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The ability of a DFT filterbank frequency domain filter to effect time domain delay is examined. This is achieved by comparing the
quality of equalisation using a DFT filterbank frequency domain filter with that possible using an FIR implementation. The actual
performance of each filter architecture depends on the particular signal and transmission channel, so an exact general analysis is
not practical. However, as a benchmark, we derive expressions for the performance for the particular case of an allpass channel
response with a delay that is a linear function of frequency. It is shown that a DFT filterbank frequency domain filter requires
considerably more degrees of freedom than an FIR filter to effect such a pure delay function. However, it is asserted that for the
more general problem that additionally involves frequency response magnitude modifications, the frequency domain filter and
FIR filters require a more similar number of degrees of freedom. This assertion is supported by simulation results for a physical
example channel.
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1. INTRODUCTION

The term “frequency domain adaptive filter” (FDAF) [1] is
often applied to any adaptive digital filter that incorporates
a degree of frequency domain processing. Some time do-
main adaptive filtering algorithms, such as the least mean
square (LMS), may be well approximated using such “fre-
quency domain” processing, by employing fast Fourier trans-
form (FFT) algorithms to perform the necessary convolu-
tions [1]. The computational complexity of such implemen-
tations of these adaptive filters can be, for a large number of
taps, considerably less than the explicit time domain forms.
It is this computational advantage that is often the main mo-
tivation for using these architectures. Other advantages also
exist, such as the ability to achieve a uniform rate for all con-
vergence modes (see, e.g., [1]).

Architectures that could bemore deservedly labelled “fre-
quency domain” can be achieved by transforming the time
domain input signal into a form in which individual fre-
quency components can be directly modified. This process
can be approximated using a filterbank “analyser” [2], shown
in Figure 1, which channels the input x(n) into relatively nar-
row, partially overlapping subbands, or “bins.” For clarity
of illustration, the complex oscillator inputs to the multi-
pliers in the analyser, e− j2πn fk/ fs , are denoted simply by − fk,
k = 0 · · ·K − 1. In the synthesiser, the conjugate oscillators
e j2πn fk/ fs are similarly denoted by fk.

With a sampling frequency fsHz, the output of a K
bin filterbank analyser with decimation M at time mM/ fs is
a vector of bins X(m) = [X(m, f0), . . . ,X(m, fK−1)]. The kth
bin contains an estimate of the complex envelope of the nar-
row bandpass filtered component of x(n) centred at fk Hz. If
the bins are uniformly spaced between − fs/2 and fs/2, then
the filterbank can be implemented using the discrete Fourier
transform (DFT) and it is then known as a DFT filterbank
[2]. As with other frequency domain filters, computation-
ally efficient implementations of the DFT filterbank, incor-
porating FFT algorithms, also exist [2]. When used for fre-
quency domain filtering, the DFT filterbank is sometimes
also known as a transmultiplexer [1, 3].

The contents of the bins can be modified by mul-
tiplication with possibly time varying, complex scalar
weights W(m) = [W(m, f0), . . . ,W(m, fK−1)], so that fil-
tering is performed in a manner that is analogous to
the explicit application of a transfer function to the
Fourier transform of a continuous time signal. A filter-
bank synthesiser reconstitutes a time domain output y(n)
by appropriately combining the modified bins Y(m) =
[Y(m, f0), . . . ,Y(m, fK−1)].

Importantly, it is possible to design the filterbank so that
the contents of a particular frequency bin can be modi-
fied, with relatively little impact on adjacent frequency com-
ponents. This approximate independence can be achieved
by designing the analysis and synthesis lowpass filters, h(n)
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Figure 1: K-channel DFT filterbank conceptual diagram.

and f (n), respectively, so that only adjacent bins experi-
ence significant spectral overlap. This can be achieved, to
almost arbitrary precision, by using appropriately long im-
pulse responses, Nh and Nf for h(n) and f (n). In FDAF
applications, it is typical [1] to design Nh = Nf = RK ,
where R is around 3 or 4. Approximate bin indepen-
dence is ideal for filtering functions whose main objective
is the modification of spectral magnitude, such as “inter-
ference excision” (see, e.g., [4, 5]), a narrowband interfer-
ence mitigation technique in which frequency components
that comprise strong interference have weights set equal
to zero. In that application, the smaller the overlap be-
tween adjacent filterbank bins, the better. However, this is
not necessarily the case in applications that require a de-
lay to be applied to the signal. The ability to effect de-
lay is important in applications such as channel equalisa-
tion, echo cancellation, and the exploitation of cyclostation-
arity [6]. The requirement may vary from the need to ef-
fect a constant delay, as in a noise canceller, through to the
equaliser requirement that the delay may be frequency de-
pendent.

Figure 2 shows an example to illustrate the limitations of
the DFT filterbank FDAF. A source signal s(n) is transmitted
over a channel and is received as x(n). A delayed version of
s(n) is available as a desired response signal, d(n) = s(n− λ).
A filter is to be designed to process x(n) to make it as “close”
as possible to d(n). Assume that the channel is such that x(n)
is equal to s(n), other than for a delay that may vary with
frequency, but that is constant within each bin width of an
FDAF solution. A time domain adaptive filter solution may
be to filter x(n) using a finite impulse response (FIR) filter,

s(n) Channel
c(n)

x(n)
Filter y(n)

e(n) ∑ −

+

d(n)

Figure 2: Example filtering problem.

with a tap weight vectorw(n) that is adapted according to the
error e(n) = d(n)− y(n) using an algorithm such as LMS [7].

