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Time-frequency representations transform a one-dimensional function into a two-dimensional function in the phase-space of
time and frequency. The transformation to accomplish is a nonlinear transformation and there are an infinite number of such
transformations. We obtain the governing differential equation for any two-dimensional bilinear phase-space function for the case
when the governing equation for the time function is an ordinary differential equation with constant coefficients. This connects
the dynamical features of the problem directly to the phase-space function and it has a number of advantages.
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1. INTRODUCTION

Ordinary linear differential equations with constant coeffi-
cients are the most venerable and studied differential equa-
tions, and many ideas and methods have been developed to
obtain exact, approximate, and numerical solutions, and to
qualitatively study the nature of the solutions [1]. The subject
is over 300 years old, but nonetheless we argue that a totally
new perspective is achieved when the differential equation,
even a simple ordinary differential equation, is transformed
into phase space by a nonlinear transformation. Moreover
we further argue that this transformation not only results in
greater insight into the nature of the solution, but leads to
new approximation methods [2]. To illustrate and motivate
our method we start with a simple example. Consider the
following harmonic oscillator differential equation (it is the
equation of the RLC circuit, or the damped spring-mass sys-
tem):

d2x(t)
dt2

+ 2µ
dx(t)
dt

+ ω2
0x(t) = f (t), (1)

where f (t) is a given driving force and x(t) the output signal
of the system, that is, the solution to the differential equa-
tion (µ and ω0 are real constants). Perhaps there is no more
studied equation than this one. In principle, this equation
can be solved symbolically by many methods, for example,
by obtaining Green’s function. However, doing so does not
add any particular insight into the nature of the solution. For

practical reasons and to gain insight, one often transforms
this equation into the Fourier domain. Defining

X(ω) = 1√
2π

∫
x(t) e−itωdt,

F(ω) = 1√
2π

∫
f (t) e−itωdt,

(2)

the differential equation transforms into [3]

[− ω2 + 2iµω + ω2
0

]
X(ω) = F(ω), (3)

whose exact solution is

X(ω) = F(ω)[− ω2 + 2iµω + ω2
0

] . (4)

The reasons for going into the Fourier domain are many.
First, we have a practical way of solution, since now one can
find the time solution by way of

x(t) = 1√
2π

∫
F(ω)[− ω2 + 2iµω + ω2

0

]eitωdt. (5)

Perhaps more importantly is that one can gain insight into
the nature of the solution and both reasons have become
part of standard analysis in all fields of science.We emphasize
that in some sense the spectrum, among other things, tells us
what frequencies exist in the function. To be more concrete,
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Figure 1: Solution of (6), real part of x(t). The parameters are µ =
1, ω0 = 6π rad/s, α = 0.001, β = 6/5π, and ω1 = −8π rad/s.

as an example, we take an important case of the driving force,

d2x(t)
dt2

+ 2µ
dx(t)
dt

+ ω2
0x = e−αt

2/2+iβt2/2+iω1t . (6)

This driving force is a linear chirp, with a Gaussian ampli-
tudemodulation. The instantaneous frequency of the driving
force is linearly increasing with time. The Fourier transform
of the driving force is [4]

F(ω) = 1√
α− iβ

exp

[
−α
(
ω− ω1

)2
2
(
α2 + β2

) − i
β
(
ω − ω1

)2
2
(
α2 + β2

)
]
, (7)

which gives

X(ω)

=
exp

[
− α

(
ω−ω1

)2
/2
(
α2+β2

)−i(β(ω−ω1
)2
/2
(
α2+β2

))]
√
α− iβ

[− ω2 + 2iµω + ω2
0

] .

