denotes the distance between eyes and mouth.

Bound Scale Value

aV ,min LEM 1.5

aV ,max LEM 2.1

aV ,1 LEM 1.6

aV ,2 LEM 2.0

bW ,min LEE 0.5

bW ,max LEE 1.5

dW ,min LEE 0.7

dW ,max LEE 1.6

sbc,min LEE 1.6

sbc,max LEE 2.3

sde,min LEE 1.8

sde,max LEE 2.5

and dW ,min, dW ,max, respectively. Along these search lines, lo-
cal maxima of |g(W ,V)| are determined. Only these local
maxima could be estimate values for dW , eW . For all combi-
nations of these local maxima, the quality function in (10)
is evaluated. The combination with the highest value of the
quality function is the estimate value f̂cheek. So, the estimation
of the cheek contours is completed.

5. EXPERIMENTAL RESULTS

First, experiments were carried out in order to verify the as-
sumed a priori probability density functions from Sections 3
and 4. Furthermore, upper and lower bounds for the proba-
bility density functions are determined.

In the second part, the proposed algorithm for chin and
cheek contours estimation is tested with head and shoulder
videophone sequences and its performance is evaluated.

5.1. Verification

For verification of the a priori probability density functions
as well as for determination of the corresponding upper
and lower bounds, tests were carried out. Here, 60 facial
images (30 female and 30male faces) from an image database
were selected. The true positions of eyes and mouth mid-
dle positions and chin and cheek contours were manually
determined from the facial images, and the parameters aV ,
bW , cW , dW , eW , |bW | + |cW |, and |dW | + |eW | were calcu-
lated. First, the upper and lower bounds aV ,min, aV ,max, aV ,1,
aV ,2, bW ,min, bW ,max, dW ,min, dW ,max, sbc,min, sbc,max, sde,min,
and sde,max were determined. As described in Sections 3 and
4, aV ,min, aV ,max, aV ,1, and aV ,2 are set proportional to the
eye-mouth distance LEM and bW ,min, bW ,max, dW ,min, dW ,max,
sbc,min, sbc,max, sde,min, and sde,max are set proportional to the
eye-eye distance LEE. Table 1 shows the determined values
for the upper and lower bounds extracted from the facial
images.
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Figure 7: Frequency distribution for chin tip aV . The value range
(aV ,min, aV ,max) is subdivided into ten parts. For each part, the fre-
quency out of 60 facial images is determined.
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Figure 8: Frequency distribution for right chin contour endpoint
bW . The value range (bW ,min, bW ,max) is subdivided into ten parts.
For each part, the frequency out of 60 facial images is determined.
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Figure 9: Frequency distribution for left chin contour endpoint cW .
The value range (bW ,min, bW ,max) is subdivided into ten parts. For
each part, the frequency out of 60 facial images is determined.

These values are used for the next step, the verifica-
tion of the assumed a priori probability density functions
from Sections 3 and 4. For all parameters aV , bW , cW , dW ,
eW , |bW | + |cW |, and |dW | + |eW |, the corresponding fre-
quency distribution using the 60 facial test images is cal-
culated. Therefore, each parameter range is divided into 10
parts between its lower and upper bounds. For each part, the
corresponding frequency of the parameter value within this
part is determined. Figures 7, 8, 9, 10, 11, 12, and 13 show
the results. For the chin tip position aV , a uniform distri-
bution was assumed in Section 3. For the other parameters,
sinus-like distributions with more significant decreases to-
wards the bounds were assumed. Looking at the frequency
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Figure 10: Frequency distribution for right cheek contour endpoint
dW . The value range (dW ,min,dW ,max) is subdivided into ten parts.
For each part, the frequency out of 60 facial images is determined.
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Figure 11: Frequency distribution for left cheek contour endpoint
eW . The value range (dW ,min,dW ,max) is subdivided into ten parts.
For each part, the frequency out of 60 facial images is determined.
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Figure 12: Frequency distribution for |bW |+|cW | (distance between
chin contour endpoints). The value range (sbc,min, sbc,max) is subdi-
vided into ten parts. For each part, the frequency out of 60 facial
images is determined.
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Figure 13: Frequency distribution for |dW |+|eW | (distance between
cheek contour endpoints). The value range (sde,min, sde,max) is subdi-
vided into ten parts. For each part, the frequency out of 60 facial
images is determined.
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(a) (b) (c)

Figure 14: Test sequences: (a) Akiyo, (b) Miss America, and (c) Claire.

distributions from Figures 7, 8, 9, 10, 11, 12, and 13, these
assumptions are verified in general. Whereas Figure 7 shows
a more uniform distribution, the other figures show signifi-
cant decreases towards the bounds.

However, further experiments with a larger number of
facial test images should be carried out in the future in or-
der to further check the assumed a priori probability density
functions and the parameters’ upper and lower bounds.

5.2. Performance evaluation

For evaluation of the proposed algorithm, the head and
shoulder video sequences Akiyo, Claire, and Miss America
with a resolution corresponding to CIF (352×288 luminance
pels) and a frame rate of 10Hz were used to test its perfor-
mance (Figure 14). For the sequence Miss America, the per-
son is mainly looking into the camera. For Claire, head rota-
tion to the sides are observed. For Akiyo, the person is often
looking down.