With an FDAF solution, both x(n) and d(n) are chan-
nelised into approximate frequency domain representa-
tions X(m, fk) and D(m, fk). Each frequency component,
X(m, fk), is multiplied by a complex scalar W(m, fk) so
that Y(m, fk) = W(m, fk)X(m, fk), and the inverse trans-
form is then applied to generate y(n), the estimate of
d(n). Figure 3 shows an illustration of this filtering pro-
cess.

If bin independence is assumed, the objective can be
achieved by making, for every bin, Y(m, fk) as close as possi-
ble toD(m, fk) and the frequency domain weights vector can
also be optimised using simple algorithms such as LMS [1].
Let the delay that the transmission channel has imposed on
the kth filterbank bin of the primary signal be denoted by �.
If the filterbank decimates the time domain data by a factor
ofM, then the delays λ and � become λ/M and �/M samples,
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Figure 3: K-channel frequency domain adaptive filter.
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Equality is clearly not possible. In general, modification of
the magnitude and phase within a filterbank bin is not suffi-
cient to perfectly achieve any nontrivial delay. In this paper,
we present an analysis to quantitatively determine the degree
to which a filterbank FDAF can compensate or effect delay.
The paper is structured as follows. A discussion of previous
related research is given in the next section. In Section 3, an
analysis is presented of the accuracy with which an FIR fil-
ter can compensate a delay that varies linearly over a speci-
fied bandwidth. This is useful both for the explicit purpose of
analysis of the FIR filter and also for the analysis in Section 4
of the FDAF, which can be viewed as comprising a single tap
FIR filter operating within each filterbank bin. Section 4 in-
cludes a comparison between FIR and FDAF delay compen-
sation for linear delay channels, as well as a simulation exam-
ple for a real-world channel. Conclusions are summarised in
Section 5.

2. PREVIOUS ANALYSES OF THE FREQUENCY
DOMAIN DELAY COMPENSATION PROBLEM

In 1981, Reed and Feintuch [8] compared the performance
of an adaptive noise canceller, implemented using the time
domain LMS algorithm, with an early “frequency domain”
LMS approximation. The particular frequency domain ar-
chitecture that was studied was that of Dentino et al. [9],
which approximated the LMS algorithm using a combina-
tion of FFT/IFFT algorithms that resulted in circular convo-
lutions. A particular observation in [8] is that if the time and
frequency domain filters are implemented using the same

number of degrees of freedom1 and if there exists differen-
tial delay between the primary and desired response inputs,
then excessive noise appears in the frequency domain solu-
tion. Although the amount of excess noise is quantified, the
results in [8] are applicable only to that particular “frequency
domain” filter.

Sometimes, particularly for the equaliser and echo can-
celler problems, a subband adaptive filter (SAF) is adopted
[10, 11, 12, 13, 14, 15]. A SAF is a generalisation of a FDAF,
where a multitap FIR adaptive filter operates within each fil-
terbank channel. The ability of the SAF to effect a perfor-
mance that is comparable to a time domain implementation
has been recently addressed in [10, 12, 16]. In [12], the use
of critically sampled filterbanks for the system identification
problem has been examined. For the identification of a sys-
tem with an impulse response comprising Ls samples, it is
stated that the number of FIR taps within each subband filter
should be around

L = Ls +Nh +Nf

M
, (2)

where the filterbank analysis and synthesis filters have lengths
Nh and Nf , respectively, and the filterbank decimates the
sampling rate by a factorM. In [16], the result of [12] is ap-
plied to the equaliser problem, and it is argued that to achieve
the same performance as an Ltd tap time domain equaliser,
the number of samples in each FIR filter must be around

L = Ltd +Nh

M
. (3)

In [10], a similar expression is provided, although the fac-
tor Nh in the numerator of (3) is doubled. This is essentially
the same as (2), except that the application is different. The
correctness of the expression for the equalisation problem is
justified in [10] through simulation results, but it is acknowl-
edged as a conservative relationship. Although it is appropri-
ate for the case where L� 1, where L is close to one or, in the
case of the FDAF, equal to one, the expression is less suitable.
Equation (3) suggests that there is no filterbank FDAF which
can achieve the performance of a FIR filter. For instance, if
Nh = RK = RMI , where I is the oversampling factor, then
even as K → ∞, L → RI . There is a need to determine guide-
lines for the choice of K in a filterbank FDAF, where L = 1,
and this is the focus of this paper.