(8)

In Figures 1 and 2 we plot the signal and spectrum for the
values indicated in the caption. As mentioned, much can be
learned from a study of x(t) and X(ω). However, even more
can be learned than is commonly discussed in textbooks as
we now show. We take the solution x(t) and make the fol-
lowing nonlinear transformation [4]:

C(t,ω) = 1
4π2

∫∫∫
x∗
(
u− τ

2

)
x
(
u +

τ

2

)

× φ(θ, τ)e−iθt−iτω+iθudu dτ dθ,
(9)

where φ(θ, τ) is a two-dimensional function called the ker-
nel. If the kernel is taken to be independent of the signal x(t),
then the resulting distributions are called bilinear in x(t).
By choosing different kernels particular distributions are ob-
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Figure 2: Energy spectrum |X( f )|2 of x(t) shown in Figure 1. The
two peaks are due to the resonances of the oscillator located at f =
±3Hz.
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Figure 3: Time-frequency distribution of x(t) represented in
Figure 1. The main energy response occurs when the forcing func-
tion hits the resonant frequency of the oscillator, which is located
at f = 3Hz. Note that we have plotted only positive time and fre-
quencies.

tained [5, 6, 7, 8]. Equivalent to (9) is the form:

C(t,ω) =
∫∫

K(t,ω, t′, t′′)x∗(t′) x(t′′)dt′dt′′, (10)

and there is a one-to-one relation between K(t,ω, t′, t′′) and
φ(θ, τ) [4]. The form given by (9) is more convenient than
(10) above, because the properties of the distributions are
studied easier.

The resulting transformation, C(t,ω), is a two-dimen-
sional function of both time and frequency; the transforma-
tion takes us from one variable to a function of two variables.
Such functions are called distributions or representations or
quasiprobability distributions. In Figure 3 we plot a possible
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Figure 4: Solution of (6), real part of x(t), when the forcing term is
f (t) = A exp(iβt2/2) + B exp(iγ4/4).
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Figure 5: Energy spectrum, |X( f )|2, of the solution corresponding
to Figure 4.

C(t,ω) for the signal x(t). We see that something remarkable
happens: one gets a simple, clear picture of what is going on
and of the regions which are important. In particular we see
what the response of the system to the input chirp is, in a sim-
ple way. We can immediately see that we get a larger response
when the input chirp hits the resonant frequency of the har-
monic oscillator, whose parameters µ and ω0 have been cho-
sen to give the so-called underdamped behavior. Hence by
making a nonlinear transformation we get more insight than
by looking at x(t) or X(ω) separately. We get considerably
more insight because the joint distribution tells us how time
and frequency are related. In Figures 4, 5, 6, 7, 8, and 9 we
show some other examples. The examples clearly show how
the solution is much better understood in the phase-space of
time frequency.

Such bilinear transformations have been studied for over
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Figure 6: Time-frequency distribution of x(t) of Figure 4.
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Figure 7: Solution of (6), real part of x(t), for a sinusoidal fre-
quency modulated forcing term: f (t) = A exp[iα sinω2t].

seventy years in the field of time-frequency analysis in engi-
neering, and also as quasidistributions in quantum mechan-
ics [4, 9, 10]. Amajor development has been done in this area
and the ideas that have developed have become standard and
powerful methods of analysis [11, 12, 13]. In engineering,
where the distributions are called time-frequency distribu-
tions, the main aim has been to understand time-varying
spectra [14, 15, 16, 17, 18, 19]. Among the many areas
to which they have been applied are heart sounds, heart
rate, the electroencephalogram (EEG), the electromyogram
(EMG) [20, 21, 22, 23, 24], machine fault monitoring [11, 17,
18, 19, 25, 26], radar and sonar signals, acoustic scattering
[14, 16, 27], speech processing [28, 29], analysis of marine
mammal sounds [30, 31], musical instruments [32], linear
and nonlinear dynamical systems [33, 34, 35], among many
others.
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Figure 8: Energy spectrum |X( f )|2 of the solution, x(t), corre-
sponding to Figure 7.

Our aim is the following. Suppose x(t) is governed by an
ordinary differential equation with constant coefficients:

an
dnx(t)
dtn

+ an−1
dn−1x(t)
dtn−1

+ · · · + a1
dx(t)
dt

+ a0x(t) = f (t),

(11)

where f (t) is the driving force. Instead of solving for x(t) and
putting it in(9), we obtain a governing differential equation
for C(t,ω). In the next section we discuss some general prop-
erties of these bilinear transformations, and after that we de-
rive the differential equation for C(t,ω) that corresponds to
the solution of an ordinary differential equation with con-
stant coefficients, (11).