For evaluation of the algorithm’s accuracy, the true po-
sitions of chin and cheek contours are manually determined
from the video sequences. These true positions are then com-
pared with the estimated ones to get the 2D estimate er-
ror in the image. Table 2 shows the estimate error’s stan-
dard deviation for the test sequences. Here, it is distinguished
between the chin tip a, the chin contour’s upper points
b, c, and the cheek contour’s upper points d, e. Looking
at the results, the estimate error for chin contour’s upper
points b, c, and cheek contour’s upper points d, e are quite
similar: 2.4 pel and 2.5 pel, respectively. The estimate error
for the chin tip a is 2.9 pel, which is larger compared to
the other four endpoints. The reason for this is mainly the
video sequence Miss America, where the chin contour is very
weak, disturbed by a shadow, and therefore difficult to esti-
mate.

For additional evaluation, the estimation results are sub-
jectively rated. In contrast to the results above, not only the
positions of the five parabola pieces’ endpoints are evaluated.
Instead, the estimate of the complete chin and cheek con-
tours is compared with the true ones. Three different subjec-
tive quality classes are introduced. In the first class, no de-
viation between the true and the estimated chin and cheek
contours is observable, the estimation is error free. For the
second quality class, an estimation error is observable. Fi-

Table 2: Standard deviation of 2D estimate errors for the chin and
cheek contours (video sequences Akiyo, Claire, and Miss America).

Facial feature point 2D estimate error (pel)

Chin tip a 2.9

Chin contour’s upper points b, c 2.4

Cheek contour’s upper points d, e 2.5

Table 3: Percentage of estimated chin and cheek contours accord-
ing to three quality classes (video sequences Akiyo, Claire, and Miss
America).

Quality classes Percentage (%)

(1) Error free 68

(2) Estimation error observable 32

(3) Complete mismatch 0

nally, the third class means erroneous results, where the true
contours are completely missed. For example, hair, clothing,
lips, and so forth are detected instead of chin and cheek. All
estimated chin and cheek contours are rated according to the
three quality classes. Table 3 shows the achieved results. In
nearly 70% of all frames, an error free estimation is possible.
A completely missed estimation was observed in no frame.

Figures 15, 16, 17, and 18 show examples of the estimated
chin and cheek contours over the original images. Figures
15, 16, and 17 shows results of the first quality class with er-
ror free estimation. Results from the second quality class are
given in Figure 18. Here, small deviations are noticed.

Since an accurate estimate of eyes and mouth middle po-
sitions is fundamental for the proposed chin and cheek es-
timation, an evaluation of the used algorithm from [20] for
eyes and mouth estimation is given. Figures 15, 16, 17, and
18 show results for eyes and mouth middle positions estima-
tion. A subjectively accurate estimation of eyes and mouth is
observed. Measuring the estimate error for eyes and mouth
in the same way as for chin and cheek, the estimate error’s
standard deviation is 1.5 pel for the eyes (here only open eyes
are considered and the pupil position is taken as middle po-
sition) and 3.1 pel for the mouth.
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Figure 15: Test sequence Akiyo: estimated chin and cheek contours over original images without estimation error (quality class 1). Displayed
eyes and mouth middle positions are estimated by [20] and are known to the algorithm.

Figure 16: Test sequence Claire: estimated chin and cheek contours over original images without estimation error (quality class 1). Displayed
eyes and mouth middle positions are estimated by [20] and are known to the algorithm.

6. CONCLUSIONS

A new algorithm for estimation of chin and cheek contours
in video sequences is proposed. Within this algorithm, a pri-
ori knowledge about shape and position of chin and cheek
contours is exploited. A parametric 2D model representing
the shape of chin and cheek contours is introduced. This 2D
model consists of four parabola pieces which are linked to-
gether. Eight parameters describe the parametric 2D model.

Chin and cheek contours are estimated by determination of
these eight parameters. Exploiting a priori knowledge about
the position of chin and cheek contours, a MAP estima-
tor is introduced. This MAP estimator takes into account
the observed luminance gradient as well as a priori proba-
bilities of the chin and cheek contours’ positions. The esti-
mation is done in two steps. First, the chin contour is es-
timated. In the second step, the cheek contours are deter-
mined.
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Figure 17: Test sequence Miss America: estimated chin and cheek contours over original images without estimation error (quality class 1).
Displayed eyes and mouth middle positions are estimated by [20] and are known to the algorithm.

Figure 18: Test sequences Akiyo, Claire, Miss America: estimated
chin and cheek contours over original images with observable esti-
mation errors (quality class 2). Displayed eyes and mouth middle
positions are estimated by [20] and are known to the algorithm.

Using facial images from an image data base, the assumed
a priori probabilities of the chin and cheek contours’ posi-
tions were verified. Then, the proposed algorithm was tested
with typical head and shoulders video sequences. In nearly
70% of all frames, a subjectively perfect estimation is pos-
sible. In no frame, a complete mismatch is noticeable. The
standard deviation of the 2D estimate error is measured as
2.4 pel (upper endpoints of the chin contour), 2.5 pel (up-
per endpoints of the cheek contours), and 2.9 pel (chin tip),
respectively.

A further advantage of the described algorithm is its flex-
ibility. The assumed a priori probabilities could be easily ex-
changed by other functions if further measurements will sug-
gest this.
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