3. EFFECTING DELAY USING AN FIR FILTER

In order to determine the degree to which a DFT filterbank
FDAF can effect delay, we will determine the estimation er-
ror that is associated with each filterbank bin and then com-
bine these errors in a frequency domain SNR measure. In
some applications, this may be the most appropriate measure
of quality. In others, including conventional equalisers and

1That is, the number of bins in the frequency domain implementation is
equal to the number of time domain taps.
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noise cancellers, it may be more appropriate to measure the
SNR associated with the filterbank output. These two SNR
measures will be identical for an “ideal” filterbank; that is,
one that exhibits perfect reconstruction and which has in-
dependent bins. If the bins are not independent but exhibit
some spectral overlap, then the relationship between the fre-
quency and time domain SNRmeasures is only approximate.
In the following discussion, we will analyse the error within
the filterbank bins by treating each bin as an optimal single
tap, linear time invariant (LTI) FIR filter. Consequently, we
first obtain a general expression for the performance of an
optimal FIR equaliser. This will also be useful for the purpose
of comparison between the FIR and the filterbank. Further
comparison with an SAF is detailed in [6].

Consider an L-tap FIR filter, with fsHz sampling rate. A
delay can be exactly effected if it is equal to an integer mul-
tiple, less than L, of 1/ fs second. For delays not equal to a
multiple of 1/ fs, the delay will be an approximation [17], the
accuracy of which can be determined by considering the op-
timum FIR filter.

To analyse this, we will elaborate on the example shown
in Figure 2. Consider the transmission of a zero-mean signal
s(t) through a channel with impulse response c(t). At a re-
ceiver, this is sampled and applied to an L-tap FIR filter as the
observation signal, x(n) = s(n) ∗ c(n), where s(n) and x(n)
are the sampled signals and c(n) is the equivalent discrete-
time channel. The filter produces the output y(n) = wxn,
where xn = [x(n − L + 1), . . . , x(n)]T contains the last L
signal samples and the FIR filter impulse response is con-
tained within the row vector w = [w(0), . . . ,w(L − 1)]. A
desired response, d(n), is provided, which is related to s(n)
by d(n) = s(n)∗ g(n), where g(n) is assumed to have an FIR.
Ideally, s(n) would be available at the receiver and g(n) would
then be a simple delay, designed into the adaptive filter and
chosen so that the equalisation problem has a causal solution.
Assume that s(n) is stationary and define the autocorrelation
matrix and cross-correlation vector as

R =




Rxx(0) · · · Rxx(−L + 1)
... Rxx(0)

...

Rxx(L− 1) · · · Rxx(0)


 ,

p = [Rdx(0), . . . ,Rdx(L− 1)
]
,

(4)

where Rxx(τ)=E[x(n)x∗(n−τ)] and Rdx(τ)=E[d(n)x∗(n−
τ)]. The weights vector that minimises the mean square esti-
mation error (MSE) is the Wiener solution, w = pR−1. Stan-
dard analysis (see, e.g., [7]) shows that the error power is
equal to

J = E
{∣∣d(n)− y(n)

∣∣2}
= Rdd(0)− pR−1pH

(5)

and so the SNR at the filter output can be expressed as

SNR = Rdd(0)
Rdd(0)− pR−1pH

. (6)

This can be further manipulated in terms of the source signal
power σ2 = E[s(n)s∗(n)] and the impulse responses of the
channels c(n) and g(n). Assuming that s(n) is stationary, it
can be shown [6] that

Rdd(τ) = Rss(τ)∗ Rgg(τ),

Rdx(τ) = Rss(τ)∗ Rgc(τ),

Rxx(τ) = Rss(τ)∗ Rcc(τ),

(7)

where we have defined Rgc(τ) = g(τ) ∗ c∗(−τ), Rgg(τ) =
g(τ)∗ g∗(−τ), and Rcc(τ) = c(τ)∗ c∗(−τ).

Now let s(n) be a white stationary signal and consider the
ideal equalisation problem where g(n) is a delay of λ samples,
chosen to facilitate a causal solution. Thus g(n) = δ(n−λ) so
that d(n) = s(n − λ) and Rdd(0) = Rss(0) = σ2. Then, from
equation (5), the MSE is equal to

J = σ2 − 1
σ2

L−1∑
i=0

∣∣Rdx(i)
∣∣2. (8)

As s(n) is white with variance σ2, then Rdx(τ) = σ2δ(τ−λ)∗
c∗(−τ) = σ2c∗(−τ + λ). Thus, in this case, we have

J = σ2
(
1−

L−1∑
i=0

∣∣c∗(λ− i)
∣∣2) (9)

and the SNR is equal to

SNR = 1

1−∑L−1
i=0
∣∣c∗(λ− i)

∣∣2 . (10)

Let the channel c(n) have a bandpass frequency response
with a delay that varies linearly from �min to �max samples,
over a filter bandwidth of 2b bins, in an N-sample DFT of
the impulse response c(n). It can be shown [6] that the dis-
crete magnitude frequency response can be written as

C(k) = rect
(
k

2b

)
e jΦ(k), (11)

where the phase response is given by

Φ(k) = (�min − �max
) πk2
2bN

− (�max + �min
)πk
N

. (12)

Example 1 (constant delay channel). A particularly simple
special case of the linear delay channel is when the delay is
constant, equal to � samples, where � is not necessarily an
integer. In this case, if the channel bandwidth extends over
the sampling frequency range, then fc = fs/2 and c(n) =
sinc(n− �). Then, from equation (10),

SNR = 1

1−∑L−1
i=0
∣∣ sinc(λ− � − i)

∣∣2 . (13)

Clearly, if λ − � is a multiple of the sampling period but is
less than L, then the sinc function is sampled only at its peak
and at its zero crossings. In this case, the summation in the
denominator of (13) equals unity and the SNR is infinite.
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Figure 4: Reconstruction SNR for FIR equalisation of linear delay
channel.