2. BILINEAR TRANSFORMATIONS

We list just a few of the main properties of these distributions
which are useful to our consideration. If we have two distri-
butions, C1 and C2, with corresponding kernels φ1 and φ2,
then the two distributions are related by

C1(t,ω) =
∫∫

g12(t′ − t,ω′ − ω)C2(t′,ω′)dt′dω′, (12)

with

g12(t,ω) = 1
4π2

∫∫
φ1(θ, τ)
φ2(θ, τ)

eiθt+iτωdθ dτ. (13)

In operator form,

C1(t,ω) = φ1
(
(1/i)(∂/∂t), (1/i)(∂/∂ω)

)
φ2
(
(1/i)(∂/∂t), (1/i)(∂/∂ω)

)C2(t,ω). (14)

The reason for writing (9) is that it is easier to handle be-
cause the properties of C(t,ω) are easier to understand from
φ(θ, τ) than from K(t,ω; t′, t′′) but we emphasize that (10)
and (9) are equivalent. The relation between φ(θ, τ) and
K(t,ω; t′, t′′) is given in reference [4].
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Figure 9: Time-frequency distribution of the solution, x(t), corre-
sponding to Figure 7.

3. DIFFERENTIAL EQUATIONS

The above harmonic oscillator examples show that by
making a nonlinear transformation one obtains a two-
dimensional function which shows clearly the physical na-
ture of the solution and the relation with the driving force.
Historically the way these distributions have been used is to
solve for x(t) from its governing equation (or experimentally
obtain x(t)) and substitute it into the time-frequency func-
tion, (9). Our aim has been to relate the phase-space distri-
bution with the dynamical system, that is, to obtain a differ-
ential equation for C(t,ω), so that we may study directly the
phase-space function. We have been successful in doing so
for the Wigner distribution, and for a few other distributions
(smoothed pseudo-Wigner distribution, Rihaczek distribu-
tion). In this paper we obtain the governing equation for any
distribution C(t,ω), that is, for all bilinear time-frequency
representations. We first give the result and then the deriva-
tion. Differential equation (11) is first written in polynomial
form

P(D)x(t) = f (t), (15)

where

P(D) = anD
n + an−1Dn−1 + · · · + a1D + a0,

D = d

dt
.

(16)

Then the governing differential equation for any distribution
Cx(t,ω) is

P∗
(
Ac
)
P
(
Bc
)
Cx(t,ω) = Cf (t,ω), (17)

where

Ac = 1
2
∂

∂t
− iω −

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
, (18)

Bc = 1
2
∂

∂t
+ iω +

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
, (19)
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and in the definition of P∗(Ac) only the coefficients a0, . . . ,
an are complex conjugated and not the operators, that is,

P∗
(
Ac
) = a∗nA

n
c + a∗n−1A

n−1
c + · · · + a∗1 Ac + a∗0 . (20)

We now explain the meaning of a quantity such as
φc((1/i)(∂/∂t), (1/i)(∂/∂ω)). This operator is obtained by
making the following substitution in the scalar function
φc(θ, τ):

θ = 1
i

∂

∂t
, τ = 1

i

∂

∂ω
. (21)

Similarly, what we mean by the differentiation noted in (18)
and (19) is that[

∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]

=
[
∂

∂τ
logφc(θ, τ)

]
θ=(1/i)(∂/∂t), τ=(1/i)(∂/∂ω)

(22)

3.1. Derivation

We now give the derivation of (17). First consider the class of
bilinear cross-distributions Cx,y(t,ω) of two signals x(t) and
y(t):

Cx,y(t,ω) = 1
4π2

∫∫∫
x∗
(
u− τ

2

)
y
(
u +

τ

2

)

× φ(θ, τ)e−iθt−iτω+iθudu dτ dθ.
(23)

In general one has that

Cax1+bx2,y(t,ω) = a∗Cx1,y + b∗Cx2,y(t,ω), (24)
Cx,ay1+by2 (t,ω) = aCx,y1 + bCx,y2 (t,ω), (25)

where x1(t), x2(t), y1(t), y2(t), x(t), and y(t) are arbitrary
signals, and a and b are complex constants. Also we prove in
the appendix that

CDx,y(t,ω) =AcCx,y(t,ω), (26)

Cx,Dy(t,ω) = BcCx,y(t,ω), (27)

where

Ac = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2
∂

∂t
− iω

)
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
,

Bc = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2
∂

∂t
+ iω

)
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
.