This verifies the earlier statement that an FIR filter is capable
of perfectly achieving delays which are a multiple of the tap
spacing. However, recall that � is not necessarily an integer.
If a noninteger delay is required, then the sinc function will
not be sampled at its zero crossings and the SNR is finite. A
perfect noninteger delay cannot be achieved for finite L.

Example 2 (general linear delay channel). Next we look at the
equalisation of a channel with a delay which varies linearly
over a 100-sample range. In this case, we examine both the-
oretical and experimental performances. In order to assure
a causal experimental channel with a delay response which
closely approximates the desired response, we let the number
of samples in the channel impulse response be Nch = 2048
and design the delay to vary from sample 975 to sample 1075,
symmetric about n0 = 1025. Figure 4 shows the theoretical
SNR for an optimal L point FIR equaliser for this channel.
The curve was generated using (12) and (11) to numerically
evaluate (10). Also shown by crosses are the experimental re-
sults. The parameter λ was chosen to maximise the summa-
tion of equation (10). As |c(n)| is symmetric about sample
n0, this means choosing λ = (L − 1)/2 + n0 and, in this ex-
ample, we have λ = (L− 1)/2 + 1025 samples. Experimental
results, obtained for a unity variance complex Gaussian white
noise signal and using an LMS algorithm to approximate the
optimal filter, are indicated by crosses.

4. FILTERBANK

The analysis of Section 3 can be used to determine the accu-
racy with which a filterbank FDF can compensate delay by
considering the FIR case with L = 1 taps. However, by allow-
ing an arbitrary number of FIR taps, the study can be gen-
eralised to a SAF [6]. A subband adaptive equaliser can be
implemented using identical filterbanks to generate each of
the primary X(m, fk) and desired D(m, fk) response signals

x(n) h(n) M X(m, fk)

xk(n)e− j2πn fk / fs

Figure 5: Signal flow diagram for the kth channel of the filterbank
analyser, processing the observation signal x(n).

from the time domain inputs x(n) and d(n). An FIR filter is
independently applied to each channel of X(m, fk) to min-
imise the performance criterion, which is assumed here to be
the MSE. The error power associated with each bin is readily
determined using the analysis of Section 3 for the FIR filter. If
the filterbanks are capable of perfect reconstruction with in-
dependent bins, then the sum of the error power within each
bin of this equaliser equals the MSE of the time domain es-
timate of d(n). An expression for the equaliser SNR can be
readily determined. If the filterbank does not satisfy these
properties, then such an expression is only approximate.

To facilitate the application of the general FIR filter anal-
ysis of Section 3, let the signal s(n) pass through the trans-
mission channels c′(n) and g′(n) to produce the observa-
tion and desired response signals x(n) = s(n) ∗ c′(n) and
d(n) = s(n) ∗ g′(n). The signal within the kth observation
filterbank bin is, prior to decimation,

xk(n) =
[(
s(n)∗ c′(n)

)
e− j2π fkn/ fs

]∗ h(n), (14)

as illustrated in Figure 5. Similarly,

dk(n) =
[(
s(n)∗ g′(n)

)
e− j2π fkn/ fs

]∗ h(n). (15)

These can be shown to be equivalent to

xk(n) =
(
s(n)e− j2π fkn/ fs

)∗ (c′(n)e− j2π fkn/ fs
)∗ h(n),

dk(n) =
(
s(n)e− j2π fkn/ fs

)∗ (g′(n)e− j2π fkn/ fs
)∗ h(n).

(16)

Let sk(n) = s(n)e− j2π fkn/ fs , c′k(n) = c′(n)e− j2π fkn/ fs , and
g′k(n) = g′(n)e− j2π fkn/ fs so that we can write

xk(n) = sk(n)∗ c′k(n)∗ h(n),

dk(n) = sk(n)∗ g′k(n)∗ h(n).
(17)

Writing ck(n) = c′k(n)∗ h(n) and gk(n) = g′k(n)∗ h(n) gives
us expressions for x(n) and d(n) in the form of the general
FIR analysis. That is,

xk(n) = sk(n)∗ ck(n),

dk(n) = sk(n)∗ gk(n).
(18)

This means that expressions for Rxkxk (n), Rdkdk (n), and
Rdkxk (n), and thus the SNR within each channel, can be
easily determined. After decimation by M, the observa-
tion and desired response signals are X(m, fk) = xk(mM)
and D(m, fk) = dk(mM), respectively. Assuming no alias-
ing occurs, the correlation functions of the decimated data
are RXkXk (m) = Rxkxk (mM), RDkDk (m) = Rdkdk (mM), and
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RDkXk (m) = Rdkxk (mM). Further analysis requires particu-
lar cases to be treated separately. We assume throughout that
s(n) has unity variance and is white over the frequency range
− fs/2 to fs/2.

4.1. Frequency domain filter

A filterbank FDAF has L = 1 and expression (6) for the SNR
within the kth bin reduces to

SNRk = RDkDk (0)

RDkDk (0)−
∣∣RDkXk (0)

∣∣2/RXkXk (0)
. (19)

We now proceed to determine the correlation functions for
a channel that has flat magnitude response with linear de-
lay. This is achieved by inverse Fourier transforming the
corresponding cross-spectra. The magnitude of the cross-
spectrum between the desired response and observation sig-
nals within a particular bin is bandpass from approximately
− fs/2K to fs/2K Hz. Under the assumption that the trans-
mission channels c′(n) and g′(n) are flat with unity gain over
the bandwidth of each bin, the shape of the cross-spectrum
is determined solely by the frequency response of the anal-
ysis filters and Sss( f ), the power spectral density of s(n).
That is, Sdkxk ( f ) = |H( f )|2Sss( f − fk), as shown in the ap-
pendix. Since we assume that s(n) is white over the frequency
range between− fs and fsHz, then Sss( f ) = σ2/ fs. The cross-
spectral phase is bin dependent but is simply the difference
between the phase response of the channels over this fre-
quency range. This can be determined from the correspond-
ing delay difference. Thus the cross-correlation function for
each bin, RDkXk (m), can be determined using an algorithm
for designing a linear delay FIR filter.

Although we derive results for a filterbank with a prac-
tical analysis filter, it is also essential to consider the ideal,
independent bin case. The reason for this is threefold; first,
the assumption of independent bins is frequently made in
frequency domain filtering applications; second, we will see
that this extreme filterbank architecture achieves the worst
possible delay performance; and third, simple closed-form
expressions can be obtained for its performance. If the filter-
bank satisfies the perfect reconstruction property and has in-
dependent bins, then the analysis filter has an ideal brick-wall
frequency response that is flat between− fs/2K and fs/2K Hz.
That is, H( f ) = rect( f /2 fc), where fc = fs/2K Hz.

4.1.1. Equalisation of a constant delay channel
using an ideal filterbank

It is useful to explicitly consider the case where the chan-
nel delay is constant since, as will now be shown, a closed-
form expression for the SNR can be derived. Let the trans-
mission channel c′(n) have a constant delay equal to � sam-
ples, where � is not necessarily an integer, and let g′(n) have a
constant λ sample delay. The delay difference between g′(n)
and c′(n) is thus λ − �. The bandwidth of each bin is equal
to 2 fc = fs/K and so the magnitude of Sdkxk ( f ) is equal to
Sss( f )rect( f K/ fs). At the decimated sample rate, f ′s = fs/M,
the cross-spectral bandwidth becomes 2 fc = fsM/K and the
“filter” group delay is (λ−�)/M. The impulse response p(m),

whose discrete-time Fourier transform equals the cross-
spectrum Sdkxk ( f ), can be shown to equal

p(m) = σ2

K fs
sinc

(
mM

K
− λ− �

K

)
. (20)

To determine RDkXk (m), this impulse response must be
scaled by a factor fs so that its DFT produces a discrete
power spectrum whose bins sum to the correct power. With
this scaling, the cross-correlation becomes

RDkXk (m) = σ2

K
sinc

(
mM

K
− λ− �

K

)
. (21)

The autocorrelation functions RXkXk (m) and RDkDk (m) can
similarly be shown to equal

RXkXk (m) = RDkDk (m) = σ2

K
sinc

(
mM

K

)
. (22)

Using equation (19), the SNR is the same within each bin
and is equal to

SNRk = 1

1− sinc2
(
(λ− �)/K

) . (23)

This is also equal to the total frequency domain SNR, since
the channels through which both observation and desired
response signals have passed have frequency-independent
magnitude and delay response. Under the assumption of
independent bins, this SNR is also equal to the SNR of the
reconstructed time domain output. Equation (23) illustrates
an important result; due to the SNR dependence on the
magnitude of the differential delay |λ − �|, the filterbank
FDAF effects signal advance to the same accuracy as it can
effect delay. Consequently for frequency domain equalisa-
tion, in the absence of detailed channel knowledge, the most
generally optimum design would use λ = 0.

The SNR given by (23) is plotted as the solid trace in
Figure 6, for the case whereM = K/2, � = 64, λ = 0, and K is
varied over the range � to 32�. The horizontal axis is the ratio
K/�, to clarify that the curve depends only on this ratio and
not on the values of � and K themselves. Experimental re-
sults were also obtained by approximating the independence
of the bins by using a DFT filterbank with very little overlap
of adjacent frequency bins. This was achieved by using analy-
sis filters with very long impulse responses, Nh = RK , where
R = 32. The details of this filter design, based on a Hamming
window, are given in [6].