(28)

The operators Ac and Bc will be simplified in Section 3.2 to
obtain the compact form of (18) and (19). The combined
use of (24)–(27) allows one to obtain (17). Now, we take the
bilinear distribution of the left- and right-hand sides of (15)
to obtain

CP(D)x,P(D)x(t,ω) = Cf (t,ω), (29)

and we use (24) and (26) to simplify to

P∗
(
Ac)Cx,P(D)x(t,ω) = Cf (t,ω). (30)

Similarly, we apply (25) and (27) to obtain (17).

3.2. Simplification of the operators

We now simplify the operatorsAc andBc. Consider

Ac = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2
∂

∂t
− iω

)
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)

= φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2
∂

∂t

)
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)

+ φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
− iω

)
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
.

(31)

But

φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)(
1
2
∂

∂t

)
=
(
1
2
∂

∂t

)
φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
, (32)

and therefore we have that

Ac = 1
2
∂

∂t
− iφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
ωφ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
. (33)

Also, it can be shown that

φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
ω − ωφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)

= −i
[
∂

∂τ
φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
,

(34)

and therefore

φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
ω

= ωφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
− i
[
∂

∂τ
φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
,

(35)

and further

Ac = 1
2
∂

∂t
− iω −

[
∂

∂τ
φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)

= 1
2
∂

∂t
− iω −

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
.

(36)

Hence we have (18) and similarly (19).
Furthermore it is often the case that the kernel is a prod-

uct kernel:

φ(θ, τ) = φ(θτ), (37)

in which case we have that

Ac = 1
2
∂

∂t
− iω − 1

i

∂

∂t
logφ′c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
,

Bc = 1
2
∂

∂t
+ iω +

1
i

∂

∂t
logφ′c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
.

(38)

4. SPECIAL CASES

We now consider special cases, that is, distributions that are
well known and have been used extensively in the literature.
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4.1. Wigner distribution

The Wigner distribution [36] Wx(t,ω) is obtained from (9)
by taking

φ(θ, τ) = 1. (39)

It is given by

Wx(t,ω) = 1
2π

∫
x∗
(
t − τ

2

)
x
(
t +

τ

2

)
e−iτωdτ, (40)

and therefore the derivative with respect to τ is zero:

∂

∂τ
logφ(θ, τ) = 0, (41)

and therefore we get

Ac = 1
2
∂

∂t
− iω, Bc = 1

2
∂

∂t
+ iω. (42)

4.2. Rihaczek distribution

The Rihaczek distribution is

R(t,ω) = 1√
2π

x(t)X∗(ω)e−iωt, (43)

and the kernel is given by

φ(θ, τ) = eiτθ/2. (44)

Hence

∂

∂τ
logφ(θ, τ) = iθ

2
, (45)

and therefore

Ac = 1
2
∂

∂t
− iω −

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]

= 1
2
∂

∂t
− iω − i

2
1
i

∂

∂t
= −iω.