The experimental frequency domain SNR, that is, the ra-
tio of total frequency domain signal power to total frequency
domain error power, is plotted as circles. The crosses repre-
sent the experimental SNR of the time domain output. The
results illustrate that a DFT filterbank with independent bins
cannot exactly compensate even a constant delay channel ex-
cept asymptotically as K → ∞. The closeness of the theo-
retical and experimental results also verifies that the SNR of
the time domain filterbank output is approximately equal to
the SNR within the filterbank transform domain, for the case
where bin independence can be closely modelled.
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Figure 6: Reconstruction SNR for “ideal” filterbank FDAF equali-
sation of constant delay.

4.1.2. Channel with linear delay

Now consider an allpass channel, c′(n), with a delay that
varies linearly from �min to �max samples over the sampling
bandwidth. Let the delay associated with channel c′k(n) vary
from �bmin to �bmax samples over the bandwidth of the kth
bin, at the input sampling rate. The delay difference between
the desired response and observation signal thus varies over
λ− �bmax to λ− �bmin samples. It is easy to show [6] that

�bmin(k) = �min +
�max − �min

K

(
k +

K + 1
2

)
,

�bmax(k) = �min +
�max − �min

K

(
k +

K − 1
2

)
.

(24)

The cross-spectral delay between the decimated desired re-
sponse and observation signals then varies linearly from �1 =
(λ−�bmax)/M to �2 = (λ−�bmin)/M samples at the decimated
rate, f ′s = fs/MHz.

Let ν represent the discrete frequency index for a fre-
quency domain representation of the kth subband data.
To determine the cross-correlation function RDkXk (m), the
cross-spectrum SDkXk (ν) can be sampled at N points and an
inverse DFT computed. Under our assumption that s(t) is
white, the power spectral magnitude |Sss( f )| is constant and
equal to σ2/ fs units squared perHz. Thus the magnitude of
the cross-spectral density SDkXk (ν) is equal to σ

2|H(ν)|2/NM
units squared per bin2 and the cross-spectral density SDkXk (ν)
is equal to

SDkXk (ν) =
∣∣SSS(ν)

∣∣∣∣H(ν)
∣∣2e jΦk(ν). (25)

2Since the subband data is sampled at f ′s = fs/MHz, the bandwidth of
each of the N bins is equal to fs/NMHz and the power within each bin is
equal to σ2/NM units squared.

Within the kth filterbank channel, the N point correlation
function between the decimated reference and the primary
signal component, RDkXk (m), is then approximately given by3

RDkXk (m) = N × IDFT
[
SDkXk (ν)

]
= σ2

M
IDFT

[∣∣H(ν)
∣∣2e jΦk(ν)

]
,

(26)

with

Φk(ν) =
(
�2 − �1

) πν2

2bN
+
(
�1 + �2

)πν

N
, (27)

where the bandwidth 2b = MN/K . Although not explicitly
indicated in (27), the delays �1 and �2 are a function of the
bin number, k. The autocorrelation functions RXkXk (m) and
RDkDk (m) can similarly be computed by specifying a linear
phase term in (26). The SNR within each bin is computed
using (19) but the total filterbank SNR should be computed
by the ratio of total signal to total error power. That is,

SNRFB =
∑K−1

k=0 RDkDk (0)∑K−1
k=0 Jk

, (28)

where the power of the desired response signal is equal to
RDkDk (0), and from (5), the error power within the kth bin is

Jk = RDkDk (0)−
∣∣RDkXk (0)

∣∣2
RXkXk (0)

. (29)

If the filterbank exhibits perfect reconstruction and the bins
are independent, the SNR associated with the reconstructed
time domain output satisfies the relationship SNRtd =
SNRFB, otherwise this relationship is only approximate.

We used this general analysis to determine the equalisa-
tion performance for a constant delay channel using a prac-
tical filterbank FDAF. The analysis and synthesis filters were
designed to have identical impulse responses, where only ad-
jacent bins exhibit any significant spectral overlap, resulting
in near-perfect reconstruction4 and so that the sum of the
power within each analyser bin equals the time domain in-
put signal power. The length of the analysis and synthesis fil-
ters was Nh = RK , where R = 4, and the filterbank had a
decimation factor M = K/2. Equation (26) was computed
using these parameters, with K = 512 and N = 100. The
magnitude response of the analysis filter was determined by
performing an N-point DFT on the decimated impulse re-
sponse h(mM) = h(n).

3In general, the discrete power spectrum Sxx(ν) of a signal x(m) can
be estimated by 1/N times the periodogram |X(ν)|2, where X(ν) =
DFT[x(m)]. Since the autocorrelation function, Rxx(m), estimated by time
average x(m)∗x∗(−m) is equal to the inverse DFT of |X(ν)|2, it follows that
Rxx(m) is equal to N times the inverse DFT of Sxx(ν).

4That is, less than −65dB reconstruction error was achieved for a back-
to-back analyser/synthesiser configuration.
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Figure 7: Reconstruction SNR for filterbank FDAF equalisation of
constant delay.

The solid trace of Figure 7 shows the theoretical fre-
quency domain SNR as a function of the ratio K/�. Fre-
quency domain SNR measurements, computed from exper-
imental results, are shown as crosses and the correspond-
ing time domain output SNR points are shown as circles.
By comparison with Figure 6, it can be seen that the fre-
quency domain SNR is almost the same as that obtained
when the bins are independent. However, the experimen-
tal results show that the SNR of the filterbank time domain
output is better. This can be explained by considering the
power spectra of the subband error signals. Simulations have
shown that the error power spectrum is distributed towards
the edges of the bins, rather than about the bin centre as is the
signal power spectrum. By design, the action of the synthesis
filters is to constructively combine the signal components of
adjacent bins, but the error is attenuated by these filters. So
while the signal power is preserved by the synthesis process,
the error power is reduced. The result is the superior SNR of
the time domain filterbank output compared with the trans-
form domain SNR.

Next, we look at the performance of a filterbank FDAF
for equalising the linear delay channel which was defined
in Example 2. The channel has delay that varies linearly
from �max − �min = 100 input samples over the full discrete
frequency range. The theoretical frequency domain SNR is
shown as the solid trace in Figure 8, for a perfect reconstruc-
tion filterbank with nonoverlapping bins. The delay in the
desired response channel was chosen to maximise the SNR.
Since the filterbank is capable of effecting a noncausal re-
sponse, where a delay of −� samples is as readily approxi-
mated as a delay of � samples, the optimum choice is λ =
n0 = (�max + �min)/2. The example channel has �min and �max
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Figure 8: Reconstruction SNR for filterbank FDAF equalisation of
the linear delay channel.

equal to 975 and 1075, respectively, so that the channel delay
is symmetric about n0 = 1025. Justified by the closeness of
the time and frequency domain SNR measures for the con-
stant delay channel (Figure 6), we assert that this solid trace
also represents the time domain SNRmeasure for the “ideal”
filterbank. Also shown in Figure 8 is the theoretical frequency
domain (dashed) and experimental time domain (circles)
SNR achieved by the R = 4 practical filterbank FDAF that
was introduced earlier in this section. As anticipated from
the results of the constant delay channel, the frequency do-
main SNR associated with the practical filterbank is very sim-
ilar, but slightly inferior, to the ideal filterbank. However, also
in similarity to the results of the constant delay channel, the
time domain SNR is superior to the frequency domain mea-
sure.

We can use Figures 8 and 4 to compare the performance
of the frequency domain filter with a time domain FIR filter
for the equalisation of the linear delay channel. Since the rela-
tionships between SNR and the parameters of each filter type
are nonlinear, the comparison is most easily accomplished
by looking at the number of filter weights that are required
to achieve specific SNR levels. Inspection of Figure 4 reveals
that to achieve SNR equal to 18 dB and 35 dB, respectively,
approximately L = 100 and L = 200 taps are required by a
FIR filter. From Figure 8, it can be seen that to achieve similar
frequency domain SNR, the number of ideal filterbank bins
must be around K = 450 and K = 3000 bins, respectively.
This is 4.5 and 15 times greater than the corresponding num-
ber of FIR filter taps. The practical R = 4 filterbank requires
approximately K = 250 and K = 1500 bins which, for this
example, is around half the number of bins required by the
ideal filterbank.
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Figure 9: Real (black) and imaginary (grey) parts of example chan-
nel impulse response.

The results of the previous paragraph can be compared
with the relationship in (3). In this example, the ideal
filterbank has an infinite number of analysis filter samples.
According to (3), the number of subband FIR taps must also
be infinite, yet we have shown that there exists a filterbank
FDAF (equivalent to an SAF with one tap per subband FIR
filter) that can achieve the FIR performance. This clearly
illustrates the conservative nature of (3).

4.2. Channel equalisation example

It is important to compare the specialised results discussed
thus far with the equalisation performance of a real-world
channel and signal. In this section, we provide an example
where a simulation signal is passed through such a channel
and is subsequently equalised using both an FDAF and a time
domain LMS equaliser.

Consider the microwave channel with an equivalent
baseband impulse shown in Figure 9, obtained with a
60MHz sampling rate. This is “channel 14,” taken from the
Rice University microwave channel database, currently avail-
able at the Internet site “http://spib.rice.edu/spib/microwave.
html.” Analysis shows that there is considerable variation in
both the delay and the magnitude of the frequency response,
with nonminimum phase zeros located close to the unit cir-
cle. We used, for the example signal, a baseband 12Mbaud
BPSK signal with root raised cosine pulse shaping.

Each of the FDAF and LMS filter parameters was adjusted
so that in the steady state, the output signal was restored
to a similar SNR. So that the example represents, as realis-
tically as possible, a typical equalisation problem, the delay
parameter λ was chosen without incorporating knowledge of
the length of the channel impulse response. Consequently,
in accordance with the discussions in Sections 3 and 4.1, λ
was chosen equal to L/2 for the time domain filter and 0 for
the FDAF. With L = 4096 taps and convergence coefficient
µ = 10−5, the FIR filter achieved approximately 19 dB steady
state SNR. In the filterbank case, we used an oversampling

factor I = 2 and length 4K analysis and synthesis filters. The
FDAF filter weights were determined using the single tap RLS
algorithmwith γ = 0.99 and it was found that withK = 4096
bins, the filterbank FDAF also achieved approximately 19 dB
SNR.