(46)

For the B operator we have

Bc = 1
2
∂

∂t
+ iω −

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]

= 1
2
∂

∂t
+ iω +

i

2
1
i

∂

∂t
= ∂

∂t
+ iω,

(47)

and therefore the operators are

Ac = −iω, Bc = ∂

∂t
+ iω. (48)

4.3. Smoothed pseudo-Wigner

The smoothed pseudo-Wigner distribution Sx(t,ω) is ob-
tained by convolving theWigner distribution with a smooth-
ing function, h(t,ω):

Sx(t,ω) =
∫∫

h(t − t′,ω− ω′)Wx,x(t′,ω′)dt′dω′. (49)

Here we consider the Gaussian smoothing function given by

h(t,ω) = 1
2πσtσω

exp
[
− t2

2σ2t
− ω2

2σ2ω

]
, (50)

and the corresponding kernel is

φ(θ, τ) = 1
2π

σtσω exp
[
− θ2

2/σ2t
− τ2

2/σ2ω

]
. (51)

We apply (18) to obtain

Ac= 1
2
∂

∂t
−iω−

[
∂

∂τ
logφc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)]
θ=(1/i)(∂/∂t), τ=(1/i)(∂/∂ω)

= 1
2
∂

∂t
−iω− ∂

∂τ

[
log
(
1
2π

σtσω

)

− θ2

2/σ2t
− τ2

2/σ2ω

]
θ=(1/i)(∂/∂t), τ=(1/i)(∂/∂ω)

= 1
2
∂

∂t
− iω −

[
− τσ2ω

]
θ=(1/i)(∂/∂t), τ=(1/i)(∂/∂ω)

= 1
2
∂

∂t
− iω − iσ2ω

∂

∂ω
.

(52)

In the same way we obtain the Bc operator, and hence we
have that

Ac = 1
2
∂

∂t
− iω − iσ2ω

∂

∂ω
,

Bc = 1
2
∂

∂t
+ iω + iσ2ω

∂

∂ω
.

(53)

5. CONCLUSION

Time-frequency distributions transform a one-dimensional
signal of time x(t) into a two-dimensional function of time
and frequency Cx(t,ω). There are an infinite number of
phase-space distributions, Cx(t,ω), and they are character-
ized by the kernel function. The advantage of transforming a
function in time to a phase-space distribution is that we can
see clearly how time and frequency are related or correlated
for the signal, x(t). Also, we can see both mathematically and
physically the regions of phase-space which are of impor-
tance. In this paper we have derived the governing equation
for any bilinear phase-space distribution, Cx(t,ω), when the
governing equation for the corresponding time signal, x(t), is
an ordinary linear differential equation with constant coeffi-
cients. A fundamental question is whether there is any par-
ticular advantage in choosing one such distribution over an-
other. The motivations are manyfold. First, all bilinear equa-
tions are transformable into each other and hence all the re-
sulting differential equations for Cx(t,ω) are in some sense
equivalent. However, one can have an advantage over another
in a variety of ways. For example, the equation for a particu-
lar distribution may be easier to solve than for another. Also,
one differential equation may be more transparent into the
nature of the solution than another, and moreover one equa-
tion may be more amenable than another to devise approx-
imation methods [2]. These issues are currently being stud-
ied.
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We now prove (26) and (27). Consider first the following
identities [37]:

WDx,x(t,ω) = AWx(t,ω),

Wx,Dx(t,ω) = BWx(t,ω),
(A.1)

where

A = 1
2
∂

∂t
− iω,

B = 1
2
∂

∂t
+ iω,

(A.2)

andWx(t,ω) is theWigner distribution of x(t), given by (40).
Now any two distributions C1(t,ω) and C2(t,ω) of the bilin-
ear class, with kernels φ1(θ, τ) and φ2(θ, τ) are related by the
transformation

C1(t,ω) = φ1
(
(1/i)(∂/∂t), (1/i)(∂/∂ω)

)
φ2
(
(1/i)(∂/∂t), (1/i)(∂/∂ω)

)C2(t,ω). (A.3)

If C2(t,ω) is the Wigner distribution then

C(t,ω) = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
W(t,ω), (A.4)

and also

W(t,ω) = φ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
C(t,ω). (A.5)

This means that we can write

CDx,x(t,ω) = φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
WDx,x

= φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
AWx

= φc

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Aφ−1c

(
1
i

∂

∂t
,
1
i

∂

∂ω

)
Cx(t,ω)

= AcCx(t,ω),
(A.6)

which is (26). In a similar way one obtains (27).
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