In this example, to achieve the same output SNR, a sim-
ilar number of degrees of filtering freedom are required for
each of the time domain FIR filter and the FDAF. This obser-
vation has also been found to be consistent with other real-
world channel examples, including a number of others from
the Rice University database. For these other cases, the FDAF
required at most twice the number of degrees of freedom of
the time domain filter.

This is a significantly different observation to that which
could be anticipated from studying the results of the linear
delay channel. In that case, the experimental results showed
that to achieve approximately 26 dB SNR, the FIR and FDAF
required L = 250 taps and K = 1000 bins, respectively; con-
siderably more degrees of freedom are required by the FDAF.
That in these real-world examples a comparable number of
degrees of freedom are required by each of the two filter
types can be well explained by considering the duality be-
tween FIR and FDAF filters. The FIR filter is inherently well
suited to effecting pure delay functions; it can localise in time,
since it is a time domain operation. On the other hand, an
FDAF can effect narrowband modification of the frequency
response. It is not surprising then that for an operation such
as real-world channel equalisation, that requires modifica-
tion of both delay and frequency response, a similar number
of degrees of freedom are required by both FIR and FDAF fil-
ters.We should again emphasise that there are additional rea-
sons why, in practice, the FDAF may or may not be adopted
in preference to a time domain approach, as discussed in the
introduction to this paper. The most notable advantages in
these real-world examples are the superior convergence rate
and computational efficiency of the FDAF.

This relationship between the number of degrees of free-
dom required by an FDAF and an FIR filter to achieve similar
delay compensation clearly depends on the particular chan-
nel type. Importantly, however, in any of the cases consid-
ered here5, it has been shown that it is possible to design
an FDAF to achieve equivalent delay compensation perfor-
mance to that of an FIR filter.

5. CONCLUSION

In this paper, we have addressed an important issue associ-
ated with the application of a DFT filterbank FDAF to chan-
nel equalisation. We have shown that a fundamental differ-
ence between the DFT filterbank and an FIR filter is the ac-
curacy of delay compensation. While an L-tap FIR filter is
capable of perfect compensation for a set of L discrete delays,
a DFT filterbank FDAF, with independent bins, is incapable

5This excludes the case where the delay is constant and equal to a mul-
tiple of the sampling period, in which case it is possible to achieve perfect
compensation using an FIR filter.

http://spib.rice.edu/spib/microwave.html
http://spib.rice.edu/spib/microwave.html
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of perfect delay compensation except asymptotically as the
number of bins approaches infinity. For other delays, how-
ever, we have shown that it is possible to determine filter-
bank FDAF parameters that result in equivalent performance
to that of an FIR filter.

For equalisation of a linear delay channel, a filterbank
FDAF can require in excess of an order of magnitude more
bins than the number of taps required by a FIR filter. The
ability of a filterbank FDAF to compensate delay is directly
related to the degree of spectral overlap that exists between
bins and results indicate that the greater the independence
between bins, the poorer the quality of FDAF delay compen-
sation.

Notwithstanding these conclusions, the linear delay
channel represents an extreme condition and counter exam-
ples have suggested that for compensation of more typical
communications channels, the number of bins required by
an FDAF is around the same as the number of taps required
by a similarly performing FIR filter.

It has been shown that for the majority of the chan-
nels considered, it is possible to design a filterbank FDAF to
achieve a delay compensation performance that is equivalent
to that possible using an FIR filter. This is a new observation
that would otherwise not be clear from previously published
work.

APPENDIX

In this appendix, the expression for the cross-spectrum,
Sdkxk ( f ) = |H( f )|2Sss( f − fk), used in Section 4.1, is derived.

First, recall that x(n) = s(n) ∗ c′(n) and d(n) = s(n) ∗
g′(n). Then, with reference to Figure 5,

xk(n) =
[(
s(n)∗ c′(n)

)
e− j2π fkn/ fs

]∗ h(n), (A.1)

which commutes to

xk(n) =
(
s(n)∗ c′(n)∗ h′(n)

)
e− j2π fkn/ fs , (A.2)

where h′(n) = h(n)e j2π fkn/ fs . Similarly,

dk(n) =
(
s(n)∗ g′(n)∗ h′(n)

)
e− j2π fkn/ fs . (A.3)

Then, from linear systems theory, the cross-spectrum
Sxk fk ( f ) is given by

Sxkdk ( f ) = Sss
(
f − fk

)
C′
(
f − fk

)
H′( f − fk

)
× [G′( f − fk

)
H′( f − fk

)]∗
= Sss

(
f − fk

)
C′
(
f − fk

)
G′∗

(
f − fk

)
× ∣∣H′( f − fk

)∣∣2,
(A.4)

where C′( f ), G′( f ), andH′( f ) are the Fourier transforms of
c′(n), g′(n), and h′(n), respectively. However, by definition,

H′( f − fk) = H( f ), and under the assumption that c′(n) and
g′(n) have unity gain, flat frequency responses over the band-
width of the kth analysis filterbank bin, we have, as required,
that

Sxkdk ( f ) = Sss
(
f − fk

)∣∣H( f )
∣∣2. (A.5)